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PID design for improved disturbance attenuation: min max Sensiwity
matching approach

R. Vilanova, O. Arrieta

Abstract— This paper presents an approach to PID controller rely on somewhat complex optimization procedures and
tunlng.based on a simple plant model desgrlptlon; First Order do not provide tuning rules. Instead, the tuning of the
plus Time Delay (FOPTD). The approach is based on the for- ¢onyrgjler is defined as the solution of the optimization

mulation of an optimal approximation problem in the frequency bl H f d int of Vi it i
domain for the Sensitivity transfer function of the closed loop. probiem. However, from an end-user point or view, It IS

The inclusion of the Sensitivity function allows for a disturbance ~ acknowledged if a precise meaning is given to the tuning
attenuation specification. The solution to the approximation parameters instead of just taking the output of the numlerica
problem provides a set of tuning rules that constitute a algorithm as the tuning values.

parameterized set that is formulated in the same terms as

in [1] and include a third parameter that determines the S
operating mode of the controller. This factor allows to determine In [13] an approach to PID tuning is presented, based on

a tuning either for step response or disturbance attenuation. @ combination of a simple model description; First Order
The approach can be seen as an implicit two-degree-of-freedom plus Time Delay (FOPTD); and closed loop specifications

controller because by using one single parameter the operating with robustness considerations. The tuning rules are given
mode (servo/regulation) of the control system is determined as arameterized form in terms of desired time constant and
well as the appropriate tuning of the controller. bust level d dl letel t fi
Index Terms— Process Control, PID Tuning, Optimization ro _us ness e‘_/e and, secondly, a compietely automatc
tuning determined by the process parameters [1]. The

I. INTRODUCTION problem with this approach is that the design problem is
stated completely in terms of a step response specification.

Proportional-Integrative-Derivative (PID) controlleege heref h i . ide | disturb
with no doubt the most extensive option that can be foung€réfore the resulting tuning provide low disturbance
enuation performance.

on industrial control applications. Their success is n)ainlatt

due to its simple structure and meaning of the corresponding_l_h ¢ thi . d thi hi
three parameters. This fact makes PID control easier to € purpose o _t 'S paper Is to ex_ten t IS approach in
%r&ier to include disturbance attenuation specificatiome T

understand by the control engineer than other most advanced - ) AN o

control techniques esign problem is stated in similar terms but considering
' the closed loop Sensitivity function instead of the refeeen

fo output relation. The design problem is formulated as an

interesting to have simple but efficient methods for tunin ptimal approximation problem in such a way the resulting

the controller. In fact, since Ziegler-Nichols proposedith ”% '[lgning rulgds (;nplufg, _?_i a special casle, the tuning
first tuning rules [2], an intensive research has been don@uidelines provided in [13]. The new tuning rules conséitut
From modifications of the original tuning rules [3], [4], a parameterized set that is formulated in the same terms

[5] to a variety of new techniques: analytical tuning [6],as in [1] and include a third parameter that determines

[7]; optimization methods [8], [9]; gain and phase margir{he operating mode of the controller. This factor allows to
optimization [8], [10], just to mention a few. determine a tuning either for step response or disturbance

attenuation.

Because of the widespread use of PID controllers it i

Recently, tuning methods based on optimization h . zed foll ion 2
approaches with the aim of ensuring good stability The paper is organized as follows. Section 2 presents

robustness have received attention in the literature [11 ’ed phroblem _forr_nulatlonb:l prot;:essd model, .PID struc'_[urel
[12]. However these methods, although effective, use nd t Qopfum|zat|on problem based on a min-max optima
approximation problem. Section 3 reviews the solution o th
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is presented in section 6. Section 7 presents a procedure €r Design Problem Formulation
automatically select the appropriate sensitivity disamde The approach presented in this paper is based on Sen-

problem according to the minimization of an ISE criteriongisyity function optimization. Roughly speaking the goal
Final conclusions and considerations for further extamsio is to tune the PID controller to match a desired target

are conducted in section 8. Sensitivity function. This problem can be formulated as a

weighted model matching problem between a specified de-
sired Sensitivity,S¢(s), and the achieved Sensitivitg|s) =

[I. PROBLEM FORMULATION (14 Gn(s)K(s))7}, as:
In this section the controller equations are presented as . d
well as the assumed process model structure and the op- K(s) W (s)(5%(s) = 5(s)) Il ®)
timization problem that is posed in order to tune the PID S )
controller. The weighting function, W(s), allows to formulate
the model matching problem as a frequency dependent
A PID Controller approximation problem.

There exists different ways to express the PID control law In a previous work [1] a similar design approach was
[14]. In this paper we concentrate on the ISA PID contropresented where the model matching problem is stated in
law [8]: terms of the Complementary Sensitivity transfer function

T(s) = Gu(s)K(s)(1 + Gn(s)K(s))~*. To optimize for
T'(s) constitute a step response design problem. On the

u(s) = K, br(s)—y(s)—i—i(r(s)—y(s)) (1) other hand,S(s) determines the disturbance attenuation
sTi properties of the feedback control system. Here we will

sTa (cr(s) — y(s)) show that problem (5) can be stated in such a way that

1+ sTy/N the Complementary Sensitivity optimization results to be a

special case of the former.
wherer(s), y(s) andu(s) are the Laplace transforms of the p

reference, process output and control signal respecti#&ly

It's the PI[; gf'”'ffi Tllnd :.Fd {ahre thtg n;)tetgral r?Tn degv?rfwe way the controller design is recast on the Internal Model
Ime constants, Tina yN_|_s € ratio betweert 4 an € Control framework. This will allow the design problem to
time constant of an additional pole introduced to assure trbee expressed in terms of the IMC parameter. The Internal

properness of the controller. Parametérand ¢ are called }g()del Control (IMC) [15] , [16] is based on the introduction

In order to formulate problem (5) in a more suitable

set-point weights and constitute a simple way to obtain a f a model of the plant running in parallel with the actual
DOF controller. As their choice does not affect the feedbac, lant. Comparison with the usual feedback configuration

propertl_es of the resul_tlng controlled system, W'th ho lobs leads to the following relation between the IMC and cladsica
generality here we will assumie = ¢ = 1. This way, the feedback controller:

PID transfer function we will work with can be written as:

K(s)

) Cs)=——— 6

K(s) = i, L HSG R+ s,;iTlegN*” @ ) = TR (5)G) ©)
sTi(1+s3¢) C(s)

B. Process Model K(s) = 1—C(s)Gn(s) ()

An important category of industrial processes can be On the basis of the introduced IMC paramete(s), the
represented by a First Order Plus Dead Time (FOPDT) modelosed loop transfer function relations Sensitivisys), and
as: Complementar Sensitivity['(s), read as follows:

Ke Ls

Gn(s) = 1+7Ts

3  T()=C)Culs)  Ss)=1-C(s)Guls) ()

. . ) Therefore, the following min-max problems can be for-
where K is the process gain[’ the time constant and. mulated:

the time delay. This kind of models are easy to determine

by means of a simple step response experiment to get the

process reaction curve. In order to deal with the delay term i C%(s) = argmin || W (s)(S%(s) — (1 — Gn(5)C(5))) |0
usual to use a rational approximation. The following simple o) )
first order Taylor expansion of the ©* term will be used.

e " ~1-Ls @)  Cr(s) =argmin|| W(s)(T%(s) = Gn(5)C(5)) llo (10)
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where C%(s) is the IMC solution to the Sensitivity whereg(s) =1+ qis+ gas®> + ...+ q,—15*~ ! is a strictly

optimization problem, wherea€’.(s) is the solution to hurwitz polynomial andy*(s) = ¢(—s).

the Complementary Sensitivity optimization problem. This

second controller is introduced just for comparison puegos  Furthermore, the constangsand{g; ;’;11 are real and are

uniquely determined by the interpolation constraints (12)

Next section will solve problem (9) and derive the corre- Now we will proceed with the application of this lemma in

sponding tuning relation for the ISA-PID controller (2) byorder to compute the optimal(s) = C°(s). Note first that

using (7). in our caser = 1 andz; = 1/L. Therefore the interpolation

. SOLUTION TO THE OPTIMAL constraints give the following value for the optimal cest
APPROXIMATION PROBLEM

The design problem has been formulated in (9) and (10)
as an approximation problem in the frequency domain. Both Application of the above lemma gives the following equa-

p=W(1/L)M(1/L) (14)

problems are special cases of: tion for the optimal parametet(s):
q*(s)
. . W(s)M(s) — W (s)N(s)C°(s) =
i | £(5) o = s [IW(5)(1(5) = NC(s))le (11 (IME) = WEONECE) = 070
. then,
Effectively, (10) results fromM(s) = T%(s) and
N(s) = G,(s) and, (9) fromM(s) = 1 — S%(s) and .
N(s) = Gn(s). Several approaches exists to solve thisceo(s) = (W (s)N(s))™" (W(S)]\/[(s) _pq (s))
Hoo problem. See [17], [18] among others. Here we will q(s)
follow a particularization of the solution presented in 19 _ dw (s)dn (s (15)
and also used in [1] where a polynomial approach was nW(s)n;(s)nJ}(s)
taken. Thls has the advantage of prowdlng' the structure of nw (8)nar(8)q(s) — pg* (s)dw (s)das (s)
the optimal controller. Therefore, as we will do here, the
as W _ dw (s)dar(s)q(s)
problem statement can be constrained in order to provide a
solution that leads to a PID controller. In order forC°(s) to be a stable transfer function,,(s)
must be a factor of the numerator. That is to say, there must
First of all N(s), M(s) andW (s) are factored as: exist a polynomialy(s) such that:
ny(s) nar(s) nw (s)
N(s) = M(s) = S) =
= M e YT mEXE) = nw(s)m()a(s) (16
The solution to the minimization of the cost function —pq* (s)dw (s)dar(s)

(11) lies in optimal interpolation theory. First, factaizhe

numeratorn  (s) as: It follows that, to determine the optimal controlléf(s),

the x(s) polynomial must be known. In any case, the optimal

nn(s) = n;(s)n]—v(s) C°(s) will obey to the following structure:
where the polynomialnf;(s) only has stable roots and o dn(s)x(s)
ny(s) is the remaining part. In order to obtain a unique C%(s) = nw (s)n7 (s)dar (s)g(s) )

factorisation the polynomiat;(s) is assumed to be monic. ) )
Let v =degy (s)) and{z1, 22, ..., 2, } be the distinct zeros Expression (17) provides the structure of the IMC

of ny(s). From equation (11) it results that the error functiorP@rameter C(s) that solves the optimal approximation
E(s) is subjected to the following interpolation constraintsProblem (11). In the next two sections, this structure wal b
applied to the case where the approximation problem arises
B(z) = W(z)M() i=1.. v (12) from a Sensitivity and Complementary Sensitivity matching
problems.
If z; is a zero with multiplicity v;, then additional

differential interpolation constraints should be impased
IV. STEP RESPONSE TUNING

A well established theory [20] , [21], [17] that solves this  This section reviews the main result of [13] and [1]
problem exists and a closed form solution can be obtaingftoviding the tuning relations that arise from the applimat

from the following lemma [17]: of the solution to the optimal approximation problem to
Lemma 3.1: The optimal E°(s) which minimizes solve the design problem (10). The specification of a target
[ £(s)|ls is of an all-pass form: T(s) corresponds to a step response specification: the
o) controller is chqsen in order to achieve a desired reference
Eo(s) = { P a(s) !f v=>l (13) 1o output behavior.
0 ifv=0
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The approximation problem is formulated, according to

(10), as: . 7T
Ky = Rize
T _
Ci(s) = argmin | W(s)(T"(s) = Gu(5)C(5)) lle (18) TR
_ _ . _ 4 = 172L (26)

We will useT?(s) to specify the desired closed loop time N

constant,T;. Therefore it will take the form: NT 41 = lT
T;
M(s) = nar(s) 1 (19) V. DISTURBANCE ATTENUATION TUNING

da(s) 1+ Tus In this section the approximation problem is posed in

With respect to the weighting functioMl’(s), in order to terms of the Sensitivity function. Therefore specifying
automatically include integral action and keep it as simpla desired disturbance to output target functigsf(s).

as possible, we will assume the following form: Following similar steps as in the previous case, we will get
tuning relations that are to be considered for a Disturbance
W(s) = nw(s) _ 1+zs (20) attenuation problem.
dw (s) s
By using this settings, the minimum cogty is given by: (g)The approximation problem is formulated, according to
, as:
. L+ =z
win [l = lorl = Lpr s @) | d
M C§(s) = arg win | W(s)(5%(s) — (1 = Gn(s)C(5))) lloo
and the solution for the optimat;$.(s), is: @7
. 1 (14 T8)(1+ xhs) _ The ta.rget Sensitivity function§<(s) is given the follow-
Cr(s) = — (22) ing form:
K (1+Ths)(1+ 2s)
. d s
== 2
with, S%(s) Tors 71 (28)
1 I 23 Therefore, the resulting reference model to be considered
Xr =2+ T (23) in the approximation problem (11) results to be
The resulting feedback controller is: ; Thy — 1
J M(s) = 1 §i(s) = ) _ (T —)s 1 oq
dp(s) 1+ Thys
K2(s) = 1 (L+Ts)(1+ x73) (24) With respect to the weighting functiofiy’ (s), in order to
K(pr +Twm) s(1 4 T (/5’;?;2)5) automatically include integral action and keep it as simple

) - ] ) ) as possible, we will assume the following form:
can be identified to (2) with the following expressions for

the controller parameters: nw (s) _ 1+

= 30
W) = g = s (30)
KT — Tr By using this settings, the minimum cogls is given by:
b K(pr +Tw)
+2) ) (L+2)
T/ = T+xp—T er+2) min || E(s)|loc = |ps| = 77~ T +L—7) (31)
XTI o+ Tag) (L + Tar)
TT . . o .
7dT - Ty (pr +2) (25) and the solution for the optimaf;g(s), is:
N (pr +Tw) 1 (14 Ts)(1+xLs)
NT 41 - Loprlor+Tu) C3(s) = = 2 (32)
= TiT 7 (pT - Z) K (1 + TMS)(l + ZS)
with,
These tuning relations provide the four ISA-PID
parameters parameterized in terms of the desltgdand z 1_ I — Thr — 33
as determining the frequency range where the solution to Xs =2+ ps +Lm =7 (33)
(11) is to provide a better match. .
The resulting feedback controller is:
It is worth to note that a choice fdF,; andz is provided 1 14 Ts)(1 1
in [1]. If we chooseTy; = v2L andz = 2Ty = 2L, (25) K3(s) = (+ 5)(T +X55) (34)
provides the following simple tuning rule: K(ps +7) s(1+ %S)
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can be identified to (2) with the following expressions fot

the controller parameters: ‘ /—/\
1r =
ks _ T
b K(ps +7) 08} E
T
(ps +7) Eos ]
] (psTu +72)
¥ = T (35)
N (ps+7) 04 1
T
T2 (psTu +v2) 02 .
This new set of tuning rules also provide the four . ‘ ‘ ‘ ‘
ISA-PID. However, this time they are parameterized ir 0 1 2 3 4 5

Time

terms of the desired’; andz and a new parametey.

Fig. 1. Output signal generated by application of the stepoase based

It is straightforward to verify that withy = Ty, we tuning.

get ps = pr, X5 = x+. Therefore both problems provide
the same tuning. The tuning rules (35) can be seen as a

parameterized set in terms of Determining the value of ) o .
if the tuning we are using is for step response=(Th;) or acceptable but the load disturbance attenuation is slaggis

for disturbance attenuatio ).
" & ) Application of the disturbance attenuation based tuning,

This way, the values of; and z are first selected in provides an alternative to improve this disturbance

order to determine the desired closed loop time constafiitenuation. By using different values for and the same
Secondly the value of can be determined in terms of thevalues ofz andT), figure (2) clearly shows the performance

operation mode of the control system. When a referen&@" b€ readily improved. Values of start withy = Ty,
change is to be applied the controller is to be sef to Ths providing the same tuning as the step response based, and

and when turning to regulation mode a previously selectddcreasing filly = 0.9.
~v # Ty is fixed.

The advantage of this parametrization is that of havin 03
tuning for both operating modes under the same tunin
rule. One common possibility is the use of a two-degree-c
freedom version of the PID controller and to try to handle
separately both situations. However, this implies an iasee 0
of the tuning parameters.

0.2

Increasing y= TM ...0.9 ‘

0.1 B

Output

Time

VI. EXAMPLE 005

The purpose of this section is to provide an example ¢
the performance of the parameterized tuning rule and ha
the performance changes from step response to disturbatr
attenuation agy varies. Let us consider the following plant

-0.051

Control

-0.11 Increasing y= TM ...0.9

-0.15

and First Order plus Time Delay approximation: 02, : : : - .
Time
G(s) ! Fig. 2. Output and control signal to an input load disturiea ted
s) = ig. 2. Output and control signal to an input load distursagenerate
(14 5)(1+0.1s)(1 + 0.01s)(1 + 0.001s) by using the Disturbance attenuation tuning and differeties ofy
—0.073s
e
—_— 36
1.073s + 1 (36)

From the First Order pus Time Delay approximation we V!l. M EASURING PERFORMANCEIMPROVEMENT
identify K,, =1, L, = 0.073 andT,, = 1.073. These plant The introduction of they parameter allows the search
parameters give us, by application of the simple tuning rulfor a new controller that achieves better performance from
(26) the PID controller that generates the output shown ithe disturbance attenuation point of view. However, an
figure (1). As it can be seen, the step response is quiteemediate question comes into consideration: How much
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do the performance increase? How to select syhA  Therefore once known the time delay, the valueyotan
guideline is presented in this section. be automatically selected as well as the rest of the PID
parameters.

Problem (5) defines the disturbance attenuation features
of the resulting design by a suitable definition of the target As an example, figure (3) shows tHe&'E performance
sensitivity functionS“(s). Previous developments have usectorresponding to the system of the previous example. The
a v dependentS?(s) function as (28). However, by only index is plotted againsty and the situation of the step
changing the problem definition we do not have a direatesponse tuning is shown as the one corresponding to
information of the achieved performance improvement. The = T),.
measure we would like to introduce here comes from a
direct interpretation of thex-norm as the (system) norm
induced by the (signal) 2-norm. effectively, it is well know

. . 0.2
that (assuming zero reference signal):

ISE¢(Y)
0.19f o ISELyT,)
o ISE

Smin

[ylla = [15(s)dll2 < [S(s)lloolld]l2 @7

As for each value ofy we will have a differentCg(s), we
can accordingly writeC%(s;~). Each one of these optimal
controllers will generate the corresponding Sensitivitpd-
tion and exhibit a given performance level for the distudzan
attenuation measured as the corresponding 2-norm of t
output signal. If we concentrate on step disturbance signa
it is possible to compute the associated Integral Squart 0151
Error value as a function ofy and get the minimum of
such function. This will suggest an automated procedure f
selectingy. Therefore: Y

0.18

017

ISE

y=0.33 for ISEmin
0.16

o0
ISE — ) 2dt = 2 38 Fig. 3. ISE index for the sensitivity function using distarize attenuation
(7) /0 (y( )) Hy||2 ( ) tuning and different values of

that can be computed, after Parseval, as:
An important point is raised after figure (3) concerning

ISE(v) %/ Y (jw)Y (—jw)dw (39) the selection ofy. It is seen that a complete automated and
! Y

guided selection of all the PID parameters can be done once
the delay,L, of the system model is known. A consideration
o has to be done concerning the time domain results of

This last integral is a contour integral up the imaginar);his selection. Even the selected tuning corresponds to the
o . o H 1 1
axis, then an infinite semicircle in the left half plane. Theontroller Cg(s;7°) it may turn out that the time domain
contribution from this semicircle is zero becausds) is 'esPonse will not seem to be thigest one. Regarding

strictly proper. By the residue theorem this integral e5|ualfigure (2), for exam.ple, it is seen thaetter time domain
the sum of the residues af(s)(—s) at its poles in the left ESPONses are obtained for valugs: 0.9. Therefore, even

half-plane. Straightforward computations leads to: for small variation of the performance index (see y-axis
scale in figure (3)), there can be large variations in the

9 1792 corresponding time domain response. This subject raises

2 (ps + )" + (2T + xsL) (41) the question of selection of the performance index and his
22T (T + 2) correlation with theshape of the time domain response it

bearing in mind thaps = ps(v) andxk = x4 (v). By taking  generates. This is a subject of current research.

the derivative with respect t9 we can obtain the optimal,

~°, that minimizes the ISE value (41) as:

DISE(7)

(s)Y (—s)ds (40)

ISE(y) =

VIII. CONCLUSIONS

=0= (42) This paper has presented an approach to PID tuning based
Iy on an optimal approximation problem. The approximation
o L+Tu 2Ty L+ L*(L+ 2+ Tuy) problem is stated in terms of the Sensitivity function of the
- Y (L tz- 2Toy + L2 ) closed loop system. An appropriate formulation of the targe

(43) Sensitivity function generates the tuning of the controdle
If we use the simple rule suggested above, whera parameterized set of tuning rules. This set provides ¢unin
Ty = V2L andz = /2T, it turns out thaty® = v°(L).  rules for each operating mode of the controller. The overall
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(23]

0.2} | [14]

| [15]

1 [16]

Process Output

[17]

[18]
R [29]

[20]

[21]

Fig. 4. Output signal to a load-disturbance input by aptilicaof step
response based tuning & T5,) and disturbance attenuation tuning with
v =0.33

tuning needs three parameters. Two parameters along the
lines of previously presented tuning rules and a new third

parameter that determines the level of regulation mode of
the controller.

An ISE criterion is associated to this third parameter in
order to evaluate the performance improvement with respect
to the original step response tuning. The maximization
of this performance improvement provides a systematic
method of determining this third parameter.
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