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Abstract

Based upon the Fourier series expansion, we propose
a simple and easy-to-use approach for computing ac-
curate estimates of Black-Scholes double barrier op-
tion prices with time-dependent parameters. This
new approach is also able to provide tight upper and
lower bounds of the exact barrier option prices. Fur-
thermore, this approach can be straightforwardly ex-
tended to the valuation of standard European options
with specified moving boundaries as well.
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1. Introduction

In the past decade barrier options have become
very popular instruments for a wide variety of hedg-
ing and investment in foreign exchange, equity and
commodity markets, largely in the over-the-counter
markets. As estimated by Hsu[1], the market for
barrier options has doubled in size every year since
1992. An advantage of trading barrier options is
that they provide more flexibility in tailoring the
portfolio returns while lowering the cost of option
premiums. Closed-form solutions of European bar-
rier option models with constant model parameters
have been developed by Merton[2], Rubinstein and
Reiner[3], Kunitomo and Ikeda[4], Rich[5], Carr[6],
Geman and Yor[7], and Hui[8,9]. All these derivations
assume that the model parameters such as volatility,
interest rate and dividend yield are constant. How-

∗The conclusions herein do not represent the views of the
Hong Kong Monetary Authority.

†Author for correspondence. The Chinese University
of Hong Kong, Shatin, New Territories, Hong Kong (Email:
cflo@phy.cuhk.edu.hk)

‡55th Floor, Two International Finance Centre, 8 Finance
Street, Hong Kong (Email: Cho-Hoi_Hui@hkma.gov.hk)

ever, the inclusion of time-varying parameters is an
important concern because their term structures re-
flect expectation and dynamics of market factors. Un-
like the standard European options, the valuation
of barrier options with time-dependent parameters
is not a trivial extension, and has been the focus of
some recent work. Roberts and Shortland[10] applied
the hazard rate tangent approximation to evaluate
upper and lower bounds of the option price for pa-
rameters with time dependence in the Black-Scholes
model. However, their bounds are not in closed form
and could not be improved further. By the method
of images Lo et al.[11] developed a simple and easy-
to-use method for computing accurate estimates (in
closed form) of single-barrier option prices with time-
dependent parameters. Their approach also provided
very tight upper and lower bounds (in closed form) for
the exact barrier option prices systematically. Rapis-
arda[12] applied Lo et al.’s[11] results to derive in
an analytical fashion the approximate prices of vari-
ous types of barrier options, e.g. forward start/early
expiry barriers, window barriers, etc. Moreover, in
order to further improve these results, Rapisarda[13]
proposed a perturbation expansion scheme too.
The purpose of this paper is to provide a valuation

technique based upon the Fourier series expansion to
price double-barrier options with time-dependent pa-
rameters. To our knowledge this is the first applica-
tion of Fourier series to the valuation of barrier op-
tions with time-varying parameters, although Fourier
series has enjoyed wide application in several diverse
fields for about two centuries. The proposed valua-
tion technique provides exact closed-form price func-
tions of double-barrier options with time-varying pa-
rameters in the presence of two parametric moving
barriers. These price functions not only enable us
to obtain accurate estimates of the prices of options
associated with fixed barriers, but we can also de-
termine tight upper and lower bounds of the exact
barrier option prices.

IAENG International Journal of Applied Mathematics, 36:1, IJAM_36_1_1
______________________________________________________________________________________

(Advance online publication: 1 February 2007)



2. Double-barrier options with
time-dependent parameters

Consider the Black-Scholes equation with time-
dependent model parameters for a standard Euro-
pean option
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where P is the option value, S is the underlying asset
price, t is the time to maturity, σ is the volatility,
r is the risk-free interest rate and d is the dividend.
Introducing the new variable x ≡ ln (S/S0) where S0
is a constant, the pricing equation is simplified to
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Without loss of generality, we assume that P (x, t) is
given by
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with β being a real adjustable parameter. Then it
can be easily shown that P̃ (x, t) satisfies the partial
differential equation:
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Next, by introducing τ = c2 (t) and P̄ (x, t) =
exp

©
β2τ/4

ª
exp {−βx/2} P̃ (x, t), Eq.(5) can be cast

in the canonical form of the diffusion equation
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By direct substitution, it is straightforward to show
that
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is the general solution of the diffusion equation for
0 ≤ x ≤ L (τ) ≡ L0 (1 + γτ) and τ ≥ 0, subject to
the absorbing boundary conditions: P̄ (x, τ) = 0 at
both x = 0 and x = L (τ). Here γ is a real adjustable
parameter, L0 denotes the interval at t = 0, and An’s
are the expansion coefficients to be determined. As a
result, the price function P (x, t) of the corresponding
double knock-out option is given by
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This double barrier option has two moving bound-
aries specified by

S∗L (t) = S0 exp {x∗ (t)}
= S0 exp {−c1 (t)− βc2 (t)} (9)

and

S∗U (t) = S0 exp {x∗ (t) + L (c2 (t))}
= S1 exp {−c1 (t)− αc2 (t)} (10)

where α ≡ β−γL0 and S1 = S0 exp (L0). It is obvious
that the two real adjustable parameters α and β are
responsible for controlling the movement of the two
barriers.
Provided the final payoff condition of a double

knock-out call option, P (S, 0) = max (S−K, 0),
where K is the strike price, we can easily show that



the expansion coefficients An’s are determined by
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Unfortunately, the integral in Eq.(11) cannot be eval-
uated in closed form and numerical quadrature is
needed for the evaluation. Nevertheless, according to
our calculations the numerical quadrature can be very
efficiently performed by Mathcad running on a PC
with Window 98. Furthermore, if we choose γ = 0,
i.e. the distance between the two barriers are being
kept constant, then the integral can be performed
analytically and the expansion coefficients An’s are
given by
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To simulate fixed upper and lower barriers, we
choose the optimal values of the adjustable parame-
ters β and α in such a way that both of the integralsZ T
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are minimum. In other words, we try to minimize
the deviations from the fixed barriers by varying the
parameters β and α. Here T denotes the time at
which the option price is evaluated. Simple algebraic
manipulations then yield the optimal values of β and
α as follows:

βopt = αopt = −
R T
0
c1(t)c2(t)dtR T

0
[c2(t)]

2
dt

. (13)

It is obvious that in the special case of constant pa-
rameters the price function P (x, t) in Eq.(8) will be
reduced to the well-known exact result, and both βopt
and αopt are equal to 1− 2(r − d)σ−2. Furthermore,
within the framework of this new approach, we can
also determine the upper and lower bounds for the ex-
act barrier option prices. It is not difficult to show1

that if the moving barriers stay outside the region
bounded by the fixed barriers, i.e. S∗U (t) > S1 and
S∗L(t) < S0, for the duration of interest, then the
corresponding option price will provide an upper
bound for the exact value. On the other hand, if
the moving barriers are embedded inside the bounded
region, i.e. S∗U (t) < S1 and S∗L(t) > S0, then the cor-
responding option price will serve as a lower bound.

3. Illustrative examples

For illustration, we apply the approximation
method to the following example: K = 50, S0 = 30,
S1 = 70, r = 0.1 and d = 0.05. The volatility
σ (t) is assumed to have the term structure: σ2 (t) =
0.05−0.02t. This example represents the special case
where the variance σ2 (t) decreases linearly with time.
We now try to evaluate the double-barrier option
price P (S, t) associated with the current underlying
asset price S = 50 at time t = 1.0. First of all, we
determine the optimal values of the adjustable para-
meters α and β:

αopt = βopt = −1.348066 . (14)

Then an estimate of the exact barrier option price
can be evaluated using Eq.(8):

P (S = 50, t = 1) = 2.709590 . (15)

As a check, the Crank-Nicolson method is used to
numerically solve the pricing equation, and the (nu-
merically) exact value of the barrier option price is
given by

Pexact(S = 50, t = 1) = 2.699919 . (16)
1The proof is based upon the maximum principle for par-

abolic partial differential equations (see the appendix of Lo et
al.[11] for the relevant proof).



The approximate estimate is indeed very close to the
exact result with an error of 0.36% only. Moreover,
the numerical results for the corresponding upper and
lower bounds are also evaluated as follows:2

Upper bound = 2.716256

Lower bound = 2.693913 . (17)

Clearly, the new approach is able to give very tight
upper and lower bounds for the exact barrier option
price with percentage error of less than 1%. It should
also be noted that as the time to maturity t gets
smaller, the accuracy of the estimate will further im-
prove and the bounds will become tighter, as shown
in Table 1a and Table 1b. Furthermore, by means of
the multi-stage approximation scheme proposed by
Lo et al.’s[11], the upper and lower bounds can be
efficiently improved in a systematic manner.

4. Conclusion

In this paper we have presented a simple and easy-
to-use method in terms of the Fourier series for com-
puting accurate estimates of Black-Scholes double
barrier option prices with time-dependent parame-
ters. This new approach is also able to provide very
tight upper and lower bounds for the exact barrier
option prices. Unlike previous attempts (see, for ex-
ample, Roberts and Shortland[10]), the evaluation is
very efficient and the exact barrier option prices are
always within the bounds, as demonstrated by the il-
lustrative examples shown above. It is also natural
that by tuning the parameters α and β the approach
can be applied to capture the valuation of standard
European options with specified moving barriers.
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Table 1(a):

T (yrs) Estimate of βopt αopt Percentage Exact ∆t for
option price error of result Crank-Nicolson

estimate method

0.25 2.405360 -1.077712 -1.077712 0.002017 2.405312 0.000025

0.5 2.929754 -1.161215 -1.161215 0.035988 2.928700 0.00005

0.75 2.891853 -1.251110 -1.251110 0.149086 2.887548 0.000075

1.0 2.709590 -1.348066 -1.348066 0.358202 2.699919 0.0001

Comparison of estimates of the option prices with
the (numerically) exact results by the Crank-Nicolson
(CN) method. Percentage error is defined as
(estimate-CN’s result)/CN’s result × 100%.

Other input parameters are K = 50, S0 = 30, S1 =
70 S = 50, σ2 = 0.05 − 0.02t, d = 0.05 and r = 0.1.
In all Crank-Nicolson calculations, ∆x = 0.0001.

Table 1(b):

T (yrs) Lower bound βL αL Percentage Upper bound Percentage
of option price error of of option price error of

lower bound upper bound

0.25 2.405316 -1.10526 -1 0.000197 2.405376 0.002661

0.5 2.928146 -1.22222 -1 -0.018911 2.930357 0.056584

0.75 2.885004 -1.35294 -1 -0.088081 2.894584 0.243674

1.0 2.693913 -1.5 -1 -0.222430 2.716256 0.605112

Comparison of the lower and upper bounds of the
option prices with the (numerically) exact results by
the Crank-Nicolson method. Note that in the above
calculations βU = αL and αU = βL.


