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Abstract— This paper presents an approach to PID controller
tuning based on a simple plant model description; First Order
plus Time Delay (FOPTD). The approach is based on the for-
mulation of an optimal approximation problem in the frequency
domain for the Sensitivity transfer function of the closed loop.
The inclusion of the Sensitivity function allows for a disturbance
attenuation specification. The solution to the approximation
problem provides a set of tuning rules that constitute a
parameterized set that is formulated in the same terms as
in [1] and include a third parameter that determines the
operating mode of the controller. This factor allows to determine
a tuning either for step response or disturbance attenuation.
The approach can be seen as an implicit two-degree-of-freedom
controller because by using one single parameter the operating
mode (servo/regulation) of the control system is determined as
well as the appropriate tuning of the controller.

Index Terms— Process Control, PID Tuning, Optimization

I. INTRODUCTION

Proportional-Integrative-Derivative (PID) controllersare
with no doubt the most extensive option that can be found
on industrial control applications. Their success is mainly
due to its simple structure and meaning of the corresponding
three parameters. This fact makes PID control easier to
understand by the control engineer than other most advanced
control techniques.

Because of the widespread use of PID controllers it is
interesting to have simple but efficient methods for tuning
the controller. In fact, since Ziegler-Nichols proposed their
first tuning rules [2], an intensive research has been done.
From modifications of the original tuning rules [3], [4],
[5] to a variety of new techniques: analytical tuning [6],
[7]; optimization methods [8], [9]; gain and phase margin
optimization [8], [10], just to mention a few.

Recently, tuning methods based on optimization
approaches with the aim of ensuring good stability
robustness have received attention in the literature [11],
[12]. However these methods, although effective, use to
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rely on somewhat complex optimization procedures and
do not provide tuning rules. Instead, the tuning of the
controller is defined as the solution of the optimization
problem. However, from an end-user point of view, it is
acknowledged if a precise meaning is given to the tuning
parameters instead of just taking the output of the numerical
algorithm as the tuning values.

In [13] an approach to PID tuning is presented, based on
a combination of a simple model description; First Order
plus Time Delay (FOPTD); and closed loop specifications
with robustness considerations. The tuning rules are given
parameterized form in terms of desired time constant and
robustness level and, secondly, a completely automatic
tuning determined by the process parameters [1]. The
problem with this approach is that the design problem is
stated completely in terms of a step response specification.
Therefore the resulting tuning provide low disturbance
attenuation performance.

The purpose of this paper is to extend this approach in
order to include disturbance attenuation specifications. The
design problem is stated in similar terms but considering
the closed loop Sensitivity function instead of the reference
to output relation. The design problem is formulated as an
optimal approximation problem in such a way the resulting
PID tuning rules include, as a special case, the tuning
guidelines provided in [13]. The new tuning rules constitute
a parameterized set that is formulated in the same terms
as in [1] and include a third parameter that determines
the operating mode of the controller. This factor allows to
determine a tuning either for step response or disturbance
attenuation.

The paper is organized as follows. Section 2 presents
the problem formulation: process model, PID structure
and the optimization problem based on a min-max optimal
approximation problem. Section 3 reviews the solution to the
min-max optimization problem and provides the structure of
the optimal controller. Starting from the optimal controller
structure, Section 4 presents the tuning rules that originate
from a reference to output step response specification. Along
the same lines, Section 5 extends the results to the case
of a Sensitivity based approximation problem in order to
include a disturbance attenuation specification. An example
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is presented in section 6. Section 7 presents a procedure for
automatically select the appropriate sensitivity disturbance
problem according to the minimization of an ISE criterion.
Final conclusions and considerations for further extensions
are conducted in section 8.

II. PROBLEM FORMULATION

In this section the controller equations are presented as
well as the assumed process model structure and the op-
timization problem that is posed in order to tune the PID
controller.

A. PID Controller

There exists different ways to express the PID control law
[14]. In this paper we concentrate on the ISA PID control
law [8]:

u(s) = Kp

[

br(s) − y(s) +
1

sTi

(r(s) − y(s)) (1)

+
sTd

1 + sTd/N
(cr(s) − y(s))

]

wherer(s), y(s) andu(s) are the Laplace transforms of the
reference, process output and control signal respectively. Kp

is the PID gain,Ti and Td are the integral an derivative
time constants, finallyN is the ratio betweenTd and the
time constant of an additional pole introduced to assure the
properness of the controller. Parametersb and c are called
set-point weights and constitute a simple way to obtain a 2-
DOF controller. As their choice does not affect the feedback
properties of the resulting controlled system, with no lossof
generality here we will assumeb = c = 1. This way, the
PID transfer function we will work with can be written as:

K(s) = Kp

1 + s(Ti + Td

N
) + s2 TiTd(N+1)

N

sTi(1 + sTd

N
)

(2)

B. Process Model

An important category of industrial processes can be
represented by a First Order Plus Dead Time (FOPDT) model
as:

Gn(s) =
Ke−Ls

1 + Ts
(3)

where K is the process gain,T the time constant andL
the time delay. This kind of models are easy to determine
by means of a simple step response experiment to get the
process reaction curve. In order to deal with the delay term is
usual to use a rational approximation. The following simple
first order Taylor expansion of thee−Ls term will be used.

e−Ls ≈ 1 − Ls (4)

C. Design Problem Formulation

The approach presented in this paper is based on Sen-
sitivity function optimization. Roughly speaking the goal
is to tune the PID controller to match a desired target
Sensitivity function. This problem can be formulated as a
weighted model matching problem between a specified de-
sired Sensitivity,Sd(s), and the achieved Sensitivity,S(s) =
(1 + Gn(s)K(s))−1, as:

min
K(s)

‖ W (s)(Sd(s) − S(s)) ‖∞ (5)

The weighting function, W (s), allows to formulate
the model matching problem as a frequency dependent
approximation problem.

In a previous work [1] a similar design approach was
presented where the model matching problem is stated in
terms of the Complementary Sensitivity transfer function
T (s) = Gn(s)K(s)(1 + Gn(s)K(s))−1. To optimize for
T (s) constitute a step response design problem. On the
other hand,S(s) determines the disturbance attenuation
properties of the feedback control system. Here we will
show that problem (5) can be stated in such a way that
the Complementary Sensitivity optimization results to be a
special case of the former.

In order to formulate problem (5) in a more suitable
way the controller design is recast on the Internal Model
Control framework. This will allow the design problem to
be expressed in terms of the IMC parameter. The Internal
Model Control (IMC) [15] , [16] is based on the introduction
of a model of the plant running in parallel with the actual
plant. Comparison with the usual feedback configuration
leads to the following relation between the IMC and classical
feedback controller:

C(s) =
K(s)

1 + K(s)Gn(s)
(6)

K(s) =
C(s)

1 − C(s)Gn(s)
(7)

On the basis of the introduced IMC parameterC(s), the
closed loop transfer function relations Sensitivity,S(s), and
Complementar Sensitivity,T (s), read as follows:

T (s) = C(s)Gn(s) S(s) = 1 − C(s)Gn(s) (8)

Therefore, the following min-max problems can be for-
mulated:

Co
S(s) = arg min

C(s)
‖ W (s)(Sd(s) − (1 − Gn(s)C(s))) ‖∞

(9)

Co
T (s) = arg min

C(s)
‖ W (s)(T d(s) − Gn(s)C(s)) ‖∞ (10)
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where Co
S(s) is the IMC solution to the Sensitivity

optimization problem, whereasCo
T (s) is the solution to

the Complementary Sensitivity optimization problem. This
second controller is introduced just for comparison purposes.

Next section will solve problem (9) and derive the corre-
sponding tuning relation for the ISA-PID controller (2) by
using (7).

III. SOLUTION TO THE OPTIMAL
APPROXIMATION PROBLEM

The design problem has been formulated in (9) and (10)
as an approximation problem in the frequency domain. Both
problems are special cases of:

min
C(s)

‖E(s)‖∞ = min
C(s)

‖W (s)(M(s) − N(s)C(s))‖∞ (11)

Effectively, (10) results fromM(s) = T d(s) and
N(s) = Gn(s) and, (9) from M(s) = 1 − Sd(s) and
N(s) = Gn(s). Several approaches exists to solve this
H∞ problem. See [17], [18] among others. Here we will
follow a particularization of the solution presented in [19]
and also used in [1] where a polynomial approach was
taken. This has the advantage of providing the structure of
the optimal controller. Therefore, as we will do here, the
problem statement can be constrained in order to provide a
solution that leads to a PID controller.

First of all N(s), M(s) andW (s) are factored as:

N(s) =
nN (s)

dN (s)
M(s) =

nM (s)

dM (s)
W (s) =

nW (s)

dW (s)

The solution to the minimization of the cost function
(11) lies in optimal interpolation theory. First, factorize the
numeratornN (s) as:

nN (s) = n+
N (s)n−

N (s)

where the polynomialn+
N (s) only has stable roots and

n−

N (s) is the remaining part. In order to obtain a unique
factorisation the polynomialn+

N (s) is assumed to be monic.
Let ν =deg(n−

N (s)) and{z1, z2, ..., zν} be the distinct zeros
of n−

N (s). From equation (11) it results that the error function
E(s) is subjected to the following interpolation constraints:

E(zi) = W (zi)M(zi) i = 1 . . . ν (12)

If zi is a zero with multiplicity νi, then additional
differential interpolation constraints should be imposed.

A well established theory [20] , [21], [17] that solves this
problem exists and a closed form solution can be obtained
from the following lemma [17]:

Lemma 3.1: The optimal Eo(s) which minimizes
‖E(s)‖∞ is of an all-pass form:

Eo(s) =

{

ρ q(s)∗

q(s) if ν ≥ 1

0 if ν = 0
(13)

whereq(s) = 1 + q1s + q2s
2 + . . . + qν−1s

ν−1 is a strictly
hurwitz polynomial andq∗(s) = q(−s).

Furthermore, the constantsρ and{qi}ν−1
i=1 are real and are

uniquely determined by the interpolation constraints (12).
Now we will proceed with the application of this lemma in

order to compute the optimalC(s) = Co(s). Note first that
in our caseν = 1 andz1 = 1/L. Therefore the interpolation
constraints give the following value for the optimal costρ:

ρ = W (1/L)M(1/L) (14)

Application of the above lemma gives the following equa-
tion for the optimal parameterCo(s):

W (s)M(s) − W (s)N(s)Co(s) = ρ
q∗(s)

q(s)

then,

Co(s) = (W (s)N(s))−1

(

W (s)M(s) − ρ
q∗(s)

q(s)

)

=
dW (s)dN (s)

nW (s)n+
N (s)n−

N (s)
(15)

(

nW (s)nM (s)q(s) − ρq∗(s)dW (s)dM (s)

dW (s)dM (s)q(s)

)

In order forCo(s) to be a stable transfer function,n−

N (s)
must be a factor of the numerator. That is to say, there must
exist a polynomialχ(s) such that:

n−

N (s)χ(s) = nW (s)nM (s)q(s) (16)

−ρq∗(s)dW (s)dM (s)

It follows that, to determine the optimal controllerCo(s),
theχ(s) polynomial must be known. In any case, the optimal
Co(s) will obey to the following structure:

Co(s) =
dN (s)χ(s)

nW (s)n+
N (s)dM (s)q(s)

(17)

Expression (17) provides the structure of the IMC
parameter C(s) that solves the optimal approximation
problem (11). In the next two sections, this structure will be
applied to the case where the approximation problem arises
from a Sensitivity and Complementary Sensitivity matching
problems.

IV. STEP RESPONSE TUNING

This section reviews the main result of [13] and [1]
providing the tuning relations that arise from the application
of the solution to the optimal approximation problem to
solve the design problem (10). The specification of a target
T d(s) corresponds to a step response specification: the
controller is chosen in order to achieve a desired reference
to output behavior.
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The approximation problem is formulated, according to
(10), as:

Co
T (s) = arg min

C(s)
‖ W (s)(T d(s) − Gn(s)C(s)) ‖∞ (18)

We will useT d(s) to specify the desired closed loop time
constant,TM . Therefore it will take the form:

M(s) =
nM (s)

dM (s)
=

1

1 + TMs
(19)

With respect to the weighting function,W (s), in order to
automatically include integral action and keep it as simple
as possible, we will assume the following form:

W (s) =
nW (s)

dW (s)
=

1 + zs

s
(20)

By using this settings, the minimum cost,ρT is given by:

min ‖E(s)‖∞ = |ρT | = L
(L + z)

(L + TM )
(21)

and the solution for the optimal,Co
T (s), is:

Co
T (s) =

1

K

(1 + Ts)(1 + χ1
T s)

(1 + TMs)(1 + zs)
(22)

with,

χ1
T = z + L − ρT (23)

.
The resulting feedback controller is:

Ko
T (s) =

1

K(ρT + TM )

(1 + Ts)(1 + χ1
T s)

s(1 + TM
(ρT +z)

(ρT +TM )s)
(24)

can be identified to (2) with the following expressions for
the controller parameters:

KT
p =

TT
i

K(ρT + TM )

TT
i = T + χ1

T − TM

(ρT + z)

(ρT + TM )

TT
d

NT
= TM

(ρT + z)

(ρT + TM )
(25)

NT + 1 =
T

TT
i

ρT

L

(ρT + TM )

(ρT + z)

These tuning relations provide the four ISA-PID
parameters parameterized in terms of the desiredTM andz
as determining the frequency range where the solution to
(11) is to provide a better match.

It is worth to note that a choice forTM andz is provided
in [1]. If we chooseTM =

√
2L andz =

√
2TM = 2L, (25)

provides the following simple tuning rule:

KT
p =

TT
i

KL2.65
TT

i = T + 0.03L

TT
d

NT
= 1.72L (26)

NT + 1 =
T

TT
i

V. DISTURBANCE ATTENUATION TUNING

In this section the approximation problem is posed in
terms of the Sensitivity function. Therefore specifying
a desired disturbance to output target function,Sd(s).
Following similar steps as in the previous case, we will get
tuning relations that are to be considered for a Disturbance
attenuation problem.

The approximation problem is formulated, according to
(9), as:

Co
S(s) = arg min

C(s)
‖ W (s)(Sd(s) − (1 − Gn(s)C(s))) ‖∞

(27)
The target Sensitivity function,Sd(s) is given the follow-

ing form:

Sd(s) =
γs

TMs + 1
(28)

Therefore, the resulting reference model to be considered
in the approximation problem (11) results to be

M(s) = 1 − Sd(s) =
nM (s)

dM (s)
=

(TM − γ)s + 1

1 + TMs
(29)

With respect to the weighting function,W (s), in order to
automatically include integral action and keep it as simple
as possible, we will assume the following form:

W (s) =
nW (s)

dW (s)
=

1 + zs

s
(30)

By using this settings, the minimum cost,ρS is given by:

min ‖E(s)‖∞ = |ρS | =
(L + z)

(L + TM )
(TM + L − γ) (31)

and the solution for the optimal,Co
S(s), is:

Co
S(s) =

1

K

(1 + Ts)(1 + χ1
Ss)

(1 + TMs)(1 + zs)
(32)

with,

χ1
S = z + L − ρS + TM − γ (33)

.
The resulting feedback controller is:

Ko
S(s) =

1

K(ρS + γ)

(1 + Ts)(1 + χ1
Ss)

s(1 + (ρSTM+γz)
(ρS+γ) s)

(34)
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can be identified to (2) with the following expressions for
the controller parameters:

KS
p =

TS
i

K(ρS + γ)

TS
i = T + χ1

S − (ρSTM + γz)

(ρS + γ)

TS
d

NS
=

(ρSTM + γz)

(ρS + γ)
(35)

NS + 1 =
T

TS
i

χ1
S

(ρS + γ)

(ρSTM + γz)

This new set of tuning rules also provide the four
ISA-PID. However, this time they are parameterized in
terms of the desiredTM andz and a new parameterγ.

It is straightforward to verify that withγ = TM , we
get ρS = ρT , χ1

S = χ1
T . Therefore both problems provide

the same tuning. The tuning rules (35) can be seen as a
parameterized set in terms ofγ. Determining the value ofγ
if the tuning we are using is for step response (γ = TM ) or
for disturbance attenuation (γ 6= TM ).

This way, the values ofTM and z are first selected in
order to determine the desired closed loop time constant.
Secondly the value ofγ can be determined in terms of the
operation mode of the control system. When a reference
change is to be applied the controller is to be set toγ = TM

and when turning to regulation mode a previously selected
γ 6= TM is fixed.

The advantage of this parametrization is that of having
tuning for both operating modes under the same tuning
rule. One common possibility is the use of a two-degree-of
freedom version of the PID controller and to try to handle
separately both situations. However, this implies an increase
of the tuning parameters.

VI. EXAMPLE

The purpose of this section is to provide an example of
the performance of the parameterized tuning rule and how
the performance changes from step response to disturbance
attenuation asγ varies. Let us consider the following plant
and First Order plus Time Delay approximation:

G(s) =
1

(1 + s)(1 + 0.1s)(1 + 0.01s)(1 + 0.001s)

≈ e−0.073s

1.073s + 1
(36)

From the First Order pus Time Delay approximation we
identify Kn = 1, Ln = 0.073 andTn = 1.073. These plant
parameters give us, by application of the simple tuning rule
(26) the PID controller that generates the output shown in
figure (1). As it can be seen, the step response is quite
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1

 Time 
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ut
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t

Fig. 1. Output signal generated by application of the step response based
tuning.

acceptable but the load disturbance attenuation is sluggish.

Application of the disturbance attenuation based tuning,
provides an alternative to improve this disturbance
attenuation. By using different values forγ and the same
values ofz andTM figure (2) clearly shows the performance
can be readily improved. Values ofγ start with γ = TM ,
providing the same tuning as the step response based, and
increasing tillγ = 0.9.
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 ... 0.9

Increasing γ= T
M

 ... 0.9

Fig. 2. Output and control signal to an input load disturbance generated
by using the Disturbance attenuation tuning and different values ofγ

VII. M EASURING PERFORMANCEIMPROVEMENT

The introduction of theγ parameter allows the search
for a new controller that achieves better performance from
the disturbance attenuation point of view. However, an
immediate question comes into consideration: How much
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do the performance increase? How to select suchγ? A
guideline is presented in this section.

Problem (5) defines the disturbance attenuation features
of the resulting design by a suitable definition of the target
sensitivity functionSd(s). Previous developments have used
a γ dependentSd(s) function as (28). However, by only
changing the problem definition we do not have a direct
information of the achieved performance improvement. The
measure we would like to introduce here comes from a
direct interpretation of the∞-norm as the (system) norm
induced by the (signal) 2-norm. effectively, it is well known
that (assuming zero reference signal):

‖y‖2 = ‖S(s)d‖2 ≤ ‖S(s)‖∞‖d‖2 (37)

As for each value ofγ we will have a differentCo
S(s), we

can accordingly writeCo
S(s; γ). Each one of these optimal

controllers will generate the corresponding Sensitivity func-
tion and exhibit a given performance level for the disturbance
attenuation measured as the corresponding 2-norm of the
output signal. If we concentrate on step disturbance signals,
it is possible to compute the associated Integral Squared
Error value as a function ofγ and get the minimum of
such function. This will suggest an automated procedure for
selectingγ. Therefore:

ISE(γ) =

∫

∞

0

(y(t))2dt = ‖y‖2
2 (38)

that can be computed, after Parseval, as:

ISE(γ) =
1

2π

∫

∞

−∞

Y (jw)Y (−jw)dw (39)

=
1

2π

∮

Y (s)Y (−s)ds (40)

This last integral is a contour integral up the imaginary
axis, then an infinite semicircle in the left half plane. The
contribution from this semicircle is zero becauseY (s) is
strictly proper. By the residue theorem this integral equals
the sum of the residues ofY (s)(−s) at its poles in the left
half-plane. Straightforward computations leads to:

ISE(γ) =
zTM (ρS + γ)2 + (zTM + χ1

SL)2

2zTM (TM + z)
(41)

bearing in mind thatρS = ρS(γ) andχ1
S = χ1

S(γ). By taking
the derivative with respect toγ we can obtain the optimal,
γo, that minimizes the ISE value (41) as:

∂ISE(γ)

∂γ
= 0 ⇒ (42)

γo =
L + TM

z − TM

(

L + z − zTML + L2(L + z + TM )

zTM + L2

)

(43)
If we use the simple rule suggested above, where

TM =
√

2L and z =
√

2TM , it turns out thatγo = γo(L).

Therefore once known the time delay, the value ofγ can
be automatically selected as well as the rest of the PID
parameters.

As an example, figure (3) shows theISE performance
corresponding to the system of the previous example. The
index is plotted againstγ and the situation of the step
response tuning is shown as the one corresponding to
γ = TM .
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S
(γ)

ISE
T
(γ=T

M
)

ISE
Smin

γ = T
M

γ=0.33 for ISE
min

Fig. 3. ISE index for the sensitivity function using disturbance attenuation
tuning and different values ofγ

An important point is raised after figure (3) concerning
the selection ofγ. It is seen that a complete automated and
guided selection of all the PID parameters can be done once
the delay,L, of the system model is known. A consideration
has to be done concerning the time domain results of
this selection. Even the selected tuning corresponds to the
controller Co

S(s; γo) it may turn out that the time domain
response will not seem to be thebest one. Regarding
figure (2), for example, it is seen thatbetter time domain
responses are obtained for valuesγ ≈ 0.9. Therefore, even
for small variation of the performance index (see y-axis
scale in figure (3)), there can be large variations in the
corresponding time domain response. This subject raises
the question of selection of the performance index and his
correlation with theshape of the time domain response it
generates. This is a subject of current research.

VIII. CONCLUSIONS

This paper has presented an approach to PID tuning based
on an optimal approximation problem. The approximation
problem is stated in terms of the Sensitivity function of the
closed loop system. An appropriate formulation of the target
Sensitivity function generates the tuning of the controller as
a parameterized set of tuning rules. This set provides tuning
rules for each operating mode of the controller. The overall
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Fig. 4. Output signal to a load-disturbance input by application of step
response based tuning (γ = TM ) and disturbance attenuation tuning with
γ = 0.33

tuning needs three parameters. Two parameters along the
lines of previously presented tuning rules and a new third
parameter that determines the level of regulation mode of
the controller.

An ISE criterion is associated to this third parameter in
order to evaluate the performance improvement with respect
to the original step response tuning. The maximization
of this performance improvement provides a systematic
method of determining this third parameter.
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