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An optimization technique is presented for 

approximating the controllable set by an ellipsoid for 

a linear time-invariant open-loop unstable system 

subject to input saturation.  A technique and 

algorithms for maximizing the controllable set are 

also presented.  In stead of starting from a positive 

definite right-hand side matrix Q of the Lyapunov 

equation as done in almost all applications of the 

Lyapunov functions, we start from a positive definite 

Hessian matrix P for the Lyapunov function so that 

the resulting Lyapunov function will be convex.   
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1. INTRODUCTION 

The concept of controllable set in control systems 

was introduced by Snow [1], when he defined the 

controllable set as the reachable set of the system 

with time reversed.  For linear systems, there is 

complete duality between reachability (the ability to 

reach any desired final state from a given initial state) 

and controllability (the ability to reach a given final 

state from any initial state).  But this is not generally 

true for nonlinear systems.  Determination of the 

reachable set under input saturation has been widely 

studied using an open-loop approach.  See Summers 

[2], Sabin and Summers [3], Summers, Wu and Sabin 

[4], and Quinn and Summers [5].  However, none of 

these papers covers the controllable set of a 

closed-loop system. 

For this paper, without loss of generality, we 

assume that the destination state is the origin. In other 

words, the controllable set is defined to be the set of 

the states for which there is at least one control which 

will drive it to the origin. For a linear time-invariant 

system, the controllable set is the entire state space if 

the system is asymptotically stable, i.e., if all the 

eigenvalues of the system are located on the open 

left-half plane.  This is because the state will 

eventually go to the origin with zero input no matter 

where it starts.  For an open-loop unstable linear 

system, i.e., a system with at least one open-loop 

eigenvalue on the open right-half plane or a system 

with at least one multiple open-loop eigenvalue on 

the imaginary axis, the controllable set can be made 

the entire state space if the open-loop system is linear 

stabilizable.  This is because with a linear feedback 

control all the eigenvalues of the resulting 

closed-loop system can be placed on the open 

left-half plane thus rendering the closed-loop system 

asymptotically stable.  However, the controllable set 

for the same system may not be made the entire state 

space, if the linear feedback is subject to input 

saturation. 

There are two approaches for studying the 

controllable set of an open-loop unstable linear 

system: 

(i) open-loop approach, in which we drive the state 

)(tx to the origin with the input )(tu restricted to  

 ;,...,2,1  ,1 )( mitui =≤  

(ii) closed-loop approach, in which we drive the state 

)(tx to the origin with linear feedback with 

saturation: 
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where K is a constant matrix and )(⋅sat  is the 

saturation function. 

In this paper, we take the closed-loop approach and 

find an approximate controllable set.   

2. THEORY 

Consider a linear time-invariant continuous-time 

system with input saturation 

)()()( tButAxtx +=                    (1)                                             

)),(()( tKxsattu −=                    (2) 

where nnA ×ℜ∈  is a given constant matrix, 
mnB ×ℜ∈  is a given constant matrix, ntx ℜ∈)(  is 

the state vector, mtu ℜ∈)( is the control vector, with 

)],(),...,([)( 1 tututu m= and )(⋅sat denotes the 

saturation function. The one-dimensional version of 

the saturation function is defined by  
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and we componentwise extend its definition to the 

multi-dimensional version: 
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Here we assume that A is not necessarily 

asymptotically stable.  We also assume that the 

system (A,B) is linearly stabilizable.  In other words, 

it is assumed that, without saturation, the system 

would be stabilizable. 

Hence there exists at least one matrix K such 

that  

 )()()()()( txBKAtBKxtAxtx −=−=  

is asymptotically stable.  Actually it is possible to 

select the location of the system eigenvalues (i.e., the 

eigenvalues of A-BK) arbitrarily.  Hence we assume 

that matrix K has been selected so as to place the 

system eigenvalues in the desired location.  Since 

BKAA −=
~  is Hurwitz, for every positive definite 

matrix Q~ , there exists an unique 
nnP ×ℜ∈ satisfying 

  ,~~~ QAPPAT −=+  

and 0>P .  Our goal is first to find an inner 

approximation )(PΩ  of the controllable set *Ω  of 

our system (1) and (2) based on the quadratic 

Lyapunov function ξξξ PV T=)( , and then to 

maximize the approximate controllable set )(PΩ  by 

varying the approximation parameter P in such a way 

that the resulting matrix )~~(~ APPAQ T +−= remains 

positive definite. 

We denote the ith row of matrix K by 

:,...,1, miki =  
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   We now consider the case of a single input. 

Define 

)()( ξξξ Ksatf Β−Α= (5)
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Define )).(()(~ txVtV = Taking derivative of 

)(~ tV along the trajectory )(tx , we obtain the 

following cases: 

Case 1.  :)( 0Htx ∈ unsaturated case, i.e., 

)()( tKxtu −=  
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Case 2.  :)( +∈Htx positively saturated case, i.e., 

1)( =tu  



  

,)()()()(
)()()()()(
))(()()())((

))(()()())(()(~

PBtxtPxBtQxtx
PBtxtPxBtxPAPAtx

BtAxPtxtPxBtAx

txPftxtPxtxftV
dt
d

TTT

TTTT

TT

TT

++−=
+++=
+++=

+=
      (8) 

where 

).( PAPAQ T +−=
Δ

                      (9) 

Case 3.  :)( −∈Htx  negatively saturated case, i.e., 

1)( −=tu  
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where Q is defined as in (9). 

Inspired by the right-hand sides (7), (8) and (10) 

for )(~ tV
dt
d , we define 
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Combining these three functions into one 

function, we obtain 
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Observe that 
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d
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   We note that, in Case 1 0~
>Q because P is 

selected so that 0~
>Q .  In other words, because we 

use only those P that will make 

0)~~(~
>+−= APPAQ T , the right-hand side for 

)(~ tV
dt
d  is negative: 0. ,0)(0 ≠∀≤ ξξg Hence 

}.0{H ,0)( 0 −∈∀< ξξg Therefore, the equilibrium 

point is locally asymptotically stable in .0H  

However, in Case 2 and 3, since the open-loop 

system may be unstable, matrix A may not be 

Hurwitz.  Given a positive definite matrix P that 

will make 0
~
>Q , the Q defined by (9) may or may 

not be positive definite.. 

In order to satisfy the Lyapunov descent 

condition 0)( <ξg for a given ,ξ we require that for 

each ,0≠ξ  there exists at least one control value 

ν satisfying 1  ≤
∞

ν and  

 .02)( <±−= νξξξξ PBQg TT  

Then the state space nℜ can be divided into the 

following regions: 

(a) { }. 0~   0 >ℜ∈= ξξξ QR Tn  If ,0R∈ξ  then 

.0)( <ξg  

(b) { }. 0~2   T ≤<ℜ∈=+ ξξξξ QPBR Tn  If 

,+∈ Rξ  then set 1=ν  so that .0)( <ξg  

(c) { }.0~2   T ≥−>ℜ∈=− ξξξξ QPBR Tn  If 

,−∈ Rξ  then set 1−=ν  so that .0)( <ξg  

(d) { }.0 +− ∪∪−ℜ RRRn  If 

{ },0 +− ∪∪−ℜ∈ RRRnξ  then it is not possible to 

find ],1,1[−∈ν  such that .0)( <ξg  

The approach for finding the maximal level set 

{ }** )(  )( cPVcL Tn
P ≤=ℜ∈= ξξξξ which is 

contained in the union of the regions (a), (b) and (c), 

i.e.,  

{ },)(   max 0
*

−+ ∪∪⊂= RRRcLcc P  

can be found by the following maximization problem 
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see Wang, Chen, and Mukai [22]. 

So far we treated matrix P as a given positive 

definite, symmetric matrix which will make 0~
>Q .  

We now seek to find a *P which will maximize the 

volume (area) of the level set 

 { })(    ))(( *T* PcPPcLP ≤= ξξξ  



  

and hence the volume of the approximate controllable 

set ))(( PcLP .  We observe that, as P varies, the 

resulting Q~  must remain positive definite. 

I. MAXIMIZE THE ELLIPSOIDAL CONTROLLABLE SET 

We now introduce the procedures of finding the 

maximal ellipsoidal controllable set for our system (1) 

and (2). 

Step 1 

  Let ,...),( βαPP = be a symmetric nn×  matrix 

which depends on at least one parameter α , and at 

most 
2

2)1( −+nn parameters ... , , βα .  For 

instance, general forms of P  for 2=n  and 3=n  

cases may be 
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Step 2 

  Next, we want to maximize the level set 

{ }  )( cPcL Tn
p ≤ℜ∈= ξξξ  in which the Lyapunov 

criterion is satisfied.  In other words, we want to 

maximize the value c  subject to the constraint 

)(cLP  remains inside the set where the Lyapunov 

descent criterion )(ξg  remains negative, i.e.,  

{ }{ }.0)(   )(   max)(* ≤⊂= ξξ gcLcPc P  

Rewrite the above problem in the following way as 

before: 

},1 ,0  min{)(* −≤≥++−= ξξξξξξξ KPBPBQPPc TTTT

or  

}.1 ,0  min{)(* ≥≥−−−= ξξξξξξξ KPBPBQPPc TTTT

We note that the above two problems are equivalent 

due to symmetry. 

Step 3 

Finally, finding the maximal approximate 

controllable set (stability region) for the system is 

equivalent to maximizing the volume W of the 

maximal ellipsoid in Step 2.  Therefore, the original 

maximization problem becomes: 
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where W  is the volume of the ellipsoid, )(* Pc  is 

the maximum level defined in Step 2, )(⋅Γ  is the 

Gamma function, and )det(P  is the determinant of 

the matrix P . 

 

Example 1 

Consider the single-input open-loop unstable system 
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The open-loop system is unstable with eigenvalues 

21 −=λ and 12 =λ . Suppose that the desired 

eigenvalues are i+−= 1~
λ and i−−= 1~

2λ . 

Therefore, using a standard eigenvalue placement 

method, we may select a feedback matrix 

[ ]14=K , 

which results in  
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whose eigenvalues are i+−= 1~
1λ  and i−−= 1~

2λ  

as desired. 

For a given positive definite matrix Q~ , where 
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We can find a unique symmetric, positive definite 

solution P, satisfying the Lyapunov equation, 

⎥
⎦

⎤
⎢
⎣

⎡
=

375.025.0
25.025.1

P . 

The controllable set inside the linear region found by 



  

applying the method of Lee and Hedrick [14], and the 

controllable set under the Lyapunov descent 

condition [22] are shown in Figure 1 as follows. 
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Fig. 1: Controllable set inside the linear unsaturated region 

(inner ellipsoid) and the controllable set under Lyapunov 

descent condition (outer ellipsoid) 

 

The inner ellipsoid represents the controllable 

set for the system inside the linear unsaturated region, 

while the outer ellipsoid represents the controllable 

set for the system under the Lyapunov condition. 

Finally, to find the maximal ellipsoidal 

controllable set for the system, we apply the three 

steps, the maximal controllable set is shown in Figure 

2 as follows. 

Figure 3 shows the comparison of the three 

controllable sets: the maximal controllable set, the 

controllable set under the Lyapunov descent 

condition, and the controllable set inside the linear 

region. As we can see from Fig. 3, the controllable set 

under the Lyapunov descent condition and the 

controllable set inside the linear region are contained 

in the maximal ellipsoidal controllable set found by 

our approach. 
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Figure 2: The maximal ellipsoidal controllable set 
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Fig. 3: Comparison of the controllable set inside the linear 

region, under the Lyapunov descent condition, and the 

maximal controllable set found by our approach.  

 

Finally, we conclude this paper with a practical 

example, which has been studied several times in the 

past; see e.g., [25], [26]. 

 
Example 2 Consider the double integrator, a single 

input plant of the form 
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Here we note that the eigenvalues of the open-loop 

systems are found as 0, 0. Since there are two 



  

open-loop zero eigenvalues for the system, the 

system is open-loop unstable. Suppose that the 

desired eigenvalues ωσλ i+−=′1 and ωσλ i−−=′2  for 

the closed-loop system are as follows: 

.1 ,2 11 == ωσ  

For a given Q~ , where 
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the feedback gain iK can be selected by the standard 

pole placement technique and P can be found as 

follows: 
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   Solving the above optimization problems, we 

obtain the volume (area) of the ellipsoidal 

controllable sets as follows: 

W W Wl L M= = =0 0698 0 2685 0 3672. ; . ; . .   

We denote by Wl the volume (area) found by 

applying the technique from Lee and Hedrick, WL the 

volume (area) found by applying Lyapunov descent 

criterion, and WM the volume (area) found by 

applying our technique. Figure 4 shows the volumes 

(areas) of the asymptotically stable region for the 

three techniques. Indeed, the asymptotically stable 

regions found by our proposed technique are superior 

to the other two approaches. 
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Fig. 4: Comparison of the controllable set inside the linear 

region, under the Lyapunov descent condition, and the 

maximal controllable set found by our approach. 

3. CONCLUSION 

In this paper, we presented a technique for 

approximating the controllable set for an open-loop 

unstable system under input saturation and 

maximized this controllable set by an ellipsoid. 

Instead of starting from a positive definite matrix Q 

as done in almost all applications of the Lyapunov 

functions, we reversed the approach by starting from 

a positive definite matrix P so that the Lyapunov 

function PxxT will be positive definite.  Also, 

based on the formula for the volume of a general 

n-dimensional ellipsoid, we developed the algorithm 

of maximizing the volume of the controllable set of 

the system.  From our example, the maximal 

controllable set was found and is indeed larger than 

those of controllable sets inside the linear region and 

under the Lyapunov descent condition. 

APPENDIX 

We explain why the matrix P can be taken in the 

form 
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 Let P̂ be a symmetric, positive definite matrix 

of the form 
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Since P̂ is positive definite, ,0>ε  ,0ˆ >β  

.0ˆˆ 2 >−αβε  Note that, if we multiply both P  and 

L  by a constant c, the area of W will remain the 

same.  Therefore multiplying any constant to the 

positive definite matrix P  has no effect to the area 

W of the ellipse so long as L  is multiplied by the 

same constant.  It can also be extended to the 

n-dimensional case, where n>2.  Hence we scale P̂  

so that the first entry is 1, then 
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αβ  P  is a positive 

definite matrix. 
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