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A Normal Cavity-Expansion (NCE) Model
based on the Normal Curve Surface (NCS)
Coordinate System

Gao Shigiao, Jin Lel, Liu Haipeng, Liang Xinjian, Han Li, Member, IAENG

Abstract—To suit the normal cavity expansion of concrete
target penetrated by a projectile, a Normal Curve Surface
(NCS) coordinate system is constructed. By considering the
dynamic behavior of material under high-velocity and
high-pressure shock and assuming that the particle velocity, the
wave propagation and the pressure are all in the normal
direction of outer surface of the projectile nose, a set of
dominating equations are established. The analytical solution of
resistant forces on the projectile-nose is obtained. Some
calculations and comparisons with tests are made.

Keywords—Coordinate system, concrete target, shock wave,
cavity expansion.

|. INTRODUCTION

Much effort has been directed at predicting the penetration
of a projectile against concrete targets. In the past century,
most of the achievements are on the penetration depth,
perforation thickness and ballistic limit. Recently, a lot of
interests have been focused on the analytical model of the
resistant force of target on the projectile. Typical work has
been done by Forrestal, et a[1]-[5]. Based on the
cavity-expansion theory, they derived a series of analytical
penetration formulas of resistant force for soil, rock, and
concrete material. Li, et a[6]-[8] summarized and developed
some work of anaytical formula. All these theoretical
achievements are based on the cylindrical cavity and
spherical cavity analysis. In the Forrestal’s dynamic
cavity-expansion theory, a constant propagation velocity of
the interface between plastic and elastic response regions, a
constant expanding velocity of the cavity and a spherically
symmetric shape of cavity were assumed. Assuming that the
propagation of stress wave, the displacements of medium and
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the particle velocities are all in the normal direction of outer
surface of projectile, Gao et al[9]-[12] presented an idea of
normal expansion theory (NET). In this NET model, the
propagation velocity of stress wave may be not constant, the
expanding velocity of cavity may be not constant and the
shape of cavity may be not spherical. To describe the normal
expansion theory more accurately, it is necessary to establish
amore perfect theory system. To suit the analysis of normal
expansion, it is necessary to construct a Normal Curve
Surface (NCS) coordinate system.

For high-velocity and high-pressure impact, the amplitude
of stresswaveswill greatly exceed the dynamic flow strength
of a material. In this case, in comparison with the
compressive hydrostatic component of the stress, one can
effectively neglect the shear stresses. During impact, a shock
wave occurs. It hasasteep front. At the shock front, thereisa
discontinuity in particle velocity, pressure, and density.
Based on some phenomenon of experiments and tests, the
following assumptions are presented. 1). A shock front is a
steep discontinuous surface. 2). The shear modulus of the
materia is assumed to be zero. 3). In comparison with the
compressive strength, the tensile strength can be neglected.
4). Body forces (such as gravitational) and heat conduction at
the shock front are negligible. 5). Material does not undergo
phase transformations. 6). During impact, the responding
medium of concrete expands in the external normal direction
of the outer surface of the projectile. The particle velocity and
the wave velocity of responding medium are paralel. Their
direction is the same as the external normal direction of the
projectile surface. 7). During impact against concrete target,
the projectileisrigid (is no-deformable).

Fig.1 The scheme of penetrating procedure of a projectile
against concrete target
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Fig.2 The Cartesian coordinates and NCS coordinates

II. THE NORMAL CURVE SURFACE COORDINATE SYSTEM AND
THE EXPRESSION OF FIELD THEORY

To suit the normal expansion of particles and stress wave
of the responding medium of target material, aNormal Curve
Surface coordinate system (NCS) is chosen and constructed,
which is shown in Fig.2. Similar to the spherical coordinate
system, this normal curve surface coordinate system has two
angle coordinates and one line coordinate. The difference is
in line coordinate. These two angle coordinates are
circumferential angle coordinate ¢ and meridian angle
coordinate ? respectively. The line coordinate is normal
coordinate *, which isin the external normal direction of the
outer surface of projectile, that is, in the direction of

curvature radius. In Fig.2, % - X2 - % is the Cartesian

coordinate system and®: > €2 and®zare corresponding unit
vectors. A" is a point lied in the surface of projectile. Aisa
point of target. R is the curvature radius. R is a part of
curvature radius cut by * axis.ubmit your manuscript
electronically for review.

To obtain some total derivative, gradient, divergence of
scalars, vectors and tensors, the following derivations are
made by converting the Cartesian coordinate into the normal
curve surface coordinate.

Takingen,e<” and €¢ as the unit vectors in the directions

%n 9 and O respectively, there are the following

transformation relations between them and €1, €2 and ©:.

e, =e,SiN@Ccosf +e,SN@sing+e, Cosy

e, = e, COSQCosH +e, COSpSNG —e,sing

e, =—e,Sinf +e, cosd (1)
Making the differential of equation (1), leadsto

de, =e¢d(p+e05in(pd9

de, =—e,dp+e, cospdd

de, =—ensin¢d6—e¢, cospdd (2

)
From the analysis of spatial geometry, we can abtain the
differential of radius vector as

dr =e dx, +e, (R+X,)dp+e,(R+x,)sinpdd (
)

3

It can be seen that,
(dx,, (R+x,)de, (R+X,)singdd)

the components of dr are

respectively.
By means of the relation of I =V -dr ihg js
of of of
— —dp+—dé
ax g a8 it
=(Vf)ndxn+(Vf)¢(R+xn)d¢;+(Vf)g(I5+xn)sin(pd9
I
can be known that % t* 99 and
1 of
Vf -
V6, (R+x,)sing 96

. Therefore, the gradient vector
operator in NCS coordinate system can be written by

0 1 9 1 0
V=grad = (—, = —
X, R+x,d¢ (R+x,)singdé @)
Because v=ve, tV.e, +Ve,
J vV, 0 v, d D 9
V)=v — () ____ 0 — = _Y9 .
vV "ok, T Rex, 09 (Rex)sngad and Dt it V),the
total derivative of ascalar variable f can be written by
Df of of v, of v, of
—=—+4V,—+ —+—= —
Dt ot X, R+x,d¢p (R+Xx,)singdd )
Thetotal derivative for avector V can be written by
Dv Dv, De, Dy, De, Dv, De,
—=e, +V, +e +V, +e, +V,
Dt Dt Dt ? Dt ? Dt Dt Dt )

Noting that ¢ and ¢ are independant of *» and € s
independent of % or ?, there are
De, V, Ode, A de, vee,
Dt R+Xx, d¢p (R+x,)sing 38 R+Xx, R+X,

Vol

De, _ Y% aeJ Vg aeiw__ Vo€n | Vg COLge,
Dt R+x, d¢p (R+X,)sng 38  R+X, R+x,
De, V, de, 1

(vee, +V, cot(pe(ﬂ)

Dt (R+x,)sng a6  R+X,

(7
Substituting equation (7) into equation(6) > leadsto
(g) — Dvn_ sz _Jli
Dt'" Dt R+x, R+X,
(&) _Dy, A2 _Vej cotp
Dt Dt R+x, R+X,
(B, = Dy Ve, Y6 0L
Dt Dt R+ R+
X, X, (8
)
The gradient of a vector V, that isVV, is a second-order
tensor. By means of the relation

dv =(dv,)e, +Vv,de, +(dv,)e, +V,de, +(dv,)e, +V,de,
and equation (2), obtain the following

relations.

we can
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(dv), = g" i—vgsingo)da
(dv), = No d +(—+v )d(p+( -V, cosp)dé
(dv), = a Vo g, + av" d(p+(—+v sing+Vv,, cosg)dé
X 0@
n (9
)

By means of the relation (Vv-dr); = (V) (dr); g

substituting equation (3) into it, leadsto

(Vv-dr), = (V¥), 0%, + (VV),,(R+X,)d@ + (V) (R + ) singd

(Vv-dr), =(Vv),,dx, +(Vv),,(R+x,)de+ (Vv)w(ﬁ +X,)singdé

(Vv-dr), = (V¥) 0%, + (VV), (R+%,)d@ + (VV) 5 (R + X,) singd @

(10)

Because dv=Vv-dr , comparing equation (9) and (10),

we can obtain the following relations.

(VV)in (Vv) o (V)i
Vv=| (W),

(V¥)gy (V¥4

MW)a (V¥)g, (Vg
av, 1 oy, “v) 1 av,
ox, R+X, a¢ ’ (R+x,)sng 96 (11
v, 1 1

- ﬁ R+xn(£ V) (R+xﬂ)sm(p(8; Yy C0S9)

Ny 1 % 1 aV“’+v Sing+Vv, cosy)
ox, R+Xx, dp (R+x)sing 96

To obtain the divergence of a vectorV, that isdivy, the

divv=V.v=tr(Vv)

relation is used. In term of the

characteristic of tr(N) , We can obtain the following result

: v, v, v, 1 v,
divv=—L+ += + -
X, R+x, R+X R+x, do

(12
+ Zcotgo+ — 1 Ny
R+x, (R+Xx)sng d0
)
To obtain adivergence of the second-order tensor A, which
An A Ay
= A(m Aaw A(/JH
expressed by Ao Ao P , that is divA | the
rlation (divA)-a=div(A-a)-tr[A-(Va)] ;g used,

where 2 isavector.
As a vector, the components of divergence of the

second-order tensor A can be written as the following forms
(divA),=(divA)-e, =div(A-e,)—tr[A-(Ve,)]
(divA),=(divA)-e, =div(A-e,)—tr[A-(Ve,)]
(divA), =(divA)-e, =div(A-e,)—tr[A-(Ve,)]
)
Substituting

(13

€n:€:% into equation (11), leads to

0 0 0 - 1
ve =l o 1 0 R+ x
e, = Rt x Ve, =0 0 CO(%(/)
0 *1 0 0 R+ x
R+x/) , ,
0 1
R+ x
Ve, = —EOt(p
R+ x
0
(14
Therefore there are
(A (Ve )] =—be_ 4 oo
A - (Ve,)l= R+x, R+xn
A~ (Ve,)] = -4 AuClo
R+xn R+xn
1
U[A - (Ve,)] =—="——(A, + A, 00tp)
% (15)
Dueto (A €)i = A | there are
A-en=Amen+Ame¢+Ame9
A-e =Ahwen+,°\we¢+A%el9
A-e,=Ae, +A¢9e + Age, (16
)

Substituting equation (15) and (16) into equation (13) and
using equation (12), leadsto

dva),=Pny L a1 0A,
" 9%, R+x, dp (R+x,)sing 96
1
+W(Am A,) 7(A1n Ay + A, cotg] (17
)
(divA) :aA"/’+ L aA”M L %
 ox, R+x, dp (R+x,)sng 96
1
+Am)+ﬂ[ﬂ¢+('°w—%)00t¢] (18
)
. _dA, 1 aAq,g 1 %
(divA), = ox, +R+xn g +(§+xn)sin(p 26
1 1
+ﬁ(Ah9+A&])+ﬂ[ﬂ9+(%¢+A¢g)cot(p] (19
)

I1l. THE GOVERNING EQUATIONS FOR CONTINUUM
MECHANICS

Asaregion of responding medium, behind the shock front,
al the physical variables of the materia in this region are
continuous. Thereisno discontinuity. By means of the theory
of continuum mechanics, for the case of no-shear stress and
no-shear strain, the relations of conservation of mass,
conservation of momentum and conservation of energy in
general Cartesian coordinate system can be respectively
written as

(Advance online publication: 17 November 2007)
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D, divu=0
Dt (20)
p@ =—divp
Dt (21)
DE__ .,
P Dt Pi€ix 22)
D

where Dt denote the total derivative symbol in Lagrangian

coordinate, © isthe density of material, div( ) stands for

divergence of atensor field, W and P are particle velocity

tensor and pressure tensor respectively, E istheinternal
_ 1 9y, auk

ik - ( )
energy per unit mass, and 2 0%, axi isstrain
rate tensor. The derivative transformation between Eulerian
D o 0

—_— =4 ui -
and Lagrangianis Dt ot o
At the shock front, there is a dlscontl nuous surface at
which there is a discontinuity in variables P, # and . The
former eguations are not appropriate. But by means of further
analysis based on the conservation of mass, momentum and
energy, the following leaping equations can be obtained.
Apv =0

(23)
Aqu—en Ap:O (24)
Apv(éu-u-i- E)—e,-A(p-u)=0
2 (25)

Where A s the difference of some physical variables
(scalar, vector or tensor) between ahead of and behind the
shock front surface, - denotes the dot product of two tensors,
v=c,

~Un €. is unit vector in normal direction of shock

front surface, Cn is the wave velocity, Uy is the particle

velocity.

IV. THE NORMAL EXPANDING THEORY

In terms of the assumptions mentioned above. During impact,
the responding medium of concrete expands in the external
normal direction of the surface of the projectile (especially
including the nose part). The particle velocity, the velocity of
expanding wave and the pressure have the same direction as
the normal direction of projectile-nose surface, hence there
are

u=ue,

00
00
00

where € iswave velocity vector.
In this case, the total derivative of density (asascae) and
velocity (as avector) can be written by

(26)

Dp_dp ., 9
Dt ot "ox,
Du ,du, au,
—= +Uu ,
Dt "adt "ox,

(27)
The divergence of velocity (as a vector) and pressure (as a
tensor) can be written by

au Uy Uy
E)xn R+X, R+Xx,

divP = (ap R += R OOJ
oX, R+Xx, R+x

divu =

(29)

where X is the coordinate in direction €n .

For the medium behind the shock front, substituting
equation (27) and (28) into equations (20), (21) and (22),
Ieadsto

ap pu, pu
ZrFL 2 n _po
ot axn ('0 W+ R+x, " R+x, (29)
au )

p( atn n) — ( pn REH + ﬁiﬂ )

Xn X, X, (30)
) 2 1 1 _
SE U e =0

(31)

At the shock front, equations (23), (24) and (25) can be
written as

(ps( —pO)Cn—pSfUL=O (32)
Ps (Cn _UL)UL = prl1 (33)
Pa (0~ U)(E+ S 01") ~ Pl =

(34)

where P+ isdensity of compressed medium near the shock

front, P is the original density of the material, U and Pr
are the particle velocity of responding medium and the
pressure near the shock front.

V. EQUATIONSOF STATE AND SOLUTIONS

To obtain further solutions about equation (32), (33) and
(34) and to solve the equation (29), (30) and (31) effectively,
an additional equation of state (EOS) is required. For the
concrete material concerned in this study, a congtitutive
relationships about the ultimate density model[9,10]
(Rankine-Hugoniot equations) is suggested. In ultimate
density model, the density of concrete is constant. In free

region of medium, # = Ao in compressive region of medium
undergoing high-pressure impact, P=P where P is the
ultimate density, whose Hugoniot curve is shownin Fig.3.

Dyl

»

4] P * 2o

Fig.3. Hugoniot curve of concrete
By means of this model, at the shock front, substituting

(Advance online publication: 17 November 2007)
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Ps =P into equations (32), (33) and (34), leads to
,0* |

Cn == lJn

P ~Po (35)
p:'n =p (Cn _UL)UL = pOCnuL (36
)
E=3u) 37
)

Behind the shock front, substituting Ps =P into equations
(29), (30) and (31), one can obtain the solutions as

TRC ) [m—.. S—
(R+x,)(R+X,) (38)
'RR ! RR
Rbot)= (R+/x)n)(ﬁ+ xn){ p*/ipo (R+1)(R+1)
R (%) d““}
(R+Xx)(R+X,) dt (39)
p*% _pn aun
Dt X, (40)

where | isthe propagating distance of the wave front surface
relevant to the surface of projectile.

On the surface of projectile-nose, that is for *» =0 there
are

u, =u,(0,t) (41)
pn = Apun2 + Bp dun
dt (42)
_ I RR _q )
WhereAp p[p*_po (R+|)(§+|) ] and szpl_
E =Eun2
2 (43)

VI. DYNAMIC EQUATIONS OF THE PROJECTILE DURING
PENETRATION

By use of the pressure acting on the surface of the
projectile in equation (42), the dynamic penetration equation
of the projectile can be written as

(M, +m)é = Jéi =—[[(Au,” + 0,) cosgus
o (44)
(I, +3)d-myE= ”(Auunz +0,)-(Z sinp—r" cosg) cosAds
SA

(45)
m, . .. o, . .

where P is the mass of projectile, 9 is dynamic
compressive limit stress which is expressed by Holmquist et
a[13] as % =0 [1+1.6( P,y / 0.)"*][1+ 0.007In(0.1v,)] in
which % is static compressive limit stress, Pock s locked
pressure of concrete material and Vo is striki ng velocity of
projectile, I is the moment of inertia of the projectile

relative to axes . The variable ¢ is tangent acceleration of
the centroid trajectory of the projectile and its direction is

identical with the projectile axes 2*, & is angular velocity

of the projectile relative to axes ', S» is the interface curve
m, = H B, cos? gds
surface between projectile and target. St
J, = ” B,(Z sing—r" cosp)’ cos’ Ads
Sa

Jow = J'J- B, cosg(z sing—r’ cosg) cosAds
SA
My, = ” B, cosp(z sing—r’ cosg) cos fds
Sa , the others
parameters were shown in Figl.

The relationship among the normal velocity , , axial
velocity u; and angular velocity ¢ and the relationship
among their acceleration are as follows

U, = U, cosp —c(z sing—r" cosg) cos (46)
u o . . *
dtn =£cosp—ad(z sng—r’ cosp)cosf (47)
VII. CALCULATION AND COMPARISON WITH EXPERIMENTS

By means of the method, the calculation and comparison
with the experiments are made on the decel eration and depth
of penetration characteristics of ogive-nose projectile shown
in Fig.4 perpendicularly penetrating into thick concrete
target, where R is curvative radius of the meridian arc of
nose, 2r is the caibre diameter of projectile shank,
w = R/(2r) isthe caliber-radius-head (CRH). We conducted

the deceleration and depth of penetration experiments with
the ogive-nose steel projectile. In the experiments, two kinds
of projectileswere used, one has short nose and the other has
long nose.

Fig.4 The projectile nose used in experiments

Test Data
Madel Curve

Deceleration (g)

[P,
\J«. ' Mwm |

time (s}

Fig.5 Curves of deceleration from experiment
and analytical calculation

The density of concrete target is p = 2400kg/ m® and the
compressive strength of it is 0, =3.0x10"N/m?. Referring
Reference [13], the locked pressure is token as
Pow /0. =16.7 . The limit density of concrete target is
p’ = 2640kg/m® which was obtained from experiments™.

Table 1 summarizes results from 6 experiments for striking
velocities range from 538m/s to 763m/s and the lists
corresponding calculating results.

(Advance online publication: 17 November 2007)
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Table1l Datasummary for projectiles and results from experiments
and calculation

Pen
etrat Pene
Strik ion tratio
Proje ing dept n
Shot ctile R r /4 velo | h(m rc]iept
Number mass (m) (m) mnt]}/ ) f (m)
(k) (m/s fro rom
) m cacu
exp latio
erim n
ent
02-0001 | 3.777 | 0.17679 | 0.031 2.85 763 0.83 | 0.82
02-0002 | 3.034 | 0.09453 | 0.031 1.53 577 034 | 0.38
02-0003 | 3.747 | 0.09453 | 0.031 1.53 666 056 | 057
02-0004 | 3.022 | 0.09453 | 0.031 1.53 538 037 | 037
02-0005 | 3.154 | 0.09453 | 0.031 1.53 630 046 | 041
02-0006 | 3.133 | 0.09453 | 0.031 1.53 0.48

The deceleration curves vs time from experiments and
analytical calculation for number 02-0003 are shown in
Fig.5. From the results, it can be seen that, the results from
the analytical calculation by the method in this paper are in
good agreement with those from the experiments.
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