
An Efficient Scheduling Algorithm for Irregular Data Redistribution
Kun-Ming Yu and Yi-Lin Tsai

Department of Computer Science and Information Engineering
Chung Hua University, Hsinchu, Taiwan 300, ROC.

Tel : 886-3-5186412
Fax: 886-3-5329701

Email: yu@chu.edu.tw

Abstract. Dynamic data redistribution is used to
enhance the performance of an algorithm and to
achieve data locality in parallel programs on
distributed memory multi-computers. The data
redistribution problem has been extensively
studied. Previous results focus on reducing index
computational cost, schedule computational cost,
and message packing/unpacking cost. However,
irregular data redistribution is more flexible than
regular data redistribution; it can distribute
different sizes of data segments of each processor
to those processors according to their own
computation capability. High Performance Fortran
2 (HPF-2), the current version of HPF, provides an
irregular distribution functionality, such as
GEN_BLOCK which addresses some requirements
of irregular applications for the distribution of data
in an irregular manner and explicit control of load
balancing. In this paper, we present a
degree-reduction-and-coloring (DRC) algorithm
for scheduling HPF2 irregular array redistribution.
We devoted to obtain the minimal number of
transmission steps as well as to reduce the overall
redistribution time. In the proposed algorithm, we
try to reduce the number of maximum transmission
messages in the first phase and then apply
graph-coloring mechanism to obtain the final
schedule. The proposed method not only avoids
node contention, but also shortens the overall
redistribution time. To evaluate the performance of
DRC algorithm, we have implemented DRC
algorithms along with the Divide-and-Conquer
algorithm. The simulation results show that DRC
algorithm has significant improvement on
communication costs compared with the
Divide-and-Conquer algorithm.

Keywords: Irregular redistribution, communication
scheduling, GEN_BLOCK, degree-reduction

1. Introduction

Parallel computing systems have been widely
adopted to solve complex scientific and engineering
problems. To efficiently execute a data-parallel
program on distributed memory multi-computers, an
appropriate data distribution is critical to the
performance. Appropriate distribution can balance
the computational load, increase data locality, and
reduce inter-processor communication. Array
redistribution is crucial for system performance
because a specific array distribution may be
appropriate for the current phase, but incompatible for

the subsequent one. Many parallel programming
languages thus support run-time primitives for
rearranging the array distribution of a program. The
data redistribution problem has been widely studied in
the literature. In general, data redistribution can be
classified into two categories: the regular data
redistribution [1,5,6,7,9,11,13,15,18] and the irregular
data redistribution [4,8,22-24]. The regular data
redistribution decomposes data of equal sizes into
processors. There are three types of this data
redistribution, called BLOCK, CYCLIC, and
BLOCK-CYCLIC(n). The irregular data distribution
employs user-defined functions to specify data
distribution unevenly. High Performance FORTRAN
2 (HPF-2) provides GEN_BLOCK functionality and
makes it possible to handle different processors
dealing with appropriate data size according to their
computation capability. Previous works emphasized
the minimal steps of data redistribution and scheduled
the ordering of messages with minimal total
transmission size. In the regular array redistribution,
[15] proposed an Optimal Processor Mapping (OPM)
scheme to minimize the data transmission cost for
general BLOCK-CYCLIC regular data realignment.
Optimal Processor Mapping (OPM) utilized the
maximum matching of realignment logical processors
to achieve the maximum data hits for reducing the
amount of data exchange transmission cost. In the
irregular array redistribution problem, [22, 23]
proposed a greedy algorithm to utilize the
Divide-and-Conquer technique to obtain near optimal
scheduling while attempting to minimize the size of
total communication messages as well as the number
of steps.

In this paper, we bring up the
Degree-Reduction-and-Coloring (DRC) algorithm to
efficiently perform GEN_BLOCK array redistribution.
In section 2, we define the data communication model
of irregular data redistribution and give an example of
GEN_BLOCK data redistribution as the preliminary.
Section 3 describes the DRC algorithm for the
irregular redistribution problem. The performance
analysis, simulation results and practical transmission
with MPI on SMP/Linux cluster are presented in
section 4. Finally, the conclusions are given in section
5.

2. Data communication models
 In this section, we present some properties of
irregular data redistribution with GEN_BLOCK
functionality. There are no repetitive communication
patterns in the irregular GEN_BLOCK array

IAENG International Journal of Applied Mathematics, 36:1, IJAM_36_1_6
__

(Advance online publication: 1 February 2007)

redistribution. A data redistribution can be represented
by a bipartite graph, called a redistribution graph. To
simplify the presentation, notations and terminologies
used in this paper are defined in the following.

Definition 1: Given an irregular GEN_BLOCK
redistribution on array A[SPi] and A[DPi] over P
processors, the source processors of array data
elements A[SPi] are denoted as SPi; the destination
processors of array elements A[DPi] are denoted as
DPi where 1 ≤ i ≤ P.

Definition 2: A bipartite graph G = (V, E) is
used to represent the communications of an irregular
data redistribution between source and destination
processors. Vertices of G are used to represent the
processors. Edge eij in G denotes the message sent
from SPi to DPj, where eij ∈ E. |Eij| denotes the
transmission message size through the redistribution.

Definition 3: Every message transmission link
in irregular data redistribution is not overlapped.
Hence, the total number of message transmission link
E is P ≤ E ≤ 2 × P - 1.

Definition 4: Each processor has more than one
eij to send data to destination processors or receive
data from other source processors. The number D of
eij owned by one processor is denoted as D-degree and
the maximum D-degree of all processors is denoted as
Max-degree. We denote that the processors have the
Max-degree number of messages as Pmax.

Definition 5: If SPi sends messages to DPj-1
and DPj+1, the transmission between SPi and DPj
must exist, where 1 ≤ i, j ≤ P. This result was
mentioned as the consecutive communication property
[12].

Fig.1 shows an example of redistributing two
GEN_BLOCK distributions on A[SPi] and A[DPi].
Table 1(a) shows mapped communication message
size to source processors and destination processors,
respectively. The communications between source
and destination processor sets are depicted in Fig 1.
There are 13 transmission messages, e11, e21, e22, …e77
among the processors involved in the redistribution.
Due to the considerable influence of node contention,
a processor can only send at most one message to
another processor in each communication step and the
same is true for the receiving message. The messages,
which cannot be scheduled in the same
communication step, are called conflict tuple. For
instance, {e11,e21} is a conflict tuple since they have a
common destination processor DP1; {e21,e22} is also a
conflict tuple because of the common source
processor SP2. Table 1(b) shows a simple schedule
result for this example.

 Figure 1. An example of data redistribution

Table 1(a). The total message size of redistribution
data for each processor in Fig. 1.

SP1 SP2 SP3 SP4 SP5 SP6 SP7

7 27 32 15 15 7 14

DP1 DP2 DP3 DP4 DP5 DP6 DP7

16 12 14 17 27 23 8

Table 1(b). A simple schedule

Schedule Table

Step1: e34, e45, e22, e77, e11, e66

Step2: e56, e23, e35

Step3: e21, e33, e55, e76

3. Proposed Algorithm
 The performance of a data redistribution
procedure is determined by four costs: index
computational cost Ti, schedule computational cost Ts,
message packing/unpacking cost Tp, and data transfer
cost. The data transfer cost for each communication
step consists of start-up cost Tsu and transmission cost
Tt. Let the unit transmission time τ denote the cost of
transferring a message of unit length. In general, the
message startup cost is directly proportional to the
number of communication steps. The total number of
communication steps is denoted by N. The total
redistribution time equals Ti+Ts+

∑
=

=

++
Ni

i
isup mTT

1
)(τ , where mi = Max{e1, e2,

e3, .., ek} and ej represents the size of message
scheduled in the ith communication step for j = 1 to k.
In irregular redistribution, messages of varying sizes
are scheduled in the same communication step.
Therefore, the largest size of message in the same
communication step dominates the data transfer time
required for this communication step.

The main idea of the
Degree-Reduction-and-Coloring (DRC) algorithm is
to diminish the degree of Pmax repeatedly by
scheduling the message in the first step of data
redistribution process until Max-degree is equal to 2.
The remaining messages are then scheduled into the
communication steps by utilizing the concept of

bipartite graph coloring mechanism. The details of the
steps will be described in the following subsections.
3.1 Degree-Reduction Step
 The goal in this step is to reduce Max-degree
repeatedly in each iteration, until Max-degree is equal
to 2. An example of 4-degree communication
redistribution has taken as shown in Fig 2. In the first
phase (phase-1) of degree-reduction step, the
messages are sorted by the non-increasing order of
|Eij|, and the result is shown in Table 2. Then, DRC
selects the messages into step1 of the schedule
according to non-increasing order of message size
except those messages causing the conflict. After
phase-1, the Max-degree will be decreased by 1 (from
4 to 3). Fig 3(a) and Table 3(b) show this scenario.
DRC repeat the procedure until the Max-degree
reaches 2, which is depicted in Fig 4.

Figure 2. A data redistribution example with

Max-degree = 4
Table 2. The messages are sorted by non-increasing

order of message size

Msg no. e34 e45 e22 e65 e21 e33 e77 e11 e35 e66 e32 e76 e55

Msg size 17 15 12 10 9 8 8 7 7 7 6 6 5

(a)

(b)

Figure 3. The messages communication (a) before
phase-1 of the degree-reduction step; (b) after phase-1

of the degree-reduction step.
Table 4. The schedule after phase-1

Message no. e34 e45 e22 e65 e21 e33 e77 e11 e35 e66 e32 e76 e55

Message size 17 15 12 10 9 8 8 7 7 7 6 6 5

Schedule Table

Step1: e34, e45, e22, e77, e11, e66

Step2:

Step3:

Step4:

(a)

(b)

Figure 4. The messages communication (a) before
phase-2 of the degree-reduction step; (b) after phase-2
of the degree-reduction step.

Table 5. The schedule after the procedure of phase-2

Message no. e34 e45 e22 e65 e21 e33 e77 e11 e35 e66 e32 e76 e55

Message size 17 15 12 10 9 8 8 7 7 7 6 6 5

Schedule Table

Step1: e34, e45, e22, e77, e11, e66

Step2: e65, e21, e33, e76

Step3:

Step4:

3.2 Message-Coloring Step
 After completing the degree-reduction step, we
can obtain a redistribution graph with Max-degree of
2 and the resulting redistribution graph is 2-edge
colorable [2], since it is a bipartite graph and its
maximum degree is equal to 2. In the
Message-Coloring Step, DRC schedules the left
messages into the same step in a non-increasing order
to accomplish an optimal scheduling unless a conflict
occurs. Figure 5 shows the outcome of
message-coloring and Table 6 shows the final
schedule obtained from DRC algorithm.

Figure 5. The outcome of redistribution graph after
applying the message coloring mechanism

Table 6. The final schedule obtained from DRC

Msg no. e34 e45 e22 e65 e21 e33 e77 e11 e35 e66 e32 e76 e55

Msg size 17 15 12 10 9 8 8 7 7 7 6 6 5

Schedule Table

Step1: e34, e45, e22, e77, e11, e66

Step2: e65, e21, e33, e76

Step3: e35

Step4: e32, e55

The algorithm of the Degree-Reduction-Coloring is
given as follows.
======================================
Algorithm DRC
generating messages;
// generate messages from AS[Pi] to AD[Pi]
step = maximum degree;
sort_msgSize();
// sorting in decreasing order by message size
while (step > 2)
 {
 choose_msg(step);
 // selecting message without conflict tuple, set

into (maximal degree - step + 1) schedule
step

 step--
 } // degree-reduction iteration
while (remaining_messages != null)
 {
 selecting_msg(maximal degree-1);
 // selecting message set into maximal degree-1
schedule step
 check_msg_continue_set();
 // check remaining message set
 coloring_maximal_msg(maximal degree);
 // color the maximal message with degree

maximal degree -1 and the neighbor
message with maximal degree

 } // message coloring mechanism
end of DRCM
======================================

4. Performance Evaluation
 To evaluate the performance of the proposed
methods, we have implemented the DRC along with
the Divide-and-Conquer algorithm [23]. The
performance simulation is discussed in two categories,
even GEN_BLOCK and uneven GEN_BLOCK
distributions. In even GEN_BLOCK distribution, each
processor owns similar size of data. In contrast to
even distribution, few processors might be allocated
by grand volumes of data with uneven distribution.
Since data elements could be centralized to some
specific processors, it is also possible for those
processors to have the maximum degree of
communications.
 The simulation program generates a set of
random integer number and the size of message as
A[SPi] and A[DPi]. Moreover, the total message size
sending from SPi equals to the total size receiving to
DPi keeping the balance between source processors
and destination processors.
 We assume that the data computation
(communication) time in the simulation is represented
by the transmission size |Eij|. In the following figures,
the percentage of events is plotted as a function of the
message size and the number of processors. Also, in
the figures, “DRC Better” represents the percentage of
the number of events that the DRC algorithm has
lower total computation (communication) time than
the Divide-and-Conquer algorithm, while “DC Better”
gives the reverse situation. If both algorithms have the
same total computation (communication) time, “The
Same Results” represents the number of that event.
 In the uneven distribution, the size of message’s
up-bound is set to be B*1.7 and that of low-bound is
set to be B*0.3, where B is equal to the sum of total
transmission message size / total number of
processors. In the even distribution, the size of
message’s up-bound is set to be B*1.3 and that of
low-bound is set to be B*0.7. The total message-size
is 10M.
 Fig 6(a) and 6(b) show the simulation results of

both the DRC and the Divide-and-Conquer algorithm
with different number of processors and total message
size. The number of processors is from 8 to 24. We
can observe that the DRC algorithm has better
performance in the uneven data redistribution
compared with Divide-and-Conquer algorithm. Since

the data is concentrated in the even case, from Fig 7(a)
and 7(b), we can observe that DRC has better
performance compared with the uneven case. In both
even and uneven cases, DRC performs better than the
Divide-and-Conquer algorithm.

Figure 6. The events percentage of computing time is plotted (a) with different number of processors and (b) with
different number of total message sizes in 24 processors, on the uneven data set.

Figure 7. The events percentage of computing time is plotted (a) with different number of processors and (b) with
different number of total message sizes in 24 processors, on the even data set.

5.Conclusion
 In this paper, we have presented a
Degree-Reduction-Coloring (DRC) scheduling
algorithm to efficiently perform HPF2 irregular array
redistribution on a distributed memory multi-computer.
The DRC algorithm is a simple method with low
algorithmic complexity to perform GEN_BLOCK
array redistribution. The DRC algorithm is an optimal
algorithm in terms of minimal number of steps. In the
same time, DRC algorithm is also a near optimal
algorithm satisfying the condition of minimal message
size of total steps. Effectiveness of the proposed
methods not only avoids node contention, but also
shortens the overall communication length.
 For verifying the performance of our proposed
algorithm, we have implemented DRC as well as the
Divide-and-Conquer redistribution algorithm. The
experimental results show improvement in
communication costs and high practicability on
different processor hierarchies. Also, the experimental

results indicate that both of them have good
performance on GEN_BLOCK redistribution. In
many situations, DRC is better than the
Divide-and-Conquer redistribution algorithm.

Reference

[1] G. Bandera and E.L. Zapata, “Sparse Matrix
Block-Cyclic Redistribution,” Proceeding of IEEE
Int'l. Parallel Processing Symposium (IPPS'99), San
Juan, Puerto Rico, 355 - 359 ,April 1999

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with
Applications, Macmillan, London, 1976.

[3] Frederic Desprez, Jack Dongarra and Antoine Petitet,
“Scheduling Block-Cyclic Data redistribution,” IEEE
Trans. on PDS, vol. 9, no. 2, pp. 192-205, Feb. 1998.

[4] Minyi Guo, “Communication Generation for
Irregular Codes,” The Journal of Supercomputing,
vol. 25, no. 3, pp. 199-214, 2003.

[5] Minyi Guo and I. Nakata, “A Framework for
Efficient Array Redistribution on Distributed
Memory Multicomputers,” The Journal of
Supercomputing, vol. 20, no. 3, pp. 243-265, 2001.

[6] Minyi Guo, I. Nakata and Y. Yamashita,
“Contention-Free Communication Scheduling for
Array Redistribution,” Parallel Computing, vol. 26,
no.8, pp. 1325-1343, 2000.

[7] Minyi Guo, I. Nakata and Y. Yamashita, “An Efficient
Data Distribution Technique for Distributed Memory
Parallel Computers,” Joint Symp. on Parallel
Processing (JSPP'97), pp.189-196, 1997.

[8] Minyi Guo, Yi Pan and Zhen Liu, “Symbolic
Communication Set Generation for Irregular Parallel
Applications,” The Journal of Supercomputing, vol.
25, pp. 199-214, 2003.

[9] Edgar T. Kalns, and Lionel M. Ni, “Processor
Mapping Technique Toward Efficient Data
Redistribution,” IEEE Trans. on PDS, vol. 6, no. 12,
pp. 1234-1247, December 1995.

[10] S. D. Kaushik, C. H. Huang, J. Ramanujam and P.
Sadayappan, “Multiphase data redistribution:
Modeling and evaluation,” International Parallel
Processing Symposium (IPPS’95), pp. 441-445,
1995.

[11] Peizong Lee, Academia Sinica, and Zvi Meir Kedem,
“Automatic Data and Computation Decomposition on
Distributed Memory Parallel Computers,” ACM
Transactions on Programming Languages and
systems, Vol 24, No. 1, pp. 1-50, January 2002.

[12] S. Lee, H. Yook, M. Koo and M. Park, “Processor
reordering algorithms toward efficient GEN_BLOCK
redistribution,” Proceedings of the ACM symposium
on Applied computing, pp . 539-543, 2001.

[13] Y. W. Lim, Prashanth B. Bhat and Viktor and K.
Prasanna, “Efficient Algorithms for Block-Cyclic
Redistribution of Arrays,” Algorithmica, vol. 24, no.
3-4, pp. 298-330, 1999.

[14] C.-H Hsu, S.-W Bai, Y.-C Chung and C.-S Yang, “A
Generalized Basic-Cycle Calculation Method for
Efficient Array Redistribution,” IEEE Transactions
on Parallel and Distributed Systems, vol. 11, no. 12,
pp. 1201-1216, Dec. 2000.

[15] Ching-Hsien Hsu, Kun-Ming Yu, “An Optimal
Processor Replacement Scheme for Efficient
Communication of Runtime Data Realignment,”

Parallel and Distributed and Processing and
Applications, - Lecture Notes in Computer Science,
Vol. 3358, pp. 268-273, 2004.

[16] C.-H Hsu, Dong-Lin Yang, Yeh-Ching Chung and
Chyi-Ren Dow, “A Generalized Processor Mapping
Technique for Array Redistribution,” IEEE
Transactions on Parallel and Distributed Systems, vol.
12, vol. 7, pp. 743-757, July 2001.

[17] Antoine P. Petitet and Jack J. Dongarra, “Algorithmic
Redistribution Methods for Block-Cyclic
Decompositions,” IEEE Transactions on Parallel and
Distributed Systems, vol. 10, no. 12, pp. 1201-1216,
Dec. 1999

[18] Neungsoo Park, Viktor K. Prasanna and Cauligi S.
Raghavendra, “Efficient Algorithms for Block-Cyclic
Data redistribution Between Processor Sets,” IEEE
Transactions on Parallel and Distributed Systems, vol.
10, No. 12, pp.1217-1240, Dec. 1999.

[19] .L. Prylli and B. Touranchean, “Fast runtime block
cyclic data redistribution on multiprocessors,”
Journal of Parallel and Distributed Computing, vol.
45, pp. 63-72, Aug. 1997.

[20] S. Ramaswamy, B. Simons, and P. Banerjee,
“Optimization for Efficient Data redistribution on
Distributed Memory Multicomputers,” Journal of
Parallel and Distributed Computing, vol. 38, pp.
217-228, 1996.

[21] Akiyoshi Wakatani and Michael Wolfe,
“Optimization of Data redistribution for Distributed
Memory Multicomputers,” short communication,
Parallel Computing, vol. 21, no. 9, pp. 1485-1490,
September 1995.

[22] Hui Wang, Minyi Guo and Wenxi Chen, “An
Efficient Algorithm for Irregular Redistribution in
Parallelizing Compilers,” Proceedings of 2003
International Symposium on Parallel and Distributed
Processing with Applications, LNCS 2745, pp 76-87,
2003.

[23] Hui Wang, Minyi Guo and Daming Wei,
"Divide-and-conquer Algorithm for Irregular
Redistributions in Parallelizing Compilers”, The
Journal of Supercomputing, vol. 29, no. 2, pp.
157-170, 2004.

[24] H.-G. Yook and Myung-Soon Park, “Scheduling
GEN_BLOCK Array Redistribution,” The Journal of
Supercomputing, vol. 22, no. 3, pp 251-267, 2002

