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Interior Point Cutting Plane Method for
Discrete Decoupled Optimal Power Flow

Ding Xiaoying , Wang Xifan, and Liu Lin

Abstract—In this paper, the traditional IT1 equivalent circuit
used to model the transformer is replaced by an ideal model in
discrete optimal power flow (DOPF) formulation, which
introduces a fictitious bus to express the power and voltage
converting relations of the tap-changing transformer, so the
admittance matrix is fixed during iterations to reduce
computational efforts. Furthermore, this representation of
transformer helps DOPF problem to be decoupled into two
subproblems, which can improve computational efficiency
greatly. Interior point method is used to solve continuous active
power subproblem, and interior point cutting plane method
(IPCPM) is adopted to solve discrete reactive power subproblem.
Unfortunately, we find that the convex combination solution
appears with great probability when solving DOPF problem, so in
this paper IPCPM is improved to repair this shortcoming.
Numerical simulations on IEEE14~300 test systems show that the
improvement of IPCPM is efficient, and the proposed method is
suitable for solving DOPF problems for large-scale systems.

Index Terms— Discrete Optimal Power Flow; Decoupled
Optimal Power Flow; Interior Point Method; Interior Point
Cutting Plane Method '

[. INTRODUCTION

A key requirement of any modern society is the economic
and secure operation of its electric power system. Such an
important objective naturally demands the use of advanced
large-scale system analysis, optimization, and control
technologies. As a most attractive one of these technologies,
optimal power flow (OPF) was proposed by Capentier in 1960s
based on economic dispatch (ED) problem. Unlike ED that
allocates load to the generating units only, the OPF integrates
active and reactive power operation perfectly into one
mathematical model via the AC load flow constraints around all
buses, in which the economic and secure aspects of the
concerned system are considered.

In recent decades, several classes of solution algorithms
have been proposed to overcome OPF limitations in terms of
flexibility, reliability and performance for real-world
applications. However, these algorithms do not deal with the
discrete step controls satisfactorily. On the other hand, such
discrete controls are widely used by the power industry. For
example, transformers are used for voltage control, shunt
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capacitors and reactors are switched on or off in order to correct
the voltage profile and reduce transmission losses, and phase
shifters are used to regulate the MW flow of transmission lines.
So an efficient and effective OPF discretization procedure is
needed to help the operators utilize these discrete controls in
realistic and optimal manner. Exact modeling of discrete
controls together with continuous control variables makes the
OPF become a mixed integer nonlinear programming problem.
The combinatorial-search approaches, branch-and-bound and
cutting-plane method are usually used to solve this kind of
mixed-integer programming model [1,2], but these methods are
“nonpolynomial”, and all suffer from the so-called problem of
“curse of dimensionality” for large-scale applications, making
them unsuitable for larger-scale discrete OPF (DOPF)
problems. Global optimization techniques, such as genetic
algorithm (GA)[3,4], simulated annealing (SA)[5], tabu search
(TS)[6], evolutionary programming and evolutionary strategy
[7,8] have been applied to DOPF problem, which improve
solutions but have relatively slow performance and unstable
optima. Recently, due to the basic efficiency of interior point
methods, which offer fast convergence and convenience in
handling inequality constraints in comparison with other
methods, interior point (IP) linear programming [9], quadratic
programming [10], and nonlinear programming [11] methods
have been widely used to solve OPF problem of large-scale
power systems. However, up to now the interior point methods
cannot directly solve the mixed-integer programming because
gradient information is necessary. Liu et al. [12] extends the
primal-dual IP algorithms to handle the discreteness of
switchable shunt capacitors/reactors and tap-changing
transformers in solving nonlinear reactive-power optimization
by incorporating a positive-curvature quadratic penalty
function in iterations. In 2004, interior point cutting plane
method (IPCPM) was first applied to solve high-dimension
nonlinear mixed-integer OPF problems [13]. All these
improvements in IP algorithm encourage the successful
implementation for rigorous solution of DOPF problem.

The traditional IT equivalent circuit used to model the
transformer is replaced by an ideal model in this paper. The
limitation of IT transformer model is that the change of tap
setting requires repeated calculation of admittance matrix in
iterations, which can greatly increase the computational efforts
of algorithm. In the proposed formulation, the fictitious buses
are added to express the power and voltage converting relations
of the tap-changing transformer. So the admittance matrix is
fixed in iterations to reduce computational efforts.
Furthermore, the new representation of transformer helps
DOPF problem to be decoupled into two subproblems
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completely. The advantages of the decoupled OPF formulation
include: (1) decoupling greatly improves computational
efficiency, especially for larger systems. It is because that each
subproblem has approximately half the dimension of the
original problem; (2) decoupling makes it possible to use
different optimization techniques to solve the active power and
reactive power OPF subproblems. In this paper, IP method is
used to solve continuous active power subproblem
(P-subproblem), and IPCPM is adopted to solve discrete
reactive power subproblem (Q-Subprobelm). Numerical
simulations on IEEE14~300 test systems show that the
proposed method is efficient in solving OPF problems for
large-scale power systems.

IPCPM is a hybrid of cutting plane method and IP method,
which obtain good performance from these two methods.
Although there are some papers on IPCPM application to
several well known combinatorial optimization problems, such
as linear ordering problem [14], flowshop scheduling problem
[15] etc. IPCPM is first applied to solving high-dimension
nonlinear mixed-integer OPF problems in 2004. Numerical
simulations on IEEE 14~300 buses test systems show that the
IPCPM is suitable for solving discrete optimization problems
of large-scale systems. Currently, our observation is that
IPCPM cannot obtain the correct information to identify
optimal basis when the linear programming relaxation of
original integer programming is a multiple-optima problem.
Thus ambiguous information may increase the iteration
numbers and computational time, even makes I[PCPM
completely fail. In this paper, IPCPM used in [13] is improved,
the optimal solution shifting helps to ensure the generation of
effective cutting plane constraints in the solution of the
multiple-optima problems.

II. THE FORMULATION OF DOPF

A. Theideal model of Tap-changing Transformer

OPF problem is a difficult problem in mathematical
programming area due to its large dimension, discrete and
nonlinear characteristics when discrete controls are considered,
such as tap-changing transformers, switchable shunt
capacitors/ reactors, feasible AC transmission systems
(FACTYS) etc. In paper [13], an efficient integer programming
approach, IPCPM is used to solve DOPF problems, and its
calculation flow shows that the admittance matrix must be
calculated with the improved tap setting in each iteration,
which consists main computational burden of algorithm. This
suggests that a good part of the computational work could be
bypassed if the relationship between the transformer tap setting
and the admittance matrix are eliminated. The best way we
found to do so is to introduce a fictitious bus into the
transformer model, which would be used to express the power
and voltage converting relations of the tap-changing
transformer.

As an example, tap-changing transformer branch is used
to show a mathematical interpretation of the two different

model (see Fig.1). Where i and j are the head and end bus of
transformer branch separately, and non-standard voltage ratio
side is j side. The traditional IT equivalent circuit model is
illustrated in Fig. 1 (a), and the model we used in this paper is
shown in Fig.1 (b), where j,i’,i are high voltage bus, fictitious

bus and low voltage bus separately.
In Fig.1 (b), for fictitious bus i’, Py, can be described as

flowing:
Prii =V7 g1 —Vi?V; (gt cos 0y +br sin6;7) (1)
Due to Py = Py;i-, equation (1) can be rewritten as:
Priiv =Vi7 g1 —Vi Vi (gt cos 6 +br sin 65) (2)

In addition, we obtain the following relations as the (1)
analogue:

Qujir =Vi?Vi (by cos By — gy sin ) - Vi by (3)

Priv =Vi> gt —Vi/V; (gt cos 6y —br sin6;7) “4)

Qriir =ViV; (b cos 85 + g sin 64 ) -V;*br (5)
Furthermore, we know:

6; =6 (6)

k=V; Ny ™)

From the expression collected in Table 1, one can see that the
action of transformer tap is replaced by the voltage of fictitious
bus when using the model in Figl (b). We can omit the
computational burden for admittance matrix in iterations.

B. The Formulation of DOPF Problem

The DOPF problem can be decomposed into two
subproblems, the continuous P-subproblem and discrete
Q-subproblem with the transformer model in Fig2 (b). These
two suproblems can be stated as follows.

i. P-subproblem

Objective function (operation cost minimization):

min Z(azi P&i + 2y Ps + agi) (®)
ieSG

Equality constrains:

Psi —Poi = Z PLij + Z Prij ©)

ijes ijes
6; =6 (10)
Inequality constraints:
(a) Upper and lower bounds on the active power:
Paimin < Pai < Poimax (i€ SG) (1n

(b) Upper and lower bounds on the flow of transmission line:

Plijmin < PLij < Plijmax (i,j€9) (12)
ii. Q-subproblem
Objective function (transmission losses minimization):
minAPs = ) Pg+ ) Prg (13)

ses e
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Fig.1 The equivalent circuit of transformer

(a) The traditional IT equivalent circuit model

Equality constrains:

Qg —Qpi = ZQLij + ZQTij (14)
ijed e
L+t =V V. (ke ST ) (15)
Inequality constraints:
(a) Upper and lower bounds on the reactive power:
Qaimin < Qai < Qgimax (i€ S5) (16)

(b) Upper and lower bounds on the magnitude of voltage in
bus i:

Vimin SVi SVimax(ieS?’) (17)
(¢) Upper and lower bounds on the tap position i :
I:iminStiStimax(ies-r) (18)

Where: SB: the set of all buses, 9 : the set of all branches,
S : the set of all transformer branches, Sg : the set of all active

sources, ST : the set of all tap-changing transformers,
ayi » & » & - the fuel cost coefficients of unit i, Pg * Qg;:

active and reactive power generation at bus i, Py * Qp;j:
active and reactive demand at bus i, Py > Qu : active and

reactive flow in general branch ij , Py > Qp: active and

reactive flow in transformer branch ij , t;: tap setting of

tap-changing transformer i, V; , 6 : the magnitude and angle of

< ’ ®min : the upper and the

voltageinbus i, 6; =6, -6;. o,
lower bounds on variables. y : the adjust step of the kth

tap-changing transformer. The other variables are described in
sector 2.1.

TABLE 1 THE POWER FLOW OF TRANSFORMER BRANCH IN TWO

DIFFERENT MODELS
Power . Lo .
flow IT equivalent circuit model The ideal model
Prij(Pri)  Wlor _%Vivj(gT cos @ +br sin ) V2gr —ViVi (gt cos s +br sin 6)

Qrij (Qrii*) LVj\/‘(l:)]— cos6j — gt sinﬁlj)f\/izbr

” ViV (br cos 7 — g sin ) - Vi%br

1 1 .
Prji (Prjir) k_ZVngT — T VjVi(gr cos@y —brsindy)  Vi’gr —ViVi(gr cos b by sin6)

k

1 . 1
Qi Qi) —VjVi(br cos8jj + g Smﬂuj)*k—szzbr

P ViV (br cos 7 + gt sin 67) —Vibr

III. THE CALCULATION FLOW OF ALGORITHM
The active power subproblem is described as (8)~(12),

(b)_The model used in this paper

which is a typical nonlinear programming problem. In this
paper, it is solved by IP method (see [16], for the algorithm
flow and formulations). IPCPM (see [13], for the principle and
formulations of algorithm) is applied to solve the reactive
power subproblem, which is a mixed integer nonlinear
programming problem.

The proposed approach for DOPF problem is described in
Fig 2 within the context of two optimization modules: the
P-subproblem optimization and Q-subproblem optimization.

P-subproblem
optimization

s Calcultion precision of P
subproblem satisfied?

If kq=0
Set kq=0 *
Q-subproblem
optimization
N

alcultion precision of Q-subproblem
satisfied?

Y

Fig.2 The calculation flow of DOPF problem

IV. THE IMPROVEMENT OF IPCPM

In cutting plane method, cutting plane constrains are
available by the information of basis variables. An advantage of
the conventional simple cutting plane method (SCPM) in
getting a cut is that its optima of linear programming relaxation
implicitly converges to the vertex of feasible region of problem
in any cases. However, if the linear programming relaxation is
multiple-optima problem, it is easy to prove that [IPCPM cannot
collect the correct information of optimal basis because its
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optima of linear programming relaxation converges to an edge
of feasible region of problem with a great probability. As a
result, ambiguous basis information may increase the iteration
numbers and computational time of IPCPM, even makes
IPCPM completely fail.

A. Thetheoretic analysis

For clarification we assume that the following linear
programming is the relaxation problem of mixed integer
programming.

max. 2X; +4X, (19)
st X +2%+X3 =8 (20)
X+ X4 =8 21

Xy +X5 =8 (22)

X1 X, X3, X4, X5 20 (23)

The above linear programming is a multiple-optima
problem, which have three kinds of solutions:

i. Normal solution: x”* = (2,3,0,6,0), that is to say, the number
of non-zero elements is equal to 3. It equals to the number of
equality constraints.

ii. Degenerate solution: X" =(8,0,0,0,3), and the number of
non-zero elements is less than 3.

iii. Convex combination solution: x”" =ex”" +(1-a)x”",

7
Y]
xX"*=(4.5,1.75,0,3.5,1.25) , and the number of non-zero elements

where e (0]) For example, when «

>

is more than 3.

The example in Fig.3 provides a geometrical
interpretation of the three different kinds of solution when IP
method is applied to solving problem (19)~(23). In Fig.3, the
convex polytope ABDO is the feasible region of problem
(19)~(23). Clearly, the constraint edge BD should parallel to
the objective function (19). As a result, the maximum of
objective function can be found in any point of edge BD, which
explains the reason for the appearance of x”". From Fig.3 we
can see, X = (2,3,0,6,0) is obtained when the algorithm
convergences to point B, or x”* =(8,0,0,0,3) is obtained when
the  algorithm  convergences to point D, or
X"*=(4.51.75,0,3.51.25) is obtained when the algorithm
convergences to point P stands between the point B and the
point D.

For SCPM algorithm, simplex method(SM) is a
vertex-searching method. It start at the origin, then it moves
along the intersection of the boundary hyper-planes of the
constraints, hopping from one vertex to the neighboring vertex,
until an optimal vertex is reached. As a result, only two kinds of
solution can be found, normal solution x"™ and degenerate

solution x”* (see Fig.3). x”* can be transformed into x”* by
selecting some zero variable columns to enter the basis in
accordance with some column selection criteria. That is to say,
there is not much trouble of cut generation in SCPM, even in

the presence of x”*. Unlike SCPM, the IP method used in

IPCPM crosses the interior of feasible region in search for
optima of linear program. Clearly, the probability of optima
standing in edge BD is always much more than the probability
of optima standing in point B or point D (see Fig.3). In other

words, [P method found convex combination solution x”* with

a great probability in this case. If x”" is obtained, then IPCPM
cannot collect the correct information of optimal basis.
Therefore, ambiguous basis information may increase the
iteration numbers and computational time of IPCPM, even
makes IPCPM completely fail. Unfortunately, we observe that
this phenomenon occures frequently when we attempted to
solve DOPF problem with IPCPM. So addressing above issue
is key to the successful implementation of IPCPM for solving
DOPF problem.

_____ interior point method

simplex method

g g >g >
Fig.3 The search route of [IPM and SM D

B. Theimprovement of IPCPM
The success of cut generation is dependent on the ability of
the method to locate the normal solution x”* correctly and
effectively. Thus, it is obviously that transform x”* into x”* is
one of the important factors to solve the problem presented

previously. When the optimum converges to an edge of feasible
region of problem, it can be moved to the neighboring vertex by

pivoting [17]. That is to say, the x”"can be transformed into

x”* with the following scheme.
We that the

{minch‘Ax:b,xzo} (where ce R" » xeR" » Ae R™" >

assume linear program relaxation

be R™) is solved by IP method, and x primal and y,s dual
A:[A17A27A3] 5
x=[x,%,%3] , s=[5,5,,%], c=[c;,cy,c5] , where index 1

optimal solutions are available. Let

refers to the coordinates where X is positive, index 2 refers to
the coordinates where both of X and S are zero, and finally
index 3 refers to the coordinates where S is positive. Then we

have: Ajx; =b, ATy=¢,, Aly=c, and Al y<c,.
Stepl : Determine the kind of solution:

(a) If it is x”*, then components of x”* corresponding to
zero element are said to be basic variables. Stop calculation.

(b) Ifitis x”*, go to Step7.

(c) Ifitis x”", go to Step2.
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Step2 : Are the columns of A, linearly dependent, if the
answer is not go to Step6.

Step3 : Pivoting: set x| = X, +tz.

To guarantee the optimization of X : There must exist one
but not only one vector z satisfying Ajz=0 because the
columns of A, are linearly dependent, so any z is the one we
need. (We can prove: The new objective function is

¢l x| +cl X, +¢l x5 =

(AT YT (X +t2)+¢] x5 +¢1 x5 =¢[ x4
+C) Xy +C3 X3 +tyT Ajz=c¢] X, +C) X, +c1 x5 =c"x , so the
optimization of original problem solution does not be affected
when x, is transformed into x; .)

To guarantee the feasibility of x : Compute t,;, <t<t, . by

min =
solving xj = x; +tz>0.

Step4 : Eliminate zero element (say ) from x, using
tmin OF thay - Remove a; from A and add to A,, then go to

Step2.
Step5: Set x =[X{,X5,X3], and then go to Stepl.

Step6: SetB = A, if rank(B) > rank([A;A,]) go to StepS.

Step7: A column a;of [AA;]is independent from B, add
a; to B.

Step8: Go to Stepl1 if rank(B)=m.

Step9: Pivoting: Set y'=y-wu.

To guarantee the optimization of Y: There is more than one

vector u satisfying BTu=0, and any u is the one we need.

(We can prove: The mnew objective function
is b’y =b"y-vb'u=b"y-w"ATu . It is clearly that
A
- , R o
X Alu= [x1x2 X3 Ay lu= [XIOO A u=0, so the optimization
3
A

of dual problem solution does not be affected when V is
transformed into y’.).

To guarantee the feasibility of y: Compute v, SV<Va.
by solving A3T y'<cy.

Stepl0: Substitute vy, or V. to y=y-w , and
a3TJ- y'=c;; mustexist. (where ay; represents the j™ column of
matrix Ay, c;;is the j™ component of vector ¢; ) . Remove
a3 from A; and add to A, and B, then go to Step8.

Stepl1: Stop, matrix B is the basis matrix that we need.

V. NUMERICAL SIMULATE AND ANALYSIS

The proposed algorithm was implemented using the Visual
C++6.0 language and the software program was executed on an
800-MHz Pentium Pro computer. Numerical simulations on
RTS-24 test systems have been done to test the performance of
the presented algorithm.

A. The performance of proposed algorithm

In the proposed formulation, the fictitious buses are added to
express the power and voltage converting relations of the
tap-changing transformer. So the admittance matrix is fixed
during iterations to reduce computational efforts. Furthermore,
the new representation of transformer helps DOPF problem to
be decoupled into two subproblems. The advantages of the
decoupled OPF formulation include: (1) decoupling greatly
improves computational efficiency, especially for larger
systems. This is because each subproblem has approximately
half the dimension of the original problem; (2) decoupling
makes it possible to use different optimization techniques to
solve the active power and reactive power OPF subproblems.
In this paper, IP method is used to solve continuous
P-subproblem, and IPCPM is adopted to solve discrete
Q-subproblem.

From Table2, comparing with the algorithm proposed in
paper [13], we find that the presented algorithm has attractive
performance because its calculation speed enhances obviously
during the scale of system becoming larger and larger. Based
above analysis, we can conclude that the proposed method is
very promising for solving discrete OPF problem, especially
for large-scale power systems.

TABLE 2 THE COMPUTATION TIME OF TWO FORMULATION (ms)

odel
1T model Ideal model
Test system

IEEE14 1359 359

RTS-24 2703 1062
IEEE30 5797 2578
IEEES7 10734 2625
IEEE118 26641 7359
IEEE300 77609 57125

B. Theimprovement of IPCPM

Many numerical experiments have indicated that objective
function of OPF has a very plain shape for the transformer tap
control. Therefore, very similar cost values can be obtained
with different settings of the transformer tap. So OPF becomes
a multiple-optima problem. The same conclusion can be
obtained form the numerical results illustrated in Table3, which
shows that the convex combination solution appears with great
probability when solving OPF problem (8)~(18) for
IEEE14~300 test systems. Furthermore, It is seen in sector 3.1
that IPCPM has bad computational performance for multiple-
optima problem. There is a need to extend IPCPM to repair this
shortcoming. Table4 compares the performance of the two
IPCPM for solving OPF problem, which shows that the
proposed method is more efficient than its old version proposed
in paper [13]. In summary, the improvements of IPCPM meet
the needs of practical application, and it offers a new way to
solve complicated discrete optimization problem for
large-scale power system, which result in dramatic property
and human save.
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TABLE.3 THE TYPE OF OPTIMUM OF DOPF PROBLEM

. . The number The number  The type
The dimension
system of matrix A of non-zero of zero of
elements elements optimum
5 24x28 25 3 X
14 65x74 65 9 X
24 114x132 118 14 X"
30 132x144 133 11 X
57 243x258 245 13 X
118 546x620 550 70 X
300 1300x1400 1314 86 X

TABLE.4 THE CALCULATION RESULTS OF TWO ALGORITHM

system Th(e; fn ;E?Sber The value of tap
5 Before improvement fail fail
After improvement 1 5
14 Before improvement 1 -4,-10
After improvement 1 -4,-10
" Before improvement fail fail
After improvement 1 -2,-5,5
30 Before improvement 0 -10,-10,5,-5
After improvement 0 -10,-10,5,-5
57 Before improvement 0 -10,-5,-10,-5,10
After improvement 0 -10,-5,-10,-5,10
118 Before improvement fail fail
After improvement 1 -5,5,-5,0,-2,-5,5
Before improvement fail fail
300 After improvement 2 _6’_5’_2?1’ 5?351’(3,2-8,-5,-10,

VI. CONCLUSION

The OPF problem becomes a nonlinear mixed integer
programming problem when the discrete controllers are
considered, such as tap-changers in transformers or switching
of capacitor/reactor banks and so on. It is proposed in this paper,
that the traditional IT equivalent circuit used to model the
transformer be replaced by an ideal model, which provides the
following advantages:

(1) The admittance matrix is fixed in iterations to reduce
computational efforts.

(2) The new representation of transformer helps DOPF
problem to be decoupled into two subproblems, which
improves computational efficiency.

On the other hand, in this paper, IPCPM is improved to meet
the needs of practical application. Numerical simulations on
IEEE14~300 test systems show that the proposed method is
efficient in solving OPF problems of large-scale power
systems.
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