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Embedded Singly Diagonally Implicit
Runge-Kutta-Nystrom General Method (3,4) in
(4,5) for Solving Second Order IVPs

Fudziah Ismail, Raed Ali Al-Khasawneh, and Mohamed Suleiman

Abstract— Singly diagonally implicit Runge-Kutta-Nystréom
general (SDIRKNG) method of third-order embedded in
fourth-order for the integration second-order IVPs is presented.
A set of test problems are tested upon and the numerical
comparisons with the existing embedded Runge-Kutta methods
show the advantage of the new method.
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|I. INTRODUCTION

Systems of second order ordinary differential equations
(ODEs) arise naturally in many physical simulation problems,
and the general form of the second order ODEs can be written
asthe following

y'=1fxyY),
with the given initial conditions

(%) = Yo, Y(%) = Yo

whereye R", and f :RxR"xR" - R". The function f is
assumed to have derivative of arbitrary order everywhere in
R . Equation (1.1) can be solved numerically by reducing it to
system of first-order equations and then use embedded
Runge-Kutta (RK) method such method can be seenin [1] and

[2]. Or it can be solved directly using Runge-Kutta-Nystrom
(RKN) pairs as can be seen in [3]-[6]. These pairs generates

. . ’ ’
approximations Y,.1+ You1r Yer: Y s 1O

Xo S XL X, (1.1)

Y(Xn,1) and y'(X,,,,) respectively, for n=0,1,..., according to

q q
yn+l:yn+h)/;1+h2211hkia Y:1+1:y:1+h211qki ’
1= 1=

_ L4 _ q_ 1.2
yn+l=yn+h>/n+h 2 bik; Yn+1:3/n+hzb,iki )
i=1 i=1
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where the first two formulae are of order p, while the second
two are of order p-1, g is the number of stages and

| |
ki = f (%, +ch y, +ghy, +h2_zla,-k,-,>/n +2ak),
J= 1=

i=1,..,4q (1.3)

We refer to (1.2) as the generalized Runge-Kutta-Nystrém
(RKNG) pair.

Wherethe coefficients a;,aj;,b;, b determine the method and

they satisfy the following eguations

1 i .
—ci= .Zlaii , (i=1..,09),
J:

5 (1.4)

and ¢ = ilq] ,(i=1...,9). (15)
j=

The local truncation error (LTE) at the point X, is given by
LTE =|Yn - V|

and it isthe basis for choosing the stepsize for the integration.

I1. DERIVATION OF THE METHOD

Fine [5] listed the order conditions of RKNG method up to
order 6 where the order conditionsof y* upto order p-1 can be

generated from the order conditions of y up to order p as
follows:
If they error coefficient of orderi is
Tj(i) =y(a, a’,b’,c)—1 ,
S

then the corresponding y’ coefficient of order i —1 can be
expressed as

709 — y(a,a’,b,c) -~ .
9

Using this technique and Fine [4] work, we listed all the order
conditions related to the method up to order four in Table 2.1
where the first four equations are related to y , the next

equation (equation (2.5)) is related to both y and y* and the
following eight equations arerelated to y’ . For the (3,4), that is
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third order four stage method, the first two egquations of y and
the first four equations of y* should be satisfied while for the
(4,5), fourth order five stage method, al the 13 equations in
Tables 2.1 should be satisfied.

Table 2.1: Equations of Conditions up to order 4.

Equations of Conditions for | Equations of Conditions
y for y’
Zq == (2.2) Zbl’ =1 (2.6)
1 I
She =+ (22 | sbg-2 27)
i 6 i 2
2_1 2.3 21 28
Shac, = — 24 | soajc =+ (2.9)
i 2 i 6
shcd=t (2.10)
i 4
Equations of Conditions for VI ! 211
yand Yy iZj‘,hq A @1
’ 2 _ 1 ,_’ 1
%bi a;cf =, (25) >bac? = = (212)
baiaic, —— (213)
b iaijajkck_z :

Thereare 19 order conditionsto be satisfied for (3,4) embedded
in (4,5) method. To simplify the derivation, we started solving
the order conditions which depend on a’ using the simplifying
assumptions and once we solved the order conditions for y’,
the order conditions for y can be solved together with the order
condition that depend on both @ and a” using the following
transformation

b =@1-c)b, bi=@-c)bi, i=1..,q.

We now give the details on how to solve the equation for
y and y using the simplifying assumption. Equation (2.9)
2
mi nus% of (2.8) yields > b(Xajc; —%) =0,thus
i ij

(2.14)

i 2
Yaje; = (=234) (2.15)
]

Equation (2.15) is called the simplifying assumption. It does
not hold for i=1, because we do not want ¢, =a;; =0.

Therefore b; =0 . Thus equation (2.9) can be removed,

equation (2.10) minus % of (2.11) gives

’ ’ C'2
2hic (X ajc; ——é)=01
i ij

Hence, equation (2.11) can also be removed.

Finaly, equation (2.13) minus % eguation (2.12) gives
c2
%bfai'j (% Ay Cy — 71) =0,
equation (2.13) is equivalent to (2.12) if
)Y baj; =0.
andl(2.15) hold.

(2.16)

For the lower order method eguation (2.15) cannot be satisfied
for i=1, therefore we need to have

E'1=O.

From equation (1.5) and for i=1, we have aj; =c;, and for
i=2, we get

CZ -y = a,21 . (217)
From equation (2.15) and for i=2, we obtain
2
ap1C; +apCy = 72 : (2.18)
substituting the value of a5; from equation (2.17) into
equation (2.18) yields
¢, = /(2++/2). (2.19)

Now, we have 12 equations to be solved with 17 unknowns.
Therefore, we havefive free parameters which are chosen to be

7.C5.,C,,Cg and ag;.

Taking
a,52 =0.25

y=0.25c3=05 1¢4=075 ¢5=09 and
together with the vaues of ¢ =y ,

¢, =7(2-+/2), b =0, by =0, we solved the system using
Maple.

Then solve the order conditions for y as follows:

By using (2.14) , the vector weights b of y can be calculated
using the vector weights b” of y’ . After we found the weights
of y, we are left with equation (2.4) and (2.5). There are six
unknowns in the coefficient matrix of y, so the system of two
equations can be solved with four free parameters which are

chosentobe a,,,a43,85, andag, . In Table 2.2, we present the

coefficients for the SDIRKNG (3,4) embedded in (4,5) method
using thevalue of y=0.25.
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Table 2.2: SDIRK Method (3,4) Embedded in (4,5) with
7 =0.25

7
2

4

2-2)y é

Ay

2

0500000 |ay, —1.7720525 77

0.750000 | a,, —0.9500000 0.9500000 é

2
0.900000| a5; 0.7500000 —0.7000000 -0.7577296 %

0 0.2875266 0.1506343 0.0427529

0.0190861

0 0.3333333 0.0285954 0.1380711

Y|V
2-V2)y
0.500000

8y ¥
a, 06035533

0.750000 | aj; —0.2004826 -0.2080426

0.900000 | az; 0.2500000 0.7728468 —0.2996467 ¥

0 0.3368584 0.3012686 0.1710116 0.1908612
0 0.3905249 0.0571909 0.5522847

where the values of a,; and ai'l for (i=1(1)5) are given

1, 4 , i .
by %1=EC?—ZZaﬁ ,and a;=¢ — Zzaii respectively..
1= i=

I11. IMPLEMENTATION AND NUMERICAL RESULTS

The method derived in the previous section is used to solve the
second order Initial value problems (1VPs). At the beginning of
the program, the problem is considered as non tiff and
therefore we do simple iterations, when there is a pointer of
stiffness (h,.. > hye ), then the whole system is automatically

changed to stiff and solve using Newton iteration. Where h,.

is the largest stepsize that could achieved the desired local
accuracy.

and hy, is the largest stepsize for the iterations of the
solutions to converge. The simple iteration on k; is given by

i-1
Mk, = f(t, +ch, y, +he y, +h? Ela” Mk, +h2y™,

;i (m) ()
Yn +h_21aij ki +hy ki)
]:

And the Newton iteration on k; is given
by(rml)ki:(m)ki +A(m)ki

i-1
= f({y, +hlzla{j(””l)k j +haf (M, + Ak, )},

J:

i-1
{y,+chy, +h?ya, Mk
n i'Yn P ij i (3.1)

+h2a; (Mk; +A™k;)})
Expanding using Taylor series with two variables yields
i-1
Mk, +a ™k = 1(y; +hxa] ™k +haj Dk,
J:

Yo +Cihyn +h*xay; Mk +hZa; M)+

of

ha/; A™k; P o
y

; hzaiiA(m)kia_y!
collect al thetermsinvolving A™k; we have
of

Y

’ af / Iil ’ ’
(1-ha; h?ay a—y)A(m)ki = f(yp +hxa; ™Ik +haj Mk,

=1

. Yo +Ghy, + 02T ay Mk, +h2a; Mk )Mk .

2
Thus since all the diagonal elements of A are equal (%J and

diagonal elements of A’ are also equal (y) , we obtain

2 i-1
(I —(hyd’+h? 77 J)JA(m)ki = f(y,+hY aj; ™Yk +haf Mk;,
j=1

Yo +Chy, +h?Ta; MYk, +h%a; Mk )-Mk . (3.2
In this paper we test afew problems consisting of stiff and
nonstiff problems and equation (3.2) is the coefficient matrix
for the Newton iterations.

The following are some of the problems tested. Note that the
third and fourth problems are stiff IVPs of second order while
the first two problems are non-stiff second order IVPs.

” , , 1
Problem3.1 yi =-vy;, y;(0)=0, vy;(0)= ot
” ’ 7 1
Ya==Y1, ¥2(00=1, y5(0)= T
l1-e
0<x<10,
. 1-e* 2-el_e*
Solution: y, (X) = , X)=———
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Source: Edwards Jr and Penny [7].
Problen3.2: y;=-4x%y, 2

X2 X,
E1P) °

Y5 = —4x2y, +ﬁ, X2 X,
rrz
V057 £ x<10 y(%) =0, y,(Xy) =1,
1
y1(Xo) =—(27)2,  y5(%) =0,

n=yyi2+ys and ry =4y +v3

Solution: y; (X) = cos(x?) , y,(x) =sin(x?).
Source: Sharp and Fine [8]

Problem3.3: y"+8y +ky=0, 0<x<10,
y(0)=1, y(0)=-12, k=16.
Solution: y(x) = (1—8x)e™*¥.

Problem 3.4.

y'+6y +9y=0, y0)=1, y(0)=-3, 0<x<20

Solution: y(x) = e™3*.

The results obtained from the new method which was derived
in section 2 are compared with the results when the same
problems are solved using singly diagonaly implicit
Runge-Kutta (SDIRK) method (3,4) embedded in (4,5) which
was derived by Hairer and Wanner [9] and SDIRK method
(3,5) embedded in (4,6) which was derived by Butcher and
Chen [10]. In the SDIRK method the problems are reduced to
first-order system of differential equation twice the dimension
by considering the vector (y,y’) asthe new variables. All the
methods are of the same order .
The numerical results are given in Tables 3.1-3.4. The
following notations are used as follows:

TOL ~ the chosen tolerance,

MTD ~ method used,

FCN ~ the number of functions evaluations,

STEP ~ the number of successful steps,

FSTP ~ the number of failed steps,

JAC ~ the number of Jacobian evaluations.

MAX ERR~max |y (t) - y |, (absolutevalueof thetrue

solution minus the computed solution at the mesh point i).

where 1.234567(-6) means 1.23456 x 107°.
Methods used are:

Al: SDIRKN method (3,4) embedded in (4,5) which was
derived in this paper where the local truncation error is

v, = V.

A2: SDIRK method (3,4) embedded in (4,5) by Hairer and
Wanner .

A3: SDIRK method (3,5) embedded in (4,6) by Butcher and
Chen.

Table 3.1: Numerical Resultsfor Problem 3.1.

TOL MTD FCN STEP | FSTP | MAXERR
10-2 Al 358 32 1 | 9.095466(-3)
A2 288 52 0 | 1.015307(-3)
A3 332 49 0 | 1.161654(-3)
10~ Al 224 30 1 | 3.081559(-4)
A2 464 84 0 | 3521043(-5)
A3 574 144 0 | 2584102(-4)
10-5 Al 1062 % 1 | 1.395924(-9)
A2 1267 230 0 | 6.260004(-9)
A3 938 144 0 | 1.183762(-9)
10-8 Al 3288 298 2 | 4.366451(-5)
A2 3808 692 0 | 4.495573(-8)
A3 3308 505 3 | 1.583404(-6)
10-10 Al 9221 837 3 | 4.318437(-6)
A2 16183 | 2042 0 | 4.130849(-9)
A3 9208 1411 6 | 9.936897(-8)

Table 3.2: Numerical Resultsfor Problem 3.2

TOL MTD FCN STEP | FSTP | MAXERR
102 Al 2275 198 1 | 5.707671(-2)
A2 2817 506 6 | 1.739446(-1)
A3 3048 468 1 | 2.115526(-1)
10~ Al 7079 643 1 | 5560518(-3)
A2 8342 1516 1 | 7.176503(-3)
A3 7780 1196 1 | 1.400480(-2)
10-5 Al 22654 | 2058 2 | 4.281767(-4)
A2 26426 | 1516 1 | 2.316212(-4)
A3 19596 | 3014 1 | 8.788254(-4)
108 Al 71310 | 6481 2 | 8.019036(-5)
A2 85122 | 15476 1 | 4.845471(-5)
A3 49289 | 7582 1 | 7.205344(-5)
10-10 Al 223397 | 20307 3 | 1.309299(-6)
A2 | 1844388 | 335342 | 1 | 4.846149(-5)
A3 123896 | 19060 1 | 4.844024(-5)

Table 3.3: Numerical Results for Problem 3.3.

TOL | MTD | FCN | STEP | FSTP | JAC MAXERR
102 | AL 556 %8 1 Not | 5.675743(-4)
A2 634 | 112 1 siff | 3.447152(-4)
A3 | 490 64 1 3.390885(-4)
104 | AL | 1094 | 124 2 1 4.045746(-5)
A2 | 1142 | 204 2 1 1.526613(-5)
A3 | 1317 | 188 3 1 2.735042(-5)
106 | Al [ 2770 | 366 2 1 3.523178(-6)
A2 | 2935 | 530 2 1 1.668552(-7)
A3 | 3618 | 539 3 1 1.703345(-6)
108 | AL | 7943 | o1 2 1 4.678987(-8)
A2 | 11207 | 1434 2 1 1.594997(-8)
A3 | 8220 | 1240 3 1 1.061384(-7)
10-10| AL [ 17023 | 2089 4 1 2.345620(-9)
A2 | 40191 | 7302 3 1 4.495724(-9)
A3 | 20435 | 3069 5 1 6.663856(-9)
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Table 3.4: Numerical Resultsfor Problem 3.4

TOL | MTD | FCN | STEP | FSTP | JAC | MAXERR
102| AL 997 87 2 1 | 3.314479(-2)
A2 447 77 1 1 | 6.743232(-4)
A3 239 27 0 1 | 2494116(-3)
104 | AL 1404 | 124 2 1 | 4.042037(-4)
A2 777 137 5 1 | 3.837458(-5)
A3 1066 | 153 2 1 | 3.184944(-5)
106 | Al 2970 | 266 2 1 | 3.508986(-5)
A2 1877 | 337 1 1 | 3.837458(-5)
A3 2682 | 395 3 1 | 2.367550(-6)
108 | AL 7865 | 711 5 1 | 3.427374(-6)
A2 5445 | 913 1 1 | 5.824995(-8)
A3 7439 | 1078 3 1 | 3.133465(-8)
10-10] Al | 23023 | 2089 5 1 | 6.934120(-7)
A2 | 149596 | 27195 | 1 1 | 7.538816(-10)
A3 | 27877 | 4224 7 4 | 8910569(-10)

Figure 3.1: Time taken by methods A1, A2 and A3 to solve
the problems over al the tolerances

10+

g,

8,

7,
6
Time in 5] DAL
seconds

44 BA2
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31 32 33 34
Problem

IV. CONCLUSION

From the numerical results, we noticed that for all the problems
except problem 3.2, method RKNG (3,4) embedded in (4,5)
(method A1) gives better results in terms of function
evauations, number of steps and total time taken to solve the
problems compared to Hairer's (method A2) and Butcher's
method ( method A3).

Comparing A2 and A3 we observed that for most of the
problems A3 performed better than A2 and in terms of number
of steps, functions evaluations and total time taken over all the
tolerances. In terms of absolute error method A3 produced the
smallest error compared to A1 and A2.

Here we can conclude that the new method can be used to solve
both stiff and non-stiff general second order 1VPs directly
without having to reduce the problems to first order system
hence less time is needed to solve the problems.
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