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Abstract—We present an efficient and novel proce-
dure to design two-dimensional (2D) linear-phase IIR
filters with less hardware resource. A 2D linear-phase
FIR filter prototype is first designed using semidefi-
nite programming (SDP). The prototype filter is then
decomposed into modular structures via Schur de-
composition method (SDM). Each section is reduced
into IIR structures using a novel digital system iden-
tification technique called the Discrete-Time Vector
Fitting (VFz). Examples with image processing ap-
plication show the algorithm exhibits fast convergence
and produces low hardware cost and accurate filters.

Keywords: 2D IIR filter, image processing, digital sys-

tem identification, vector fitting

1 Introduction

Two-dimensional (2D) filters are widely used in image
processing [1], medical imaging [2], face recognition [3]
etc. These applications often require high-order filters
having accurate magnitude response and linear phase in
the passband. For instance, a 63 pixel × 63 pixel kernel
filter is used in medical imaging [2]. However, hardware
resources are usually restricted due to limited multipli-
ers and memory in ASICs and FPGAs [4]. Therefore, 2D
IIR filters are generally used to reduce the hardware cost.
However, to date there is no optimal algorithm for 2D IIR
filter design in terms of computation and the resultant
hardware cost. Direct optimization of an IIR filter gives
an excellent accuracy but the computation complexity is
high [5]. In the Singular Value Decomposition (SVD)
approach, the frequency response of a 2D FIR prototype
filter is replaced with parallel sections of 1D cascaded sub-
filters [6]. The problem is then reduced from a 2D design
problem into several 1D design tasks, thus producing less
complicated implementation due to parallelization and
modularization of filter sections [7]. By neglecting sec-
tions associated with small singular values, the decom-
posed filter can be simplified with only slight error in the
filter response [6]. Moreover, subfilters can be reduced by
IIR approximation using model order reduction method
to further reduce hardware cost. However, this method is
complicated when the subfilter sizes and number of sec-
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tions are large. To this end, we present a novel design
flow for designing 2D (near-)linear-phase IIR filters with
low computational complexity and hardware cost. First,
semidefinite programming (SDP) is used to design a 2D
FIR filter prototype, followed by the Schur Decomposi-
tion Method (SDM) that decomposes the prototype filter
into sections of cascaded 1D FIR subfilters. A novel dig-
ital system identification technique, called the Discrete-
Time Vector Fitting (VFz), is then used to reduce the 1D
FIR subfilters into 1D IIR subfilters. It is shown that VFz
gives efficient and accurate IIR approximation over con-
ventional schemes. Practical image processing example
demonstrates that the integrated SDP/SDM/VFz design
flow produces excellent 2D IIR approximants with good
passband phase linearity and low hardware cost.

2 Design Methodology

2.1 FIR prototype design via semidefinite
programming

The transfer function of a 2D FIR filter of odd order (N1,
N2) is characterized by

H (z1, z2) =

N1−1∑

i=0

N2−1∑

j=0

hijz
−i
1 z−j

2 =zT
1 Ĥz2, (1)

where zi =
[

1 z−1
i . . . z

−(Ni−1)
i

]T
for i = 1 and 2,

and Ĥ ∈ RN1×N2 is impulse response. This kind of fil-
ter with phase linearity becomes octagonal-symmetric [7].
Therefore, Ĥ can be partitioned as:

Ĥ =




H11 h12 H13

hT
21 h22 hT

23

H31 h32 H33



 , (2)

where H11,H13,H31,H33 ∈ Rn1×n2 , h12, h32 ∈
Rn1×1, h21, h23 ∈ Rn2×1, h22 ∈ R and n1 =
(N1 − 1)/2, n2 = (N2 − 1)/2. Moreover, the frequency
response is given by

H (ω1, ω2) = e−j(n1ω1+n2ω2)cT
1 (ω1) Hc2 (ω2) (3)

where ci (ωi) = [ 1 cosωi . . . cosniωi ]T , for i = 1

and 2, and H =

[
h22 2hT

23

2h32 4H33

]
.
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The design of the prototype FIR filter is a minimax prob-
lem of error of H in (ω1, ω2) [5]. It can be formulated as

min cT x
subject to : F (x) ≥ 0

(4)

where c =
[

1 0 . . . 0
]T

, and

x =
[

δ hT
]T

, in which F (x) =

diag
{

Γ
(
ω

(1)
1 , ω

(2)
2

)
, . . . ,Γ

(
ω

(M)
1 , ω

(M)
2

)}
≥ 0. Here

≥ denotes matrix positive semidefiniteness. Adw

is the weighted desired magnitude response. h
and cω are column vectors by stacking from the
first to last columns of H and ckn1+m, respectively.
ckn1+m(ω1, ω2) = cos(mω1) cos(kω2) for 0 ≤ m ≤ n1,
and 0 ≤ k ≤ n2. This is a semidefinite programming
(SDP) problem. SDP is an optimization framework
wherein a linear or convex objective function is mini-
mized subject to linear matrix inequality (LMI)-type
constraints.

2.2 Schur decomposition of 2D FIR filters

The octagonal-symmetric linear phase 2D FIR filters can
be decomposed into 1D subfilters by Schur Decomposi-
tion Method (SDM) [7]. SDM is superior to SVD in com-
putational complexity by exploitation of filter response
symmetry. The idea of SDM is to decompose the 2D
transfer function as:

H (z1, z2) =

k∑

l=1

Fl(z1)Gl(z2), (5)

where Fl (z1) =
N1−1∑
i=0

fl (i) z−i
1 and Gl (z2) =

N2−1∑
j=0

gl (j) z−j
2 are the transfer functions of two cascaded

1D subfilters, fl (i) and gl (j) are the corresponding im-
pulse responses, and k is the number of parallel sections.
k is chosen regarding the tradeoff between computation
and approximation accuracy. With the octagonal sym-
metry, Ĥ in (2) can be rewritten as

Ĥ =

[
IL 0

Î IM

] [
H1 0
0 0

] [
IL ÎT

0 IM

]

=

[
H1 H1Î

T

ÎH1 ÎH1I
T

] (6)

where Î =





0 · · · 0 1 0
0 · · · 1 0 0
... . .

. ...
...

1 0 · · · 0 0




and L = ni +1. H1 ∈

RL×L contains all the impulse response information of
the 2D FIR filter [7]. H1 is then decomposed by means
of SDM:

UT H1U =
∑

, (7)
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Figure 1: Decomposed FIR prototype filter.

where UT U = UUT = IL and
∑

= diag(λ1, λ2, ..., λL).
Retaining the k most significant eigenvalues in

∑
,

namely,
∑

1 =
∑

(1 : k, 1 : k), the approximated 2D
FIR filter becomes

H̃d = W |Σ1|SWT = FSG = FSFT , (8)

where W =

[
U (:, 1 : k)

ÎU (:, 1 : k)

]
, F = W

√
|
∑

1| ∈ RN×k ,

G = FT , and S = diag (s1, s2, ..., sk) , in which sl =
sign

(
λ̄l

)
, is the sign weight for interconnection between

subfilters. Each column of F is an FIR linear phase 1D
subfilter with its own frequency response. Therefore, (8)
becomes

H̃d =

k∑

l=1

FlslF
T
l , (9)

H̃d preserves phase linearity of the 2D FIR filter. The
architecture of the decomposed filter is shown in Fig. 1.

2.3 IIR filter approximation of 1D FIR sub-
filters

For the sake of hardware savings and consequently power
consumption, each of the 1D FIR subfilters (F1, F2,. . .,
Fk) is approximated by IIR structures:

L∑

n=0

hnz−n = Fl (z) ≈ f̂ (z) =
P (z)

Q (z)
=

N∑
n=0

pnz−n

M∑
m=0

qmz−m

.

(10)

where f̂(z) is the IIR approximant. We aim at locating
a set of pn and qm with N, M ≪ L to form a stable and
causal IIR filter with a good approximation subject to
constraints like magnitude and phase response, and low
algorithmic complexity.

3 Discrete-Time Vector Fitting

Vector Fitting (VF) [8] is a popular technique for
fitting continuous-time (s-domain) frequency-dependent
vector/matrix with rational function approximations.
VF starts with multiplying a scaling function σ(s) to the
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desired response f(s). The poles on both sides of the
equality are set to be equal:
(

N∑

n=1

cn

s − αn

)
+ d + se

︸ ︷︷ ︸
(σf)(s)

≈

((
N∑

n=1

γn

s − αn

)
+ 1

)

︸ ︷︷ ︸
σ(s)

f (s) .

(11)

The basis of partial function ensures well-conditioned
arithmetic. The poles (αn) and residues (γn) are either
real or exist in complex conjugate pairs. The variables
cn, d, e, and γn are solved by evaluating (11) at multiple
frequency points. In (11), the set of poles of (σf) (s) and
σ (s) f (s) are the same. Therefore, the original poles of
f(s) cancel the zeros of σ (s), which are assigned as the
next set of known poles to (11). This iteration process
continues until the poles are refined to the exact system
poles. In general, it only takes a few iterations. VF is
readily applicable to digital domain (z-domain), called
Discrete-Time Vector Fitting (VFz), for IIR approxima-
tion of FIR filters [9]. In the VFz approach, an initial

set of stable poles
{

α
(0)
n

}
is first assigned to be refined.

Analogous to VF, the desired 1D FIR filter response is
fitted with a rational function:
(

N∑

n=1

cn

z−1 − α
(i)
n

)
+ d

︸ ︷︷ ︸
(σf)(z)

≈

((
N∑

n=1

γn

z−1 − α
(i)
n

)
+ 1

)

︸ ︷︷ ︸
σ(z)

f(z).

(12)

In digital systems, it is required that |αn| > 1 since stable
poles are inside the unit circle. For Ns frequency points
at z = zm (m = 1, 2, . . . Ns) and Ns ≫ 2N + 1, (12) is
presented in an overdetermined linear equation
(

N∑

n=1

cn

z−1
m − α

(i)
n

)
+ d −

(
N∑

n=1

γnf(zm)

z−1
m − α

(i)
n

)
≈ f (zm) ,

(13)

where i is the ith iteration. It can be solved by

Ax = b, (14)

where the mth row in A, Am, and entries in
the column vector b, bm, and x are Am =[

1

z
−1
m −α

(i)
1

. . . 1

z
−1
m −α

(i)
N

1 −f(zm)

z
−1
m −α

(i)
1

. . . −f(zm)

z
−1
m −α

(i)
N

]
,

x =
[

c1 . . . cN d γ1 . . . γN

]T
, and

bm = f (zm) .

To determine the new poles (the reciprocals of zeros of
σ (s)) for next iteration, the poles are computed by the
eigenvalues of the following function:

Ψ =





α
(i)
1

α
(i)
2

. . .

α
(i)
N




−





1
1
...
1




[

γ1 . . . γN

]

(15)
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Figure 2: Magnitude response of the 2D prototype low-
pass FIR filter by SDP.

To ensure stability,
∣∣∣α(i+1)

n

∣∣∣ must be greater than 1. Un-

stable poles are relocated by flipping their reciprocals,

1/α
(i+1)
n , into the unit circle. This is possibly done

by multiplying both sides of (12) by an allpass filter
z−1

−α(i+1)
n

1−α
(i+1)
n z−1

. Here only the phase is changed. When all

the poles converge, σ (z) ≈ 1. It turns out that the IIR
denominator part is determined by

f̃(zm) =

(
N∑

n=1

cn

z−1
m − α

(NT )
n

)
+ d ≈ f (zm) . (16)

VFz is also extended to handle complex conjugate poles
commonly found in digital filters. The accuracy and com-
putational complexity of VFz are dependent of the or-
der of the 1D subfilters, the number of iterations and
frequency-sampling points. In short, VFz improves the
approximation accuracy successively by using determinis-
tic pole relocation techniques. It is shown by experiments
that its accuracy is comparable, if not better, than that
of model reduction techniques [10,11], but with much less
computational complexity. The saving is even more sig-
nificant when the number of subfilter sections is large.
This result is remarkable. Besides magnitude approxi-
mation, VFz simultaneously performs accurate phase ap-
proximation, whose linearity is particularly important in
image processing.

4 Numerical Example

We would like to verify the performance using two nu-
merical examples. The proposed design methodology is
illustrated with a practical lowpass filter example similar
to that in [5]. A diamond-shape linear-phase FIR filter
with order = (37, 37) is used whose specification is

W (ω1, ω2) =

{
0dB, for |ω1| + |ω2| ≤ 0.8π

−40dB, for |ω1| + |ω2| > π

(17)
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Figure 3: Magnitude response of the approximated 2D
lowpass FIR filter after SDM.
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Figure 4: Frequency response of the approximated 2D
lowpass IIR filter via VFz: (a) magnitude response and
(b) group delay in the passband.
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Figure 5: Eigenvalues of the lowpass filter example H1

of (7) in ratio, which shows the importance of each sub-
section.

Uniformly distributed grid points of 47 × 47 are used.
The algorithm is coded in Matlab m-script file and run
under Matlab 7.2 environment on a 1G RAM 3.4GHz
computer. The filter specification is first converted into
an SDP problem containing 5651 equations. The pro-
totype filter is decomposed into five sections (k = 5)
by SDM, which is the most important subsection (sec-
tions with the five largest eigenvalues proportion, shown
in Fig. 5). Figs. 2 and 3 show the magnitude response
of filter after using SDP and SDM, respectively. Each
section is then approximated by a 1D IIR subfilter us-
ing VFz with orders 19, 20, 19, 20, and 21, respectively.
The numerator and denominator in each 1D filter are of
the same order. 130 sampling points and 5 iterations are
used in VFz. Fig. 4 shows the frequency response of the
final 2D IIR filter. The normalized rms errors of the IIR
filter approximant are 0.4% and 0.6% in the passband
and stopband, respectively. The normalized rms errors
between the final design and the ideal design are 4% and
5%, respectively. Furthermore, as seen in the figure, the
IIR filter approximant preserves linearity (constant group
delay) in the passband and the approximation error is
mainly introduced in SDM. The computation time is 507
CPU seconds for FIR prototype filter design (using SDP)
and only 1.51 CPU seconds for IIR approximation (using
Schur decomposition and VFz approximation). Its ad-
vantage in fast computation is therefore demonstrated.
Fig. 7 shows that VFz can achieve good approximations
for subfilter design. The normalized errors of subfilter
approximations are 0.1%, 0.1%, 4%, 4%, and 5%, respec-
tively. Compared to a direct implementation of the orig-
inal 2D FIR filter, the proposed SDP/SDM/VFz design
flow has resulted in a hardware saving (essentially mul-
tipliers) of more than 50%. Fig. 8 shows an image noise
filtering example.

A bandreject filter example is used in the second exam-
ple. Bandreject filters are popularly used to remedy im-
ages corrupted by additive periodic noise with a known
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Figure 6: Impulse response of the approximated 2D IIR
lowpass filter via VFz.

0 0.5 1
−60

−40

−20

0

20

Normalized Frequency

dB

(a)

0 0.5 1
−60

−40

−20

0

Normalized Frequency

dB

(b)

0 0.5 1
−60

−40

−20

0

Normalized Frequency

dB

(c)

0 0.5 1
−60

−40

−20

0

Normalized Frequency

dB

(d)

0 0.5 1
−100

−50

0

Normalized Frequency

dB

(e)

 

 
Actual
Approx.

Figure 7: Magnitude response of subfilter approximation
using VFz. (a) - (e) are subfilters of sections 1-5 respec-
tively.

(a)

(b)

Figure 8: Images in the numerical example. (a) Noise
corrupted image. (b) Filtered result using 2D IIR filter.
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frequency. A circular-shape linear-phase FIR filter with
order = (37, 37) is used whose specification is

W (ω1, ω2) =






0dB,
0dB,

−40dB,

for 0 <
√

ω2
1 + ω2

2 ≤ 0.5π

for 0.8π <
√

ω2
1 + ω2

2 ≤ π

for 0.6π <
√

ω2
1 + ω2

2 < 0.7π.

(18)

Uniformly distributed 47× 47 grid points are used. The
prototype filter is decomposed into four sections (k = 4)
by SDM. Fig. 11 shows the proportion of the eigenvalues.
The figure shows that the first few sections have the large
rest eigenvalues and contribute most proportion of filter
characteristic. Each section is then approximated by a
1D IIR subfilter using VFz with orders 18, 19, 20, and
21, respectively. The numerator and denominator in each
1D filter are of the same order. 100 sampling points and
7 iterations are used in VFz. Figs. 9 and 10 show the fre-
quency response and impulse response of the final 2D IIR
filter respectively . As seen in the figure, the IIR filter ap-
proximant preserves linearity (therefore, constant group
delay) in the passband. Two figures of noise removal are
shown in Fig. 12(b) and Fig. 12(c) using 2D FIR pro-
totype filter and 2D IIR filter, respectively. They both
show that noise is greatly reduced without much blurring
to the original image. The degradation in image quality
is small when the 2D FIR prototype filter is replaced with
the 2D IIR filter.

The computation time is 528 CPU seconds for FIR pro-
totype filter design (using SDP) and 1.2987 CPU sec-
onds for IIR approximation (using Schur decomposition
and VFz approximation). Its advantage in fast 2D IIR
approximation is therefore demonstrated. The num-
ber of multipliers in the 2D IIR filter is 156, which
saves 45.5% multipliers of the original symmetric filter
(37 × 37 ÷ 4 = 343). Consequently, it is demonstrated
that the proposed IIR filter design flow reduces hard-
ware cost while preserving similar filtering quality when
compared to a direct implementation of the original 2D
FIR filter.

5 Remarks

1. Besides using SDP, other common and faster de-
sign techniques such as the windowing method can
be used to design the 2D FIR filter prototype.
The SDM/VFz post-processing can then be used to
achieve even faster IIR approximation.

2. The most direct approach is to direct decompose
the desired frequency response into sections using
frequency SVD and then realized each sections by
VFz. This can avoid introduced error and relatively
time consumed in the 2D FIR prototype filter de-
sign. This modification can generate a 2D IIR filter
within a few seconds.
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Figure 9: Frequency response of the 2D bandstop IIR
filter via the proposed algorithm: (a) magnitude response
and (b) group delay in the passband.
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Figure 10: Impulse response of the approximated 2D FIR
bandstop filter via VFz.
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Figure 11: Eigenvalues of the bandstop filter example H1

of (7) in ratio, which shows the importance of each sub-
section.

3. In addition to reducing multipliers, the proposed fil-
ter structure is also favorable for VLSI implemen-
tation. The identical subfilters exhibit regular and
modular structures, which lead to reduction in inter-
connect area and simple floor-planning and layout.
Multiplierless filter design techniques are also avail-
able for further reducing the hardware cost within
the IIR filter structures [12].

4. This paper has extended the Vector Fitting concept
to the 2D discrete-time domain. The idea can be
further generalized to n-D IIR filter design, which is
useful in video processing and medical imaging.

5. Besides the bandreject filter in our example, the pro-
posed algorithm is also applicable to the efficient
construction of 2D lowpass, highpass and bandpass
filters, with possible applications in image noise re-
moval and edge detection etc.

6. The relationship among error and number of sections
and filter orders is still investigated. The investiga-
tion objective is to fully integrate Schur decomposi-
tion and VFz such that filter can be designed within
a controlled error and the lowest hardware cost. As
the frequency response in later order is irregular, it
is not optimal to use lower order subfilters for later
subsections.

7. VFz can be generalized as a frequency masking filter
design technique. It is similar as WLS method [13]
with novel weighting construction to simplify calcu-
lation. Furthermore, VFz can limit the maximum
pole radius, which can control the sensitivity of the
quantization error.

6 Conclusion

A new 2D IIR filter design flow has been proposed which
utilizes the SDP/SDM/VFz integration to efficiently ob-
tain accurate IIR approximants from 2D linear-phase FIR

(a)

(b)

(c)

Figure 12: Images in the numerical example. (a) Noise
corrupted image. (b) Filtered result using 2D FIR pro-
totype filter. (c) Filtered result using 2D IIR filter.
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filter prototypes. Hardware cost is significantly reduced
due to parallel and modular 1D IIR subfilters. Image pro-
cessing examples have demonstrated that the proposed
approach renders high approximation accuracy, low hard-
ware cost, and low computational complexity, and effec-
tively preserves passband phase linearity.
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