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Abstract— We develop an original game-theoretical
explanation of cyclical herd behaviors, where cyclicity
occurs as a strategic equilibrium phenomena triggered
by saturation effects associated with mass adoption
of the same action. In our model, we show that herd
behaviors occur almost surely, and so do cycles if sat-
uration effects are present. Moreover, we show that
the length of the transition phase between two con-
secutive herd behavior is at most the time needed for
the saturation effect to disappear.
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1 Introduction

Many economic situations have in common that actions
previously chosen by a large group of agents can have
a direct influence on future decision-makers. Such sit-
uations are often described as herd behavior, where the
information implicitly carried in previous choices about
the value of some particular actions may overwhelm any
private information or preferences of subsequent agents
(see Banerjee [1] and Bikhchandani et al. [2] for a for-
malization).

Of particular interest are situations where herd behaviors
are cyclical; i.e., a particular action is chosen for some
time by a large group of agents in circumstances observa-
tionally equivalent to a herd behavior, then this action is
abandoned for a new one to possibly reappear later. For
instance in financial markets, periods of bull markets are
usually followed by other periods of bear markets on ba-
sis that can be largely construed as speculative behavior
driven by observations of previous trades.

Many explanations have been given to this phenomena.
For instance, Kirman [4] argues that such patterns can be
explained by private and noisy communication between
agents about previously observed payoffs of some actions.
As a positive message is believed to be reliable, agents
tend to adopt a previously chosen action, whereas with
noisy communication reliability declines and the action
may be abandoned (see also Bikhchandani et al. [2] for
other explanations).

In this paper, we develop an original game-theoretical ex-
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planation to the cyclical pattern of herd behaviors. Our
approach is based on the idea that cyclicity of herd be-
havior is driven by publicly observable saturation effects
caused by successive adoptions of the same action. We
develop a game-theoretical model where herd behaviors
occur almost surely, and repeated adoptions of the same
action trigger future agents to abandon this action as
long as the saturation is present. Cyclicity then appears
as a strategic equilibrium phenomena, where an action
triggering a herd behavior will disappear at some point
because of saturation effects, to possibly reappear later.
Moreover, we show that the length of the transition phase
between two consecutive herd behaviors is at most the
time needed for the saturation effect to disappear. Ex-
amples of saturation effects are well-known in the art in-
dustry or fashion industry.

2 The model

In this section, a formal description of the model is given.
It is derived from that in Banerjee citeba. Our model
generalizes this last reference in that we allow for a finite
set of actions to have positive payoffs among a contin-
uum, instead of one action only in this last reference.
From a technical standpoint, we relax two of the three
tie-breaking rules that Banerjee imposes. This frame-
work is minimal to generate the results described in the
Introduction.

Time is discrete and continues forever. In every period,
a new player appears and selects an action from the set
[0, 1]. There are two types of actions: any action a ∈ A =
{a1, ..., an}(⊂ [0, 1]) has payoff da > 0, whereas any other
action in [0, 1] \ A has a payoff of zero. We reorder A so
that if i > j then di ≤ dj . An player does not know the
set A nor the payoffs, but she knows its cardinality n.

Every player receives a signal about A, which can take
two forms. With probability α > 0, the signal is infor-
mative and takes the form of an action chosen from A.
When receiving an informative signal, the action ai is re-
ceived with probability pi > 0 so that

∑
i pi = 1. We

assume that signals satisfy the following property.

Assumption 1. The sequence (pi)i=1,...,n is strictly de-
creasing.

That is, when receiving a signal we assume that a player
is more likely to know which action has the highest payoff.
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With probability 1 − α, the signal is uninformative and
takes the form of a variable ξ /∈ [0, 1]. The nature of the
signal is private information.

Every player can observe all the previous choices of ac-
tions. Consider the player living in period t > 1, for
every sequence of observed actions (a1, ..., at−1) we asso-
ciate the information set {(a1, s1, ..., at−1, st−1)|
si ∈ [0, 1]∪{ξ}∀i}. In other words, a player knows which
actions have been chosen, but she is uncertain about the
signals previously received. The information set of the
first player is defined to be the null set. A strategy for
the player living in period t assigns to every information
set in period t and to every received sinal a (possibly
randomized) action.

Every player has a common prior belief about the signals
previously received at every information set. This prior
belief is such that ξ (the uninformative signal) is received
with probability 1 − α, and with probability α the in-
formative signal is drawn from a uniform distribution on
[0, 1].

We say that an action a ∈ [0, 1] has a saturation effect if
there exists Na > 1 such that when t + Na players have
consecutively chosen this action after any period t then
the payoff of a is 0 with probability πt′ > 0, for every
t′ ∈ {t + Na, ..., t + S} and for some integer S > Na.
We assume that the sequence (πt′)t′ is strictly decreas-
ing and sums up to 1. After period t + S, the action
regains its original payoff with probability φt′ > 0, for
every t′ ∈ {t + S + 1, ..., t + V } and for some integer
V > S, if it is not chosen in any such period t′ and re-
mains 0 otherwise. We assume that the finite sequence
(φt′)t′ is strictly increasing and sums up to 1.

The motivation for the notion of saturation effect is that,
when choosing repeatedly too often the same action, sub-
sequent agents may find it worthless with decreasing
probability over time. This assumption can be justified
as negative externalities occurring when the action is cho-
sen too often, as in the example given in the Introduction.
We keep the possibility of a decrease in payoff exogenous
to simplify the exposition, our basic insight remaining the
same when endogenous. The second aspect of the defini-
tion, namely that the action recovers its original payoff
with probability that increases with the number of times
the action is not chosen, captures the idea that the neg-
ative externality caused by the repeated use of the same
action disappears over time as it gets temporarily aban-
doned.

We assume that every player is risk-neutral and maxi-
mizes the expected payoff of her action, where the ex-
pectation is based on observed actions and the signal
received. Risk-neutrality is not central to our analysis.
Similar qualitative results obtain with risk-aversion in-
stead, this issue is omitted to simplify the analysis.

We must add a tie-breaking decision rule inherited from
Banerjee [1] to carry out our analysis.

Assumption 2. If a player does not have a signal, and
if all the previous players (if any) have chosen a = 0,
then this player will choose a = 0.

The action a = 0 can be construed as an exit option, cho-
sen by a player who has no information whatsoever about
A. This assumption is consistent with the prior belief of
the player, who is indifferent between any action in [0, 1]
by assumption. Instead of randomizing, we impose this
rational choice as the only outcome in this case.

Every player updates her belief in a Bayesian manner ac-
cording to available information. The structure of the
game is common knowledge to every player. The remain-
der of the paper is devoted to analyzing the Bayesian
Nash Equilibria of this game. It is easy to see that there
exists a continuum of such equilibria in this game; for
instance, when a player believes that some actions are
equally likely to yield the highest payoff then any ran-
domization among those actions can be justified as an
equilibrium strategy. This multiplicity of equilibria will
not affect our qualitative analysis.

3 Cyclical Herd Behavior

In this section, we present our results on herd behav-
ior. We first describe our notion of cyclical herd behavior
triggered by a particular action. We then show that, in
every equilibrium and for almost every equilibrium play
path, there exists action in A will trigger a cyclical herd
behavior. Finally, we analyze the length of the transi-
tion phases between two consecutive and distinct herd
behavior.

We say that the action a triggers a herd behavior at the
information set h if, given available information at this
information set, the action a is chosen after receiving ev-
ery possible signal. We also say that a triggers a cyclical
herd behavior along the infinite play path s if there ex-
ist a sequence of information sets (ht)t≥0 along s such
that none of those information sets are consecutive, and
a triggers a herd behavior at every ht.

We next state our main result on cyclical herd behav-
ior. The aim is to know how often cyclical herd behavior
occur, and which set of actions can potentially trigger
this phenomena. Central to the next result is that every
action with a positive payoff has a saturation effect.

Theorem 3. Assume that every action in A has a satu-
ration effect. For every equilibrium and for almost every
equilibrium play path, there exists an action in A that
triggers a cyclical herd behavior.

The above result states that, in every equilibrium and for
all but a set of measure zero of equilibrium play paths,
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an action with positive payoff will trigger a cyclical herd
behavior. Implicit in the above result is that two distinct
actions can trigger cyclical herd behavior along the same
equilibrium play path, this can occur during the periods
where the first action triggering the cyclical herd behavior
exhibits a saturation effect. However, the action with the
highest payoff will not necessarily triggers a cyclical herd
behavior. Indeed, one can easily see from the proof of
Theorem 1 that the first action in A to trigger a herd
behavior will also trigger a cyclical herd behavior. This
action is chosen by the early players as a function of their
received informative signals, which can correspond to any
action in A. Thus, saturation effects cannot eliminate the
social inefficiency that is often seen in herd behavior.

4 Conclusion

We have developed a game-theoretical framework where
herd behaviors occur almost surely, and where cyclicity of
such behaviors is driven by our notion of saturation effect.
That is, our model has the property that agents behaving
strategically condition their actions both on the reliabil-
ity of private information and public signals, and also
on a socially perceived saturation associated with large
adoption of the same actions. Our notion of saturation
effects allows for empirical testing in term of occurrence
and time length, since may examples can be found in the
art industry and fashion industry for instance.

A Technical proofs

We now prove the result stated earlier. We first present
the well-known Glivenko-Cantelli’ Theorem, which will
be used throughout. The proof of this result is given in
Fristedt and Gray [3] p. 192 and extensions. It mostly
states that, when dealing with identical i.i.d. draw-
ings, the empirical distribution function converges almost
surely to the original distribution function.

Theorem 4. (Glivenko-Cantelli)
Let (Yn)n≥0 be an i.i.d. sequence of real-valued random
variables with common distribution function F . For every
y ∈ R, let 1y be the indicator function of the interval
(−∞, y], and define the random variables

Fn(y) =
1
n

n∑

k=1

1y(Yk). (1)

Then for every y, Fn(y) → F (y) almost everywhere.

When applied to our setting, the above result roughly
states that, for almost every play path, the frequency of
signals received by the players will converge in distribu-
tion to the original way nature draws. This result will
help us in proving that some pathological infinite play
paths have measure 0 with respect to the choices of the
nature.

A.1 Proof of Theorem 3

We start our proof by presenting two simple technical
lemmas, central to determining optimal choices given
available information.

Our first lemma states that receiving a signal is a better
information than observing a sequence of 0.

Lemma 5. Assume that, along a path, every player be-
fore period t has chosen 0. If Player t receives an infor-
mative signal, then she will follow it.

Proof. From an ex-ante standpoint, Player t believes
that the event 0 ∈ A has probability 0. Since all the pre-
vious players have chosen 0, by Assumption 2 Player t
assigns probability 1 to the event that all previous play-
ers had no informative signal. Thus, Player t believes
with probability 1 that she is the only one to have an in-
formative signal, and it is thus optimal to follow it. The
proof is now complete.

Our second lemma states that observing two identical
actions is more informative about the best action than
one signal alone.

Lemma 6. Fix any equilibrium, and assume that the
same action (different from 0) has been chosen by the
first and second player. Then this action triggers a herd
behavior next period.

Proof. Consider any equilibrium, and let H be the event
that the first two players have chosen the same action a
and player 3 has received the signal a3. Clearly, if a3 = a
then Player 3 will choose a. Otherwise, we compute the
probability of the event [a = ai] for every i, conditional
on H, to derive our result. We have that

P ([a = ai]|H) = α3p2
i (1− pi) + α2(1− α)pi(1− pi). (2)

Moreover, we have that

P ([a3 = ai]|H) = α2pi(1− pi)(1− α). (3)

It is easy to see that, from (2) and (3) together with
Assumption 1, the expected payoff of choosing a is greater
than that of a3, and thus Player 3 will choose to ignore
her signal. The proof is complete.

The previous lemma states that observing two identical
actions will offset any private information. The intuition
of the result is central to our analysis. The first player to
choose this action must have received the corresponding
signal, which as good as any signal received by Player
3 ex-ante. Moreover, with strictly positive probability
the second player has chosen this action because he also
received the corresponding signal. Thus, receiving twice
the same signal with strictly positive probability makes
the corresponding action more likely to have a higher
payoff than any private signal Player 3 can receive.
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With all the previous results, we can prove Theorem 3.
We start our proof by showing that, for almost every
equilibrium play path, some action in A will trigger a
herd behavior. The remainder of the proof is based on
the method used to derive this property. From now on,
we will refer to Player i as i (for every i) to simplify the
exposition.

Consider 1, if she has the uninformative signal she chooses
0 by Assumption 2, and otherwise she chooses her own
signal. Consider now 2, if she has the uninformative sig-
nal she follows the same choice as 1, and otherwise one
must distinguish two cases. If 2’s signal matches 1’s ac-
tion, then 2 follows her signal. If 2’s signal is different
from 1’s action then she randomizes between 1’s action
and her own signal (2 does not randomize if 1’s action is
0, she chooses her own signal instead by Lemma 5).

We now analyze the decision problem of 3. This player
can observe four different class of past actions: case a)
both previous players have chosen 0; case b) 1 has chosen
0 and 2 has chosen a2 > 0; case c) 1 and 2 have chosen
the same action; case d) two distinct actions have been
chosen that are not 0. We next examine those four cases.

In case a), if 3 has the uninformative signal she chooses
0 by Assumption 2, and otherwise she chooses her own
signal by Lemma 5. In case b), if 3 has the uninfor-
mative signal then she will choose a2, and otherwise she
randomizes between her own signal and a2. In case c), 3
always chooses the action chosen twice by Lemma 6. In
case d), if 3 has the uninformative signal then she ran-
domizes between the two previously chosen actions, and
otherwise one must distinguish two subcases. If 3’s sig-
nal is identical to one of the previously chosen actions
then she follows her own signal (the idea is the same as
in Lemma 6), and otherwise she randomizes between the
two actions and her own signal.

From the above analysis, it is easy to derive that the
first action (different from 0) to be chosen twice triggers
a herd behavior at the information set immediately fol-
lowing the second choice, unless the signal received in
this period matches an already chosen and different ac-
tion. By Theorem 4, for almost every equilibrium play
path every element in A will be drawn by nature at least
twice. Moreover, by Assumption 1 the set of play paths
where two different signals are always sent one after the
other also has probability 0. Thus, by an argument sim-
ilar to that in Lemma 6, for almost every path an action
in A will be chosen often enough to rule out the above
case. Thus, for almost every equilibrium play path, there
exists an action in A that will trigger a herd behavior.

By an argument similar to that in Lemma 6, once an
action in A has trigger a herd behavior at a particular
information set, it will also trigger a herd behavior at
the following information set. Since every action in A

has a saturation effect, it follows that once a ∈ A has
triggered a herd behavior for the first time, it will also
trigger Na−1 consecutive herd behavior until it becomes
common knowledge that its payoff may become 0 for the
next S +V consecutive periods with positive probability.

However, after those S+V periods the information struc-
ture of every subsequent player about which action has
the highest payoff is identical to that of the players who
followed the previous herd behavior. Thus, any optimal
action for those players must also be optimal for the sub-
sequent players, and a new cycle of herd behavior start.
This situation will be repeated infinitely often, proving
the result. The proof is now complete.
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