

Solving the Assignment problem using Genetic
Algorithm and Simulated Annealing

Anshuman Sahu, Rudrajit Tapadar.

Abstract—The paper attempts to solve the generalized

“Assignment problem” through genetic algorithm and simulated
annealing. The generalized assignment problem is basically the
“N men- N jobs” problem where a single job can be assigned to
only one person in such a way that the overall cost of assignment is
minimized. While solving this problem through genetic algorithm
(GA), a unique encoding scheme is used together with Partially
Matched Crossover (PMX). The population size can also be varied
in each iteration. In simulated annealing (SA) method, an
exponential cooling schedule based on Newtonian cooling process
is employed and experimentation is done on choosing the number
of iterations (m) at each step. The source codes for the above have
been developed in C language and compiled in GCC. Several test
cases have been taken and the results obtained from both the
methods have been tabulated and compared against the results
obtained by coding in AMPL.

Index Terms—Assignment problem, Genetic Algorithm,
Newtonian cooling schedule, Partially Matched Crossover (PMX),
Simulated Annealing.

I. INTRODUCTION
The Assignment model, as discussed in different text-books of
Operations Research, can be paraphrased as: “Given N men
and N machines, we have to assign each single machine to a
single man in such a manner that the overall cost of assignment
is minimized.” To put it mathematically, let us define the
following symbols:
i →row number denoting ith man i ε [1, N]
j →column number denoting jth machine j ε [1, N]

[][]C i j → cost of assigning jth machine to ith man

[][]X i j = 1 if jth machine is assigned to ith man
 = 0 otherwise
The problem can be formulated as:

 Minimize the total cost function
1 1

[][] [][]
N N

i j
C i j X i j

= =
∑∑

Subject to the following constraints:

Manuscript received March 7, 2006.
Anshuman Sahu is a senior undergraduate student with a major in

Production and Industrial Engineering in Motilal Nehru National Institute of
Technology, Allahabad, India. (e-mail: anshumnnit@gmail.com).

Rudrajit Tapadar is a junior undergraduate student with a major in Computer
Science and Engineering in Motilal Nehru National Institute of Technology,
Allahabad, India. (e-mail: rudrajit.tapadar@gmail.com).

1

[][]
N

i
X i j

=
∑ = 1 ∀ j=1, 2… N (1)

 = 1 i=1, 2… N (2)
1

[][]
N

j
X i j

=
∑ ∀

 [][]X i j =1 or 0 (3)
The Hungarian mathematician D.König proved an essential
theorem for the development of the “Hungarian method” to
solve this model. The problem can also be formulated as an
integer-programming model and solved by techniques such as
“Branch-and-Bound technique”. Reference [1] states that the
Hungarian algorithm for solving the assignment model is more
efficient than branch-and-bound algorithms. This paper
attempts to solve the same model using two non-traditional
techniques: Genetic Algorithm and Simulated Annealing. It is
basically an experimental investigation into the various
parameters affecting these two algorithms and adapting them to
our own problem. These two approaches are discussed one by
one.

II. GENETIC ALGORITHM APPROACH
Genetic algorithms (GA) are computerized search and
optimization algorithms based on the mechanics of natural
genetics and natural selection. They were first envisioned by
John Holland and were subsequently developed by various
researchers. Each potential solution is encoded in the form of a
string and a population of strings is created which is further
processed by three operators: Reproduction, Crossover, and
Mutation. Reproduction is a process in which individual strings
are copied according to their fitness function (Here the fitness
function is taken to be the total cost function). Crossover is the
process of swapping the content of two strings at some point(s)
with a probability. Finally, Mutation is the process of flipping
the value at a particular location in a string with a very low
probability. A more comprehensive treatment of GA can be
found in [2], [3], [4].
Now, for adapting GA to our problem, it is necessary that we
develop an encoding scheme. Consider the case when N=3 and
let us presume that machine M1 is assigned to man m1,
machine M2 to man m2, and machine M3 to man m3 as shown:

.

IAENG International Journal of Applied Mathematics, 36:1, IJAM_36_1_7
__

(Advance online publication: 1 February 2007)

 Machine→
 M1 M2 M3
 m1 1 0 0

Man m2 0 1 0
 ↓ m3 0 0 1
Figure 1. A sample assignment.

Consider the first column: 100 which is equivalent to 4 in base
10 representation. Similarly the other two columns decode to 2
and 1 respectively. Hence, the above assignment can be
encoded as <4 2 1>. A quicker insight leads us to the
observation that the each permutation of <4 2 1> i.e., <1 2 4>,
<1 4 2>, <2 1 4>, <2 4 1>, <4 2 1>, and <4 1 2> is a possible
solution. As the total number of solutions possible to this
particular problem are 3! =6, we can easily conjecture that in
case of N men, N machine, the total number of solutions
possible is N! and our task is to select the best string (the one
with minimum total cost). As our encoding scheme also
generates N! strings, therefore it is correct and there is one to
one correspondence between each possible solution and each
string. It is also evident that each component (value at each
position) in the string can be uniquely expressed as 2^r where r
is a positive whole number varying from 0 to N-1. As the
powers of 2 increase rapidly, a more compact way of encoding
would be to express the component 2^r simply as r. This is
easier to write and saves space when N is high.
After encoding of the string, the population selection for
crossover is done by “Binary tournament selection” method.
Here s=2 strings are randomly chosen and compared, the best
one being selected for parenthood. This is repeated M times
where M is the size of the population. Reference [4] also cites a
method for generating the parent strings which are then ready
for crossover. Here simple crossover will not work; instead we
choose the method of Partially Matched Crossover (PMX)
which was initially developed for tackling the “Traveling
Salesman Problem” [2]. The concept of PMX can be
understood by considering an example:
Suppose we want to have crossover between two permutations
of the string <1 2 3 4 5> i.e., <1 3 4 2 5> and <2 1 3 5 4>. Two
random numbers are generated between 1 and L where L is the
length of the string (L=5 in this case). Suppose the crossover
points have been choosen as shown below:
 1 3 4 2 5
 │ │
 2 1 3 5 4
Where the dashed positions show the chosen points. Now PMX
defines the following scheme for interchangeability:
 3 ↔1 4 ↔3 2↔5 implies 1↔4 and 2↔5
Now the portion between the selected crossover points is
swapped and the rest of the values are changed according to the
above rule (this means 1 in the portion outside the two
crossover points is replaced by 4 and 2 in the portion outside
the two crossover points is replaced by 5). So the two children
strings generated are:
 4 1 3 5 2
 5 3 4 2 1
Which are again valid permutations of <1 2 3 4 5>. After

Crossover, we have a family of parent population and children
population out of which we are to select the population for next
iteration. Here we have a choice of altering the population size
at each iteration. We must maintain the diversity in population
or else it may lead to premature convergence to a solution
which may not be optimal. One method of selecting the
population may be to arrange the entire population in ascending
order of their objective function value (the string that decodes
to lowest total cost of assignment will have the highest
objective function value) and choose a predetermined number
of individual strings from each category i.e., from those that are
above average, from those around the average, and from those
below the average. This threshold can be set by using the
concept of mean and standard deviation applied to the
population. For instance, if we assume the string values to be
normally distributed with mean value µ and standard deviation
σ, we divide the population into four categories: those having
values above µ + 3*σ, those having values between µ + 3*σ and
µ, those having values between µ and µ - 3*σ, and those having
values less than µ - 3*σ. In this way the diversity in population
is maintained. Another aspect is that the string with the best
objective function value at each iteration is stored in a separate
array and subsequently compared with the best string of the
population at next iteration. In this way, the best string cannot
escape. Also note that we are not using mutation but a slight
variant of it (Inversion) by choosing two random spots in a
string and swapping the corresponding values at that position.
Inversion is allowed only when the sum of the costs at these
positions before swapping is greater than the sum of costs
associated with these positions after swapping.
Thus, if we want to swap in the string <1 2 3 4> at say second
and third positions, it will only be allowed if cost of <1 2 3 4> is
greater than cost associated with <1 3 2 4>.
The program was developed for the test problem given in [1].
Two cases were implemented: one in which Inversion was used
and another in which Inversion was not used. In both the cases,
the answer converged to the final optimum value. On an
average, there was not much difference in the number of
iterations required to reach the final value in both the cases. The
observations are plotted in the table as shown below:

750
800
850
900
950

1000
1050
1100

1 2 3 4 5 6 7 8 9

generation number

co
st

 (f
un

ct
io

n)
 v

al
ue

with
Inversion

without
Inversion

 Figure 2. Graph showing convergence to the global minimum
in case of both inversion and without inversion.

On an average, the time taken was 0.01s measured on a
standard desktop with processor Intel Pentium 4, 2.40 GHz.
The population size at each generation was kept equal to 20.

While using this algorithm in our case, we represented each
possible solution by the string as developed previously in the
case of genetic algorithm. E refers to the function value (the
total cost of assignment for a particular string). We have
employed the scheme of Newtonian cooling wherein the
temperature at each generation is determined according to the
law: T

III. SIMULATED ANNEALING APPROACH
Simulated Annealing is another non-traditional method

which was originally developed by S. Kirkpatrik, C.D. Gelatt,
Jr., and M.P. Vecchi [5]. The simulated annealing procedure
simulates the process of slow cooling of molten metal to
achieve the minimum function value in a minimization
problem. It is a point-by-point method. The algorithm begins
with an initial point and a high temperature T. A second point is
taken at random in the vicinity of the initial point and the
difference in the function values (∆E) at these two points is
calculated. The second point is chosen according to the
Metropolis algorithm which states that if the second point has a
smaller function value, the point is accepted; otherwise the
point is accepted with a probability exp (-∆E / T). This
completes one iteration of the simulated annealing procedure.
In the next generation, another point is created at random in the
neighborhood of the current point and the Metropolis algorithm
is used to accept or reject the point. In order to simulate the
thermal equilibrium at every temperature, a number of points
(m) is usually tested at a particular temperature before reducing
the temperature. The algorithm is terminated when a
sufficiently small temperature is obtained or a small enough
change in the function values is found. A detailed description of
this can be found in [4].

 i = T0 * exp (-τ) where T i is the temperature at ith
generation, T0 is the initial temperature and τ is a suitable
constant (τ is initially taken 0 when temperature equals T0 and
is incremented by a factor “increment” at each stage). Now
consider the task of randomly generated valid strings: two
techniques are being employed. Suppose we have the string <1
2 3 4> and we want to produce another random permutation of
these 4 numbers. The first method is to slide each number by a
random number generated between 1 and L (L not included)
where L is the length of the string. Thus, assuming that the
random number generated is 2, the string <1 2 3 4> gets
transformed to <3 4 1 2>. The second method of generating a
valid permutation is two choose two positions at random in the
string and swap the values at those points. We search for the
potential solution in two regions: first we search in the region of
strings created by the above first method. When the answer
converges to a particular value, we store the corresponding
string in a separate array. Then we proceed with our search
again in the region of strings created by the second method.

Once again, we converge to another string and this string is
compared with the string which was initially stored in a
separate array. The minimum of these two (the one with lesser
function value) is selected as the final answer.

The important parameters affecting simulated annealing are
the number of iterations (m) at each step and the cooling
schedule. The total number of iterations is proportional to m as
well as the rate of change of temperature. The cooling schedule
is based on Newton’s law of cooling. This model of cooling can
be compared to the discharge of an initially charged capacitor
in a RC circuit as they both follow exponential decay law. For
all practical purposes, it is assumed that the capacitor is fully
discharged at t=5*RC. Hence, in our schedule we also ran our
program from Tmax=700 to Tmin around 700*exp (-5),
keeping the number of iterations m fixed (=50). Tmax is
generally computed by calculating the average of function
values at several points. The program was run on a standard
desktop with processor Intel Pentium 4, 2.40 GHz and the test
case considered was the one given in [1]. The results obtained
have been plotted as shown in figure 3 as shown below:

800

850

900

950

1000

1 3 5 7 9 11 13 15

iteration number (taken at
an interval of 200 iterations)

co
st

 (f
un

ct
io

n)
 v

al
ue

Tmax=700,
Tmin=4.5

Tmax=700,
Tmin=5

Tmax=700,
Tmin=7

 Figure 3. Program run for various schedules (m constant)

The average time taken was 0.051s. Now m at each step was

changed, decreasing it from an initial value of 100 till a
minimum value (=20 in our case) was reached. It was observed
that the program converged to the minimum value at lesser total
number of iterations. This is shown below:

800

850

900

950

1000

1 2 3 4 5 6 7 8

iteration number (taken at
interval of 200 iterations)

co
st

 (f
un

ct
io

n)
 v

al
ue

Tmax=700,
Tmin=4.5

Tmax=700,
Tmin=5

Tmax=700,
Tmin=7

 Figure 4. Program run for various schedules (m varying)

Reference [1] reports to have solved the above test problem

in 0.09s of IBM 370/168 time. The problem was also coded in
AMPL with MINOS 5.5 as the solver and it took 0.03125s on
the standard desktop mentioned earlier. While solving the
problem using Genetic Algorithm, the average time taken was
0.01s while the time taken for solving it using Simulated
Annealing was 0.05s (The time was noted on a standard
desktop with processor Intel Pentium 4, 2.40 GHz).

IV. CONCLUSION
An experimental investigation into solving the Assignment

model using Genetic Algorithm and Simulated Annealing is
presented. Various parameters affecting the algorithms are
studied and their influence on convergence to the final
optimum solution is shown.

ACKNOWLEDGMENT
The Authors would like to thank Dr. Sanjeev Sinha, Asst.

professor, Dept. of Mechanical Engineering, MNNIT, India for
his invaluable advice and guidance. The Authors would also
like to thank their friends with whom they discussed their ideas
which sometimes led to many new insights.

REFERENCES
[1] Billy E. Gillett, Introduction to Operations Research A

Computer-Oriented Algorithmic Approach. Tata McGraw-Hill
Publishing Company Limited, New Delhi (Copyright © 1976 by
McGraw-Hill, Inc., New York), TMH EDITION 1979, ch. 3, ch.4.

[2] Goldberg, D.E., Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, Mass.: Addison-Wesley, 1989.

[3] Kalyanmoy Deb, Optimization for Engineering Design Algorithms and
Examples. Prentice-Hall of India Private Limited, New Delhi, 1995, ch. 6.

[4] Fred Glover, Gary A. Kochenberger, Ed. HANDBOOK OF
METAHEURISTICS. ©2003 Kluwer Academic Publishers New York,
Boston, Dordrecht, London, Moscow (Print ISBN: 1-4020-7263-5, ebook
ISBN: 0-306-48056-5).

[5] Kirkpatrick, S., Gelatt, Jr., C.D. and Vecchi, M.P. (1983) “Optimization
by simulated annealing”, Science, 220, 671-680.

	INTRODUCTION
	GENETIC ALGORITHM APPROACH
	SIMULATED ANNEALING APPROACH
	Conclusion

