
 
 

 

  
Abstract—Multistage stochastic programs are effective for 

solving long-term planning problems under uncertainty. Such 
programs are usually based on scenario generation model about 
future environment developments. In the present paper, the 
scenario model is developed for the case when enough data paths 
can be generated, but due to solvability of stochastic program the 
scenario tree has to be constructed. The proposed strategy is to 
generate multistage scenario tree from the set of individual 
scenarios by bundling scenarios based on cluster analysis. The 
K-means clustering approach is modified to capture the interstage 
dependencies. Such generation of scenario tree can be useful in 
cases when it is difficult to construct the adequate scenario tree 
from the stochastic differential equations or time-series models, 
and the sampled paths can be obtained by sampling or resampling 
techniques. While generating the initial fan of individual 
scenarios, the copula is employed for modeling the dependence 
between stochastic variables in a multivariate structure. It allows 
to model nonlinear dependencies between non-elliptically 
distributed stochastic variables. While investigating the copula 
effect on the scenario tree structure, we will try to answer the 
question: does the copula features are captured in the 
approximate representation of uncertainty in the form of scenario 
tree. The proposed scenario tree generation method is 
implemented on sampled data of discount bond yields. The 
Gaussian copula and Student’s t-copula are employed while 
generating the set of individual scenarios in the multivariate 
structure. 
 

Index Terms—Copula, K-means clustering, Multistage scenario 
tree construction, Stochastic programming. 
 

I. INTRODUCTION 
The concept of scenarios is usually employed for the 

modeling of randomness in stochastic programming models 
[1], [2], in which data evolve over time and decisions have to be 
made independently upon knowing the actual paths that will 
occur. Such data are usually subject to uncertainty or some kind 
of risk. For instance, the random variables are the return values 
of each asset on an investment in portfolio management 
problems, and the investment decisions must be implemented 
before the asset performance can be observed. Each scenario 
can be viewed as one realization of an underlying multivariate 
stochastic data process. The modeling of randomness 
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employees the set of available past data with the aim of building 
submodels for each individual stochastic parameter. These 
submodels are used to generate a set of scenarios that 
encapsulate the consistent depictions of pathways to possible 
futures based on assumptions about economic and 
technological developments. Thus, the factors driving risky 
events are approximated by a discrete set of scenarios, or 
sequence of events. This process is known as scenario 
generation. Scenarios can be generated using various methods, 
based on different principles: conditional sampling, sampling 
from given marginals and correlations, moment matching, path 
based methods, optimal discretization, as in [3]–[7]. Stochastic 
programming (optimization) has been applied in the following 
areas: 1) Manufacturing production capacity planning; 2) 
Electrical generation capacity planning; 3) Asset liability 
management; 4) Portfolio selection; 5) Traffic management; 6) 
Machine scheduling. In these applications decisions must often 
be taken in the face of the unknown. 

A good approximation may involve a very large number of 
scenarios with probabilities. A better accuracy of uncertainties 
is described when scenarios are constructed via a simulated 
data path structure, also known as a scenario fan. But the 
number of scenarios is limited by the available computing 
power, together with a complexity of the decision model. To 
deal with this difficulty, we can reduce the dimension of the 
initial scenario set by constructing the multistage scenario tree 
out of it. The decision on the number of stages, on the size of 
time periods and on the branching scheme is very important for 
a good representation of the uncertainty in the form of scenario 
tree, which is input into the multistage stochastic program. The 
detailed description of both scenario fan and scenario tree will 
be given in Section III. 

In the present paper, we concentrate on the generation of 
scenario trees when the underlying stochastic parameters have 
been determined and the data paths of their realizations can be 
generated. The scenario tree can be constructed out of sampled 
paths by employing some classifying method, such as 
clustering analysis. While bundling the scenarios to the 
clusters, the interstage dependencies have to be captured. An 
approach similar to our work is introduced in the article [8], but 
without a detailed clustering algorithm. Due to this, the 
K-means clustering method is modified to treat properly the 
interstage dependencies and is implemented while constructing 
the scenario tree from simulated data paths. 

Such generation of scenario tree can be useful in cases when 
it is difficult to construct the adequate scenario tree from the 
stochastic differential equations or time-series models, and the 
sampled paths can be obtained by sampling or simulation 
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techniques. The proposed scenario tree construction algorithm 
allows incorporating a copula-based dependence measure [9], 
[10] to describe the dependence between stochastic variables in 
a multivariate structure. Due to assumptions of using the 
Pearson’s correlation coefficient, the usefulness of such 
correlation is restricted. The main advantage of employing 
copulas is that they allow to model the nonlinear dependencies 
between non-elliptically distributed stochastic variables.  The 
copula function has been introduced in finance by Embrechts, 
McNeil, and Straumann [9]. To our knowledge, the copulas 
still are not very popular in generating the scenario trees. 
According to this, we propose to approximate the multivariate 
stochastic process by a scenario fan with multivariate structure 
using copulas. Then, the scenario tree is constructed out from 
the sampled paths using the modified K-means clustering 
algorithm. Numerical experience is reported for constructing 
multivariate scenario trees of discount bond yields, employing 
two separate – Gaussian and Student’s t – copulas. 

The rest of the paper is organized as follows. The scenario 
generation model is introduced in Section II. The mathematical 
model consists of two main components: models for the 
univariate marginal distributions of uncertain factors and a 
model of the dependence structure employed in the notion of 
copulas. Gaussian copula and Student’s t-copula are 
considered. The simulation algorithm of modeling the copula 
based dependent data is given. Section III discusses how the 
copula function can be incorporated while generating 
scenarios. Section IV describes how the simulated data paths 
can be transformed to the scenario tree using cluster analysis. 
The K-means clustering algorithm is modified to bundle the 
time-dependent data. Section V demonstrates the numerical 
example of scenario tree generation based on discount bond 
yields data. Finally, some concluding remarks are given. 

 

II. SCENARIO GENERATION COMPUTATIONAL PROCEDURE 
Stochastic programming (optimization) combines model of 

optimum resource allocation and models of randomness, 
thereby it creates a decision making framework (see Fig. 1) 
[11]. Whereas deterministic optimization problems are 
formulated with known parameters, real world problems almost 
invariably include parameters which are unknown at the time a 
decision should be taken. That’s why the deterministic 
 

Optimum decision 
model and constraints 

Models of randomness 
– scenario generator 

Stochastic 
programming 
(optimization) 

 
Fig. 1.  Stochastic programming paradigm 

approach is expanded. 
In stochastic programs the first element is the objective 

function which together with the constraints describes the core 
of the problem that has to be solved and varies with each 
individual application. The second element is the scenario 
generator, and it is used to describe the uncontrollable (risk) 
factors affecting the relevant system, such as, inflation rate, 
interest rate, GPD – factors that are not under control of the 
decision makers. The uncertain elements are modeled as 
random variables to which the probability theory can be 
applied. A concept of scenarios is used to represent of how the 
future might unfold. Some kind of probabilistic model or 
simulation can be used to generate a batch of scenarios. The 
models of randomness with their finite and discrete realizations 
are called scenario generators. The outcome of such system is 
uncertain even when the values of all the decision variables are 
fixed. Scenarios can also be used in descriptive models, where 
a set of mathematical operations are defined that can predict 
how a mathematical system will behave, e.g. Markov models. 

The main feature of stochastic programming is its multistage 
formulation. Despite rich involvement of the future, everything 
is aimed to make a well hedged decision in the present. The 
attitude is adopted that a decision will be properly made in the 
present only taking into account, at least some to extent, the 
opportunities for modification or correction at later times. 
Decisions at later times can respond to the information that has 
become available since the initial decision. Thus, during the 
time the decisions alternate with observations: initial decision 
→ observation → recourse decision → observation → … → 
recourse decision. This sequence doesn’t go on indefinitely, but 
the number of stages can be large enough. Decisions that are 
taken have no effect on the probability structure. Thus, we have 
a multistage problem. The number of stages is used in modeling 
the uncertainty; we will formalize this later in terms of the 
multistage scenario tree.  

In the paper [11], the general scenario generation procedure 
for multistage stochastic programs is given. We append this 
procedure with additional step (Step 2), paying the important 
attention to the dependence modeling among risk factors. The 
following steps (some or all) have to be performed while 
generating scenarios: 
1) Collecting historical data of stochastic parameters, 

assumptions of a model, estimation/calibration of 
parameters for a chosen model. 

2) Choosing the appropriate model to describe the 
dependence structure among stochastic parameters. 

3) Generation of scenarios according to the chosen model or 
discretization of the distributions using approximation of 
statistical properties. 

We will consider all these steps in deeper manner. 
 

A. Modeling Paradigm 
To solve a stochastic decision making problem, we need 

knowledge about the probability distribution of all random 
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variables among the uncontrollable inputs. In paper [12], the 
author proposes four types of problems, concerning the level of 
the available information: 
1) Full knowledge of underlying probability distribution ; 
2) Known parametric family ; 
3) Sample information ; 
4) Low information level. 

These four groups are not strictly distinguishable. Different 
information levels can be applied to the distinct parameters of 
the model. The most popular modeling paradigms are [11]: 

• Econometric Models and Time Series (ARMA, 
GARCH, VAR models) ; 

• Geometric Brownian Motion (Diffusion Processes) ; 
• Artificial Intelligence (Neural Networks) ; 
• Statistical Approaches (Statistical approximation, 

Forecasting, Moment Fitting) ; 
• Sampling. 

It is very important that the sample we use to represent the 
stochastic parameters in the form of scenarios would be 
consistent with empirical data. Therefore, one has to specify the 
stochastic processes for risk parameters, and estimate the 
parameters of such models using empirical data.  

 

B. Dependence structure modeling 
In this paper we concentrate on generation of scenarios 

representing the realizations of multivariate stochastic process 
whose components are correlated. We define such scenarios as 
intercorrelated scenarios, meaning that they correlate through 
the components of multivariate structure. Historically 
measuring and modeling of dependence has centered on 
correlation. The modeling of dependent variables is performed 
employing the Pearson’s correlation matrix to describe the 
multivariate structure. Many applications show that 
relationships among stochastic variables may be very complex, 
and linear dependence can’t reflect these relationships 
adequately. The reason is that the Pearson’s correlation  
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(a)  Dependence between 1X  and 
2X  with 7.0=ρ  
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(b)  Dependence between 1X  and 2X  with 7.0=ρ  

Fig. 2.  Different dependence structures 

coefficient does not capture any non-linear dependencies, and it 
is usually used assuming the elliptical shape of normal 
distribution in applications. We include Fig. 2 as motivation for 
the ideas of this paper. It shows 1000 random variates from two 
distributions with identical standard Gaussian marginal 
distributions: case (a) and case (b) depict bivariate structure of 

1X  and 2X  with linear correlation coefficient 7.0=ρ . 
However, the dependence structure between 1X  and 2X  is 
qualitatively quite different. It relates that in case (b) extreme 
values have a tendency to occur together. This example shows 
that the dependence between random variables cannot be 
distinguished on the grounds of correlation alone. Additionally, 
in real applications it is rare for distributions to follow the strict 
spherical assumptions with a constant dependence across the 
distribution implied by correlation. 

To overcome the limitations of correlation, the practitioners 
can draw on copula functions. It is very powerful technique, 
which allows to represent joint distribution by splitting the 
marginal behavior, embedded in the marginal distributions, 
from the dependence, captured by the copula itself. This 
superiority of using copulas releases the modeling, estimation 
and simulation of dependent random variables. Let define the 
copula itself. 

A function C  is the d -dimensional copula if it fulfills the 
following properties [13]: 
1) The domain of C  is [ ]d1,0 ; 
2) C  is grounded and d -increasing ; 
3) The margins kC  of C  satisfy ( ) uuCk = , dk ,,2,1 K=  

for all u  in [ ]1,0 .  

Let consider d  random variables dYYY ,,, 21 K  with 
multivariate distribution F  and univariate margins 

( ) ( ) ( )dd yFyFyF ,,, 2211 K . Sklar’s theorem, which is the 
foundation for copulas, states that any joint distribution can be 
written in a copula form.  
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Sklar’s Theorem (1959). Given a joint distribution function 
( )dyyyF ,,, 21 K  for random variables dYYY ,,, 21 K  with 

marginals ( )dFFF ,,, 21 K , F  can be written as a function of its 
marginals: 

 
( ) ( ) ( ) ( )( )ddd yFyFyFCyyyF ,,,,,, 221121 KK = , 

 
where copula ( )duuuC ,,, 21 K  is a joint distribution with 
uniform marginals. Moreover, if each iF  is continuous, C  is 
unique.  

The dependence structure can be represented by a proper 
copula function. Moreover, the following corollary is attained 
from Sklar’s theorem. 

Corollary. Let F  be an d - dimensional distribution 
function with continuous margins ( ) ( ) ( ),,,, 2211 dd yFyFyF K  

and copula C . Then, for any ( )duuuu ,,, 21 K=  in [ ]d1,0 : 
 

( ) ( ) ( ) ( )( )ddd uFuFuFFuuuC 1
2

1
21

1
121 ,,,,,, −−−= KK  

 
where 1−

iF  is the generalized inverse of iF . 
A good many copulas are available, with differing 

characteristics that lead to the different relationships among 
variables generated. Note that copulas differ not so much in the 
degree of association they provide, but rather in which part of 
the distributions the association is strongest: the behavior of 
copulas in the right and left tails can be used to distinguish 
among joint distributions that produce the same overall 
correlation. 

 
In this paper, we will consider two copulas: Gaussian copula 

and Student’s t-copula. These copulas do not have a simple 
closed form, but are implied by well known multivariate 
distribution functions: multivariate Gaussian and multivariate 
Student’s t distributions respectively. The difference between 
these two copulas is that the Student’s t-dependence structure 
supports joint extreme movements regardless of the marginal 
behavior of stochastic variable compared with the Gaussian 
copula. A complete copula-based joint distribution can be 
constructed using assessed rank-order correlations and 
marginal distributions. Examples of rank-order correlations are 
Spearman’s rho and Kendall’s tau correlations, which are used 
to describe the dependence relations of a monotonic nature: it 
indicates the tendency of two random variables to 
increase/decrease concomitantly (positive dependence) or 
contrariwise (negative dependence). 

The Gaussian or normal d -copula is given by  
 

( ) ( ) ( ) ( )( )d
d
Cor

Ga
Cor uuuuC 1

2
1

1
1 ,,, −−− ΦΦΦΦ= K , 

 
where Φ  denotes the standard univariate normal distribution 
function and d

CorΦ  denotes the standard multivariate normal 

distribution function with matrix Cor  of linear correlation 
coefficients. The main property of such dependence structure is 
that Gaussian copula does not have neither upper nor lower tail 
dependence.  

Simulation procedure for Gaussian copula is performed as 
follows: 

(a) convert Kendall’s tau τ
ijcor  to the linear correlation 

coefficient ijcor  using formula ( )2/sin τπ ijij corcor =  (the 

relationship between the linear correlation coefficient ijcor  

and Spearman’s rho S
ijcor  is ( )6/sin2 S

ijij corcor π=  ) and 

construct the lower triangular matrix [ ]ija=Α  that holds 

AACor ′=  ; 
(b) generate independent standard normal variables iε , 

di ,1=  and form a column vector ε  ; 
(c) construct a joint probability density function, taking the 

matrix product εε A=~  ; 
(d) set ( )iiu ε~~ Φ=  ; 

(e) set ( )ii ux ~~ 1−Φ= . 

At the result, ix~ , di ,1=  are dependent variables based on 
Gaussian copula. Fig. 3 shows four scatter plots of 1000 
random values from a bivariate Gaussian copula for various 
levels of correlation coefficient to illustrate the range of 
different dependence structures. Thus, the family of Gaussian 
copulas is parameterized by the linear correlation matrix. 

The Student’s t-dependence structure introduces an 
additional parameter compared with the Gaussian copula, 
namely the degrees of freedom. Student’s t-copula can be 
written as 
 

( ) ( ) ( )( )dvvv
d

vCor
t

vCor utututtuC 1
2

1
1

1
,, ,,,)(~ −−−= K , 
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Fig. 3.  Gaussian dependence structures with  

different correlation coefficients 
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where vCor,  are the parameters of t-copula, d
vCort ,  denotes the 

joint distribution function of the d -variate Student’s 
t-distribution with v  degrees of freedom, 1−

vt  is the inverse of 
univariate Student’s t-distribution with v  degrees of freedom. 
Student’s t-copula has the additional parameter v  comparing 
with Gaussian copula. Increasing the value of v  decreases the 
tendency to discover extreme co-movements. 

Simulation procedure for Student’s t-copula is performed as 
follows:  

(a) convert Kendall’s tau τ
ijcor  to the linear correlation 

coefficient ijcor using formula ( )2/sin τπ ijij corcor =  (the 

relationship between the linear correlation coefficient ijcor  

and Spearman’s rho S
ijcor  is ( )6/sin2 S

ijij corcor π=  ) and 

construct the lower triangular matrix [ ]ija=Α  that holds 

AACor ′=  ; 
(b) generate independent standard normal variables iε , 

di ,1=  and form a column vector ε  ; 
(c) construct a joint probability density function, taking the 

matrix product εε A=~  ; 
(d) generate a random variate 2~ vχγ  ; 

(e) calculate γεε ~~~ v=  ; 

(f) ( )ivi tu ε
~~~~ =  ; 

(g) ( )ii ux
~~~~ 1−Φ= .  

At the result, ix
~~  are dependent variables based on Student’s 

t-copula. Fig. 4 shows four scatter plots of 1000 random values 
from a bivariate Student’s t-copula, with degrees of freedom 
equal 2, for various levels of correlation coefficient to illustrate 
the range of different dependence structures. These plots 
demonstrate that t2-copula differs from Gaussian copula (see 
Fig. 3), even when their components have the same correlation. 
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Fig. 4.  Student’s t dependence structures with degrees of  

freedom equal 2, but different correlation coefficients  
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Fig. 5.  Tail dependence for t2-copula 

 
The main difference between the considered copula 

functions is in measuring the dependence between the 
occurrences of extreme values. Bivariate tail dependence 
coefficient measures the strength of dependence in the upper 
and lower quadrant tail of a bivariate distribution. The upper 
tail dependence coefficient is as follows [10]: 

 
( ) ( ) ( )( )ααλ

α

1
11

1
22121 lim, −−

→
>>= FYFYPYYU . 

 
Analogously, the lower tail dependence coefficient is 
 

( ) ( ) ( )( )ααλ
α

1
11

1
22021 lim, −−

→
≤≤= FYFYPYYL . 

 
The upper (lower) coefficient quantifies the probability to 

observe a large (small) 2Y , when 1Y  is large (small). If 
( ]1,0, ∈LU λλ , then two random variables 1Y  and 2Y  are said 

to be asymptotically dependent in tails. And if 0,0 == LU λλ , 
then variables are said to be asymptotically independent in tails. 
Furthermore, given the radial symmetry property of elliptical 
distributions, the lower and upper tail dependence coefficients 
coincide. In the work [10], it was shown that tail dependence 
coefficient is equal to zero, confirming the asymptotic 
independence in tails of the Gaussian copula. Student’s 
t-copula tail effect from both degrees of freedom and 
correlation coefficient is depicted in Fig. 5. One can see that the 
stronger the linear correlation coefficient and the lower the 
degrees of freedom, the stronger is tail dependence.  

Calibrating the copula parameters to the real data is the 
active research area in the current statistics literature [10, 14, 
15, 16]. Most popular approaches used in estimation of copula 
are Exact Maximum Likelihood method (EML), Inference 
Functions for Margins method (IFM), Canonical Maximum 
Likelihood method (CML) and others. In this work, we won’t 
go into the details of parameterizing the copula. 

During the discretization process of d-dimensional 
distribution function F , one can strengthen the dependence in 
different parts of distribution through the choice of copula. 
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Indeed, the assumption of normality for the margins can be 
removed and ( )dFFF ,,, 21 K  may be fat-tailed distributions 
(e.g. Student, Weibull, Pareto), and dependence may be 
characterized by a Normal or other chosen copula. That is, the 
dependence structure between stochastic variables can be 
modeled independently of marginal distributions. 

 

C. Generation of Scenarios 
The four main scenario generation approaches are [3]: 

1) Sampling. Sampling approaches are Monte Carlo 
(Random) Sampling, Importance Sampling, Bootstrap 
Sampling, and Conditional Sampling. For each sampling 
method, the main principle is to take a sample from a 
probability distribution function so that for a given value 
we have an associated probability, which gives the 
scenario value and its branch probability. 

2) Statistical Approaches. The main principal is to determine 
the value of particular statistical properties of given data. 
The most popular is statistical moment or property 
matching approach, whereby we do not assume knowledge 
of a random variable’s probability distribution function. 
Instead we describe the distribution by its statistical 
moments or other properties, e.g. mean, variance, 
percentile.  

3) Simulation. It is an approach for scenario generation, 
where some underlying mathematical process is simulated: 
random numbers are incorporated into the random 
component of an equation and the result is recorded. 
Scenario generation by simulation results the set of 
simulated data paths with equal probability. To reduce the 
number of paths sometimes paths are bounded by some 
method. Stochastic Process Simulation, Error Correction 
Model, Vector Autoregressive model are most popular 
simulations used for stochastic programming. 

4) Other methods. It can be methods from other fields, such as 
Artificial Neural Networks, Clustering, or it can be 
combination of some scenario generation methods. 

None method of scenario generation is approved as optimal but 
the goal should be the adequate representation of uncertainty.  

To remember the idea of this paper, we aim to incorporate a 
copula in generation of scenarios. In the paper [17], the 
moment matching method was used to generate copula based 
correlated scenarios. In our paper, we will use the combination 
of some methods allowing us to employ copula functions for 
modeling dependent stochastic variables: the simulation and 
clustering approaches are combined to construct the scenario 
tree. In the next section the stochastic programming notation is 
given to make the description of scenario generation more 
formal. 

III. STOCHASTIC PROGRAMMING NOTATION 
In multistage stochastic programs the underlying 

multivariate stochastic data process has to be discrete in time. 
Mathematically, we have a time index { }Tt ,,0 K=  and a time 

horizon consisting of T  stages. The stochastic process 
{ }T

tt 1== ξξ  is defined on some filtered probability space 

( ).,,, PS FΩ The sample space Ω  is defined as 

TΩ×Ω×Ω=Ω K21: , where d
t R⊂Ω . Note that the sample 

spaces are taken as finite dimensional. In this case, we consider 
d -dimensional spaces, but in other applications it is possible to 
vary the dimensionality. For instance, these data may 
correspond to the observed return of d  financial assets at 
different time moments t . The σ -algebra S  is the set of 
events with assigned probabilities by measure P , and { }T

t 1=tF  is 
a filtration on S . The decisions are of two types: the initial 
decision 0x  taken at initial time moment and the recourse 
decisions tx , 0>t  taken at T  recourse stages. Thus, the 

decision at stage t  is the random variable ;: tn
tx R→Ω  

decisions are set as finite dimensional, but of possibly varying 
dimensionality. In the stochastic programming model the 
observations and decisions are given as a sequence 

( ) ( ) ( )TT xxxx ,,,,,,, 22110 ξξξ K , where { }T
ttxx 0==  is a decision 

process, measurable function of ξ . The constraints on a 
decision at each stage involve past observations and decisions. 
It means that decision tx  at t  is measurable with respect to 

FF ⊆t . Thus, following [8] the decision process is said to be 
nonanticipative. It means that the decision ( )11, −−= tttt xxx ξ  
taken at any 1>t  does not directly depend on future 
realizations of stochastic parameters or on future decisions. At 
the time when initial decision must be chosen, nothing about 
the random elements in our process has been pinpointed. But in 
making a recourse decision we have the revealed current 
information until this moment and the residual uncertainty till 
the end of time horizon. More information on multistage 
stochastic programs can be found in literature [1], [2], [18]. We 
continue on with stochastic notation of scenario generator. 

The d-dimensional probability distribution function of 

( )′= d
ttt ξξξ ,,1 K  at point ( )′= dyyy ,,1 K  is denoted by ( )yf , 

the d-dimensional cumulative distribution function is denoted 
by ( )yF . The joint distribution F  provides a complete 
information concerning the behavior of ξ . The marginal 
probability distribution function and cumulative distribution 
function of each element i

tξ  at point iy , di ,,1K=   is 
denoted by ( )ii yf  and ( )ii yF , respectively. The primary aim 
of scenario generator is to represent the distribution f  in a 
reasonable way. In stochastic programming the underlying 
probability distribution f  is replaced by a discrete distribution 

P  carried by a finite number of atoms ( )s
T

ss ξξξ ,,1 K= , 

( )′= ds
t

s
t

s
t

,1, ,, ξξξ K , Ss ,,1K=  with probabilities ( )s
s Pp ξ= , 

0≥sp  and 1
1

=∑ =

S

s sp . The atoms sξ , Ss ,,1 K=  of the 
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Fig. 6.  Scenario fan 

 
distribution P  are called as scenarios. Naturally, the historical 
data in conjunction with an assumed background model are 
used to generate the scenarios, applying suitable estimation, 
simulation and sampling procedures. 

While approximating the multivariate stochastic distribution 
F  employing copulas, the set of d-dimensional intercorrelated 

scenarios ( )s
T

ss ξξξ ,,1 K= , ( )′= ds
t

s
t

s
t

,1, ,, ξξξ K , Ss ,,1K=  is 
generated. Assuming that all scenarios coincide at 0=t , the 
initial root node is formed, and thus the simulated data paths are 
called as a scenario fan (see Fig. 6). The structure of simulated 
data paths can be divided into two stages. The first stage is 
usually represented by a single root node, and the values of 
random parameters during the first stage are known with 
certainty. Moving to the second stage, the structure branches 
into individual scenarios at time 1=t , as shown in the Fig. 6. If 
such scenario fan is used as input into the multistage stochastic 
program, the model is of 2-stage problem, as all σ -fields tF , 

Tt ,,1K=  coincide. The 2-stage multiperiod stochastic 
program has the following properties, as in [8]: 
1) Decisions at all time instances Tt ,,1,0 K=  are made at 

once and no further information is expected. 
2) Except for the first stage no nonanticipativity constraints 

appear. 
Depending on the considered problem, such properties can 

be regarded as disadvantages. Our aim is to create a multistage 
scenario tree which can be used for multistage models. 
Multistage formulation is characterized by its robustness, 
stability of solutions: similar subscenarios result in similar 
 

 
 
 
 
 
 
 
 
 
 
 t=1 t=2 t=0 t=T 

1 stage 2 stage M stage 

t=T-1 
 

Fig. 7.  Multistage scenario tree 

decisions. The multistage tree reflects the interstage 
dependency and decreases the number of nodes while 
comparing to the scenario fan. The structure of multistage tree 
(see Fig. 7) at 0=t  is also described by a sole root node and by 
branching into a finite number of scenarios as it was in previous 
case. The stages are connected with possibility to take 
additional decisions based on newly revealed information. 
Such information can be obtained periodically (every day, 
week, month) or based on some events (expiration of 
investment portfolio). The distinction between stages, which 
correspond to the decision moments, and time periods is 
essential, because in practical application it is important that the 
number of time periods would be greater than the 
corresponding nodes. The arcs linking nodes represent various 
realizations of random variables. The number of branches from 
each node can vary depending on problem specific 
requirements, and not definitely constant through the tree. One 
of the strategies is to use an extensive branching at the 
beginning of time horizon and a relatively poor branching at the 
last levels of tree. Each path through the tree from its root to 
one of its leaves corresponds to one scenario, i.e. to a particular 
sequence of realizations of random coefficients. 

The algorithm of transforming the scenario fan to the 
multistage scenario tree of prescribed structure is described in 
the next section. 

 

IV. K-MEANS CLUSTERING: FAN TO TREE 
While constructing the multistage scenario tree from the 

scenario fan, the fan of individual scenarios is modified by 
bundling scenarios based on the cluster analysis.  

The idea of bundling scenarios to the clusters is depicted in 
the Fig. 8.  
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(a) Initial scenario fan       (b) 1st level clustering 
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(c) 2nd level clustering       (d) 3rd level clustering 

Fig. 8.  Illustration of 4-stage tree construction 
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It is assumed that a set of individual scenarios for the entire 
time horizon (12 time moments) is already generated (see 
Fig. 8a). The scenario fan of 100 scenarios is schematically 
illustrated. At time 0=t  all these scenarios (which are the 
same) form the root node of the tree. The strategy is to construct 
the scenario tree with two branches for each decision moment. 
If two branches are desired from the current scenario tree node, 
then two clusters have to be formed. Let assume that we have 
three decision dates, i.e. we are planning to make decisions at 2, 
5 and 8 time moments. With this initial setting, we are ready to 
construct the multistage scenario tree. Thus, at the 2 time 
moment two clusters are formed by the first iteration of some 
clustering algorithm. The result is displayed in Fig. 8b. The 
center of each cluster is computed, which represents the 
one-level nodes at time 2=t . Next, at previous step formed 
clusters are divided into two subclusters. It results that at time 

5=t  we have four clusters representing two-level nodes, since 
the centers are calculated (see Fig. 8c). Such strategy of 
bundling scenarios to the clusters continues for all defined 
decision moments. Fig. 8d depicts the third level of some 
clustering algorithm, since two more subclusters are formed at 
time 8=t . The constructed scenario tree has 4 stages and 8 
scenarios. 

The computed nodes (cluster centers) are denoted by black 
points in the generated scenario tree (see Fig. 9). Joining the 
black points by line, we get the graphical representation of 
scenario tree. Such strategy of bundling scenarios to the 
clusters can continue till the end of time horizon is reached.  

The discussed technique allows to produce the tree with such 
characteristics: 

1) The projection of random variable nearer the time 
horizon is less critical than those for the near future, 
because number of scenarios grows smaller down the 
tree and the centers that represent the scenario cluster 
are calculated from a smaller sample size. 

2) It allows to model extreme events because at every 
stage the simulated scenarios in all of the clusters are 
not discarded, and at the next stage all simulated 
scenarios in all of the clusters are used to calculate the 
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Fig. 9.  Graphical representation of 4-stage scenario tree 

centre of cluster. 
In the following, we discuss how the approach from cluster 

analysis is applied to group similar scenarios. The scenario fan 
usually consists of large number of scenarios, that’s why the 
hierarchical methods can fail. We don’t also require the method 
that in finding the clusters would be optimal by some measures. 
In the literature, the clustering methods usually are used for 
stable data; thus we have to make some modifications in order 
to cluster the time dependent data, such as scenarios. One of the 
main factors to delineate the structure of scenario tree is the 
branching scheme. Let assume that K  branches are desired 
from each scenario tree node: the tree is homogeneous. It 
means that K  clusters will need to be formed. Thus, the 
K -means clustering algorithm [19] is chosen to construct the 
scenario tree from the set of simulated paths (scenario fan). 
Clustering consists in partitioning of a data set into subsets, so 
that the data in each cluster share the common attribute. This 
similarity is often defined by some distance measure. After a 
discussion of the kind of requirements we are using, we 
describe the modified K -means clustering algorithm. 

Given a fan of individual scenarios ( ),,,1
s

T
ss ξξξ K=  

Ss ,,1K=  and the number K  of desired clusters KCC ~,,~1 K , 

it is needed to find the cluster centers kξ , Kk ,,1K=  such 
that the sum of the 2-norm distance squared between each 
scenario sξ  and its nearest cluster center kξ  is minimized:  

 

.min
1 ~

2

2
→−∑ ∑

= ∈

K

k C

ks

ksξ

ξξ  

 
While clustering the scenarios, the main ideas are: 

• In current stage M  new subclusters have to be 
formed from clusters formed in previous stage 
( )1−M . That’s why it is called multi-level clustering. 

• Centroids should be calculated only at stage indexed 
time moments, but distance measure should evaluate 
all scenario. 

• Other constraints that are used to realize various 
requirements for new formed clusters can be added. 

• The probabilities of each node should be evaluated. 

According to the ideas given above, the modified K-means 
clustering algorithm is given as follows. At the beginning, the 
decision moments are set, corresponding to the stage index 

( )T,t ,1K∈ . Then iterate: 

Step 1:  Setting initial centers. Let kξ , Kk ,,1K=  be the 
cluster centers. Some method can be used to choose initial 
cluster centroid positions, sometimes known as “seeds. It 
might be chosen to be the first K  scenarios, since the 
scenarios are independently generated; or K  scenarios by 
random. 

Step 2:  Cluster assignment. For each scenario sξ , assign sξ  

to the cluster kC~ , such that center kξ  is nearest to sξ  in the 
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2-norm, which is modified to exploit the whole sequence of 
simulated data path: 

 
( ) .,

21∑ =
−=

T

i
k

i
s
i

ksd ξξξξ  

 
If scenarios are all in the same physical units, then the 
Euclidean distance metric is sufficient to successfully group 
similar data. It is possible to apply other distance metrics, 
such as Manhattan distance, Maximum norm, Mahalanobis 
distance, to group similar scenarios, only some 
modifications have to be done to employ the whole 
simulated data sequence. 

Step 3:  Cluster update. Compute kξ  as the mean of all 

scenarios assigned to the cluster kC~ : 
 

{ } ks C
sk ~

∈= ξξξ E . 
 
This formula can be replaced by other estimate, such as 
median, mode or else. 

Step 4:  Repeat. Go to Step 2 until convergence, i.e. no scenario 
moves the group. 

Step 5:  Calculation of probabilities. Probability of kξ  is 

equal the sum of probabilities of the individual scenarios sξ , 

belonging to the relevant cluster kC~ . 

Step 6:  Modification. Modify ( )s
T

ss ξξξ ,,1 K=  by replacing 
s
tξ  with kξ  if ks

t C~∈ξ . 

Step 7:  Repeat. Go to Step 1 if next stage index exists. The 
clustering procedure starts over using each of clusters 
formed in current iteration. 

This algorithm produces a separation of scenarios into 
groups. The given algorithm lets to treat properly the interstage 
dependencies, exploiting the whole sequence of simulated 
scenario path. At the end, the scenario tree is constructed, 
consisting of nodes kξ  with their probabilities and the 
branching scheme. 
 

V. COMPUTATIONAL EXPERIMENT 
The scenario tree generation approach is applied to construct 

scenario trees out of sampled scenarios provided by Hibbert, 
Mowbray and Turnbull (HMT) stochastic asset model [20]. 
The following are some general properties incorporated in the 
scenario generator: 
1) Mean-reversion. It is assumed that a long-term stationary 

equilibrium level exists to which the asset return process 
will tend over time. 

2) Autoregression. The time series do fluctuate around a 
certain equilibrium level and at each step the process reacts 

 
Real interest rate Inflation rate

Yield on nominal discount bonds 

Term structure of real 
interest rate

Inflation expectations of 
investors 

 correlated 

 
Fig. 10.  A cascade structure of HMT model 

 
from a previous deviation with one time lag. The 
dependence over time (intertemporal dependence) is 
considered. 

3) Volatility. In this paper, variances will be considered 
constant over time.  

4) Correlation. Noises are correlated. The general model is 
multivariate mean reverting model of financial returns. 
HMT model is composed of a number of component parts 
that are driven by a set of stochastic drivers. Thus, the 
dependencies among various risk factors 
(contemporaneous) are modeled. The alternative method – 
copula based dependence measure – is chosen to model the 
relationships among stochastic parameters. 

On the technical level, the Monte-Carlo simulation is 
selected to generate very large number of plausible scenarios 
because of its flexibility and intuitive presentation.  

We use this model to generate the sample, which consists of 
a finite number of scenarios, representing realizations of 
discount (zero-coupon) bond yields. A cascading structure is a 
characteristic of HMT model: real interest and inflation rates 
are simulated, which then, depending on the relationship 
structure assumed, influence the realization of discount bond 
yields (see Fig. 10). 

In HMT model presented here, the economic relationship 
between inflation, inflation expectations, real interest rates and 
nominal interest rates is explicitly considered. The model 
produces the term structure that has closed-form solutions for 
bond prices so that the entire term structure for any future 
projection date can be quickly generated: the analytical 
expressions are available for discount bond prices. 

In HMT model, the main stochastic drivers – inflation rate 
and real interest rate – are described by two factors 
Ornstein-Uhlenbeck process in continuous time:  
 

( ) ( ) ( )( ) ( )
( ) ( )( ) ( )




+−=
+−=

,
,

22222

111211

tdZdttrtdr
tdZdttrtrtdr

rrrr

rrr

σµα
σα

 

 
where the short-term rate (denoted by 1r ) reverts to a long-term 
rate (denoted by 2r ) that is itself stochastic. The long-term rate 
reverts to an average mean reversion level rµ . The 
autoregressive parameters 1rα , 2rα  are mean reversion 
speeds. The second term on the right-hand side represents the 
uncertainty in the process: the standard deviations 1rσ  and 

2rσ  denote the volatility, ( )tdZr1  – the shock to the real 
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short-term rate process which is distributed normally, ( )tdZr 2  
– the shock to the real long-term rate process which is 
distributed normally. This model allows the possibility of 
negative real rates. The pricing equation, which is used in 
generating the price rP  of discount bond at time t  that pays 
one unit in real terms (protected from inflation) at time T , is 
given by 
 

( ) ( ) ( ) ( ) ( ) ( )[ ]trtTBtrtTBtTATtPr 2211exp, −−−−−= ,    (1) 
 
where ( )sA , ( )sB1 , ( )sB2  are functions of the parameters for 
real interest rate movements. Their expressions can be found in 
paper [20]. Of course, once we have obtained prices for real 
discount bonds, it is then possible to calculate the continuously 
compounded yield at time t for maturity T 
 

( ) ( )( ) ( )tTTtPTtR rr −−= ,log, .                    (2) 
 
The implementation exercise was solved in such way: using 

short time intervals, the discrete process approximates the 
continuous process. In financial applications the long-term 
modeling is required and the use of intervals, such as monthly, 
is enough appropriate. The model presented here includes a 
standard Brownian motion, which in the discrete form is 
represented by t1ε , t2ε . So we get: 
 

( )
( )




+∆−=∆

+∆−=∆

.
,

22222

111211

trtrкt

trttкt

trr
trrr

εσµα
εσα

 

 
We rearrange the last equation to show that this process is an 

autoregressive process: 
 

( )
( )
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2222212
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and 
 

( )
( )




+∆−+∆=

+∆−+∆=

+

+

.1
,1

2222212

11112111

trtкrкt

trtкtкt
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            (3) 

 
Equation (3) shows that the short rate 11 +tr  is a weighted 

average between the current level tr1  and the long rate tr2 . The 

long rate 12 +tr  is itself a weighted average of the long-term 

mean rµ  and its current value tr2 . Equation (3) can be used in 
order to estimate the parameters of the model. In this paper, we 
don’t deal with estimation procedure, and the parameters will 

be used with reference to HMT work [20]. 
In simulation, after the discretization procedure we get the 

discrete samples, taken from these stochastic equations and 
representing plausible scenarios for uncertain variables over 
the planning period. Simulation procedure of two factor 
Ornstein-Uhlenbeck process is given below:  

(a) generate ( )1,0~ Niε , multiply it by t∆  ; 
(b) simulate long-term real interest rate using second 

equation of (3) formula ; 
(c) simulate short-term interest rate using first equation of (3) 

formula ; 
(d) determine maturity time T  for discount bonds ; 
(e) use analytical expressions (1) for the real spot rate and 

real forward rate at any term T  ; 
(f) calculate discount bond return at time t  for maturity T  

using (2) formula.  

Exactly the same model structure is used to model the 
behavior of the short-term inflation rate (denoted by 1q ) as it 
was used for real short-term interest rate 1r , but with 
parameters for inflation process. A term structure for inflation 
expectations ( )TtPq ,  can be inferred from the current 

instantaneous inflation rate 1q  and 2q , using pricing equation 
(1). Combining a term structure of real interest rate and 
inflation expectations it is possible to derive a term structure for 
nominal interest rates: ( ) ( )TtPTtPTtP qrnom ,),(, = . 

As it was discussed, in scenario generator the financial 
variables have to be projected in such way as to reflect the 
appropriate interdependencies between them. It is reasonable to 
consider the case when interest rates and inflation rates move 
together: short-term real interest rate correlates with short-term 
inflation rate, and long-term real interest rate correlates with 
long-term inflation rate. Interdependencies among these 
variables are identified through Wiener processes )(tdZi , 

4,1=i . The cumulative distribution function of Wiener process 
is 

( ) 







Φ=








−= ∫

∞− t
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t
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t
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π
, 

 
or ( ) ( )dtNtdZi ,0~ , 4,1=i . Thus, to model the dependence 
between stochastic drivers, we construct the joint distribution 
F  by linking these marginal distributions through the copula 
function. We get  
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where C  is the 4-dimensional copula function. In this work, 
two copula functions are considered: Gaussian copula and 
Student’s t2 copula. Their simulation algorithms are given in 
Section B. 
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At this moment, let assume that a matrix [ ]ττ

ijcorCor = , 

11 ≤≤− τ
ijcor , 4,1, =ji  of Kendall’s tau correlations has 

already been assessed, which denotes rank-order correlations 
between two random variables. In HMT model, Kendall’s tau 
correlation coefficient is set equal to 0.25 between short-term 
real interest rate and short-term inflation rate, and it is set equal 
to 0.25 between long-term real interest rate and long-term 
inflation rate. 

HMT model is used to simulate 1, 3, 5, 7, 10 year coupon 
bond yields over a horizon of 20 years with time increments of 
one month. The initial parameters are set with the reference to 
the Hibbert’s et al. work. The conditions about the environment 
are assumed as follows: inflation level is 2.5%, long-term 
inflation level is 2.83%, current 3-month T-bill norm is 5% and 
current 10-year T-bond yield 5.58%. The lower bounds on the 
levels of inflation and of real interest rates are placed to ensure 
that negative rates don’t appear. At the output of this scenario 
generator the data consisted of a finite number of scenarios 
( 1000=S ), representing the realizations of discount bond 
yields. In Fig. 11 the dependence structures between simulated 
values of real interest rate and inflation rate are displayed in the 
time moment 20=t  years.  
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(a)  Gaussian dependence structure 
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(b)  Student’s t2 dependence structure 

Fig. 11.  Dependence structures between simulated values 

Table I.  Dimension of scenario fan  

 Nodes Time periods Scenarios 
Scenario fan of 
discount bond yields 240000 240 1000 
 

In Fig. 11a) the dependence structure is determined by the 
correlation matrix Cor  for Gaussian copula, in Fig. 11b) the 
dependence is conditioned by the correlation matrix Cor  and 
by degrees of freedom 2=υ  for Student’s t-copula. The lower 
tail dependence is limited by the lower bounds on the levels of 
inflation and real interest rates. The upper tail dependence 
differs with respect to the employed copula.  

Each scenario fan of 1, 3, 5, 7, 10 year coupon bond yields 
generated by scenario generator is described by its dimension. 
The dimension of the particular scenario fan is given in Table I. 

The scenario fan is illustrated using the “funnel of doubt” 
plot (see Fig. 12), resulting from uncertainty in the future 
values. In the following analysis, 1-year and 10-year discount 
bond returns are considered. The “funnel of doubts” graph 
displays the 1st, 5th, 25th, 50th, 75th, 95th, 99th percentile values 
and the mean sample value (light dashed line). The spread 
around its median expands as the time increases, carrying a 
certain risk of uncertainty that increases with time, but tends to 
stabilize at the end of time horizon, which is the effect of mean 
reversion value. The assumption of avoiding negative values of 
nominal interest rate determines that the expected value of 
discount bond yields drifts up over time. VaR (Value-at-Risk) 
type conclusion is that in ( )p−1100 % of the cases the yield is 
higher or equal to VaRp value (vertical axis), where 10 << p  
is a percentile value. The spread of 10-year discount bond  
 

1Y Coupon bond yields 

 Years 

10Y Coupon bond yields 

Years  
(a)  Gaussian dependence structure 

 
1Y Coupon bond yields 

 Years 

10Y Coupon bond yields 

Years

(b)  Student’s t2 dependence structure 

Fig. 12.  Scenario fan of 1Y and 10Y Coupon bond yields 
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yields is less than the spread of 1-year discount bond yields, 
because of the effect of mean reversion. Some of statistical 
characteristics, mean value, dispersion, 1st and 99th percentiles 
of 1-year and 10-year discount bond returns are calculated for 
the evaluation of generated scenarios (see Table II – Table III). 

The simulated scenario fan is aimed to transform to the 
scenario trees with different number of stages and with 
different branching factor, employing the clustering algorithm 
discussed in Section IV. The number of stages depends on the 
number of decision moments. The branching scheme of the 
scenario tree influences the number of clusters. For instance, 
we choose the number of scenarios equal to 2=K  and 3=K  
which is generated per scenario tree node. Two types of 
scenario trees are generated for the analysis: 3-stage scenario 
tree with decisions at 20,10=t  and 5-stage scenario tree with 
decisions at 20,15,10,5=t . Table IV shows the dimension of 
scenario trees for the cases 2=K  and 3=K . It shows that the 
dimension of scenario fan is notably reduced while 
transforming the scenario fan to the scenario tree.  

In the following analysis, we aim to investigate how 
dependence structure affects the values of target variables and 
the structure of scenario tree. The mean value, dispersion, 1st 
and 99th percentiles of 1-year and 10-year discount bond 
returns are calculated for the evaluation of generated scenario 
trees (see Table V – Table VIII). 
 
Table II.  Characteristics of scenario fan 

Decision moments, in Years Gaussian  
dependence t=5 t=10 t=15 t=20 

Mean 6.13 7.26 8.17 8.76 
Dispersion 0.06 0.10 0.14 0.16 

1st Percentile 0.78 0.87 0.95 0.91 

Scenario 
fan of 1Y 
coupon  

bond return, 
% 99th Percentile 11.84 15.65 18.35 19.25 

Mean 6.82 7.72 8.50 8.91 
Dispersion 0.05 0.09 0.11 0.12 

1st Percentile 2.49 2.59 2.38 2.71 

Scenario 
fan of 10Y 

coupon  
bond return, 

% 99th Percentile 12.69 15.18 17.43 18.31 
 
Table III.  Characteristics of scenario fan 

Decision moments, in Years Student’s  
t2 dependence t=5 t=10 t=15 t=20 

Mean 6.14 7.15 8.01 8.65 
Dispersion 0.05 0.10 0.13 0.16 

1st Percentile 1.08 1.19 1.25 1.23 

Scenario 
fan of 1Y 
coupon  
bond 

return, % 99th Percentile 11.27 14.64 17.50 19.10 
Mean 6.84 7.70 8.32 8.76 

Dispersion 0.05 0.08 0.10 0.13 
1st Percentile 2.42 2.51 2.63 2.34 

Scenario 
fan of 
10Y 

coupon  
bond 

return, % 99th Percentile 12.11 14.91 16.66 17.81 

Table IV.  Dimension of scenario trees 

 K=2 K=3 
 Nodes Scenarios Nodes Scenarios 

3-stage tree 7 4 13 9 
5-stage tree 31 16 121 81 

 
Table V.  Characteristics of scenario trees when 2=K   

Decision moments, in Years Gaussian  
dependence t=5 t=10 t=15 t=20 

Mean – 7.27 – 8.77 
Dispersion – 0.05 – 0.09 

1st Percentile – 5.55 – 4.85 

3-
st

ag
e 

tre
e 

99th Percentile – 10.05 – 14.72
Mean 6.16 7.27 8.18 8.77 

Dispersion 0.01 0.06 0.11 0.12 
1st Percentile 5.39 4.15 3.93 3.95 1Y

 c
ou

po
n 

 b
on

d 
 re

tu
rn

, %
 

5-
st

ag
e 

tre
e 

99th Percentile 7.39 12.08 15.29 17.81
Mean – 7.74 – 8.93 

Dispersion – 0.04 – 0.07 
1st Percentile – 6.09 – 5.57 

3-
st

ag
e 

tre
e 

99th Percentile – 10.25 – 13.63
Mean 6.84 7.74 8.49 8.93 

Dispersion 0.01 0.05 0.08 0.09 
1st Percentile 5.99 5.20 4.93 4.66 

10
Y

 c
ou

po
n 

bo
nd

 re
tu

rn
, %

 

5-
st

ag
e 

tre
e 

99th Percentile 8.13 12.37 14.56 17.28

 
Table VI.  Characteristics of scenario trees when 3=K  

Decision moments, in Years Gaussian  
dependence t=5 t=10 t=15 t=20 

Mean – 7.27 – 8.77 
Dispersion – 0.06 – 0.11 

1st Percentile – 4.78 – 4.46 

3-
st

ag
e 

tre
e 

99th Percentile – 11.54 – 16.33 
Mean 6.16 7.27 8.18 8.77 

Dispersion 0.01 0.08 0.13 0.14 
1st Percentile 5.04 3.28 1.97 2.52 

1Y
 c

ou
po

n 
bo

nd
  

re
tu

rn
, %

 

5-
st

ag
e 

tre
e 

99th Percentile 8.19 13.74 18.70 18.97 
Mean – 7.74 – 8.93 

Dispersion – 0.05 – 0.08 
1st Percentile – 5.46 – 5.40 

3-
st

ag
e 

tre
e 

99th Percentile – 11.95 – 15.72 
Mean 6.84 7.74 8.49 8.93 

Dispersion 0.01 0.06 0.09 0.10 
1st Percentile 5.74 4.36 3.35 3.55 

10
Y

 c
ou

po
n 

bo
nd

  
re

tu
rn

, %
 

5-
st

ag
e 

tre
e 

99th Percentile 9.23 14.02 16.61 18.09 
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Table VII. Characteristics of scenario trees when 2=K  

Decision moments, in Years Student’s 
t2-dependence t=5 t=10 t=15 t=20 

Mean – 7.16 – 8.66 
Dispersion – 0.04 – 0.09 

1st Percentile – 5.49 – 5.16 

3-
st

ag
e 

tre
e 

99th Percentile – 9.60 – 15.33 
Mean 6.15 7.16 8.02 8.66 

Dispersion 0.01 0.06 0.10 0.12 
1st Percentile 5.44 3.89 3.34 3.23 

1Y
 c

ou
po

n 
bo

nd
  

re
tu

rn
,%

5-
st

ag
e 

tre
e 

99th Percentile 7.19 12.11 14.75 17.34 
Mean – 7.72 – 8.76 

Dispersion – 0.04 – 0.07 
1st Percentile – 6.17 – 6.03 

3-
st

ag
e 

tre
e 

99th Percentile – 10.02 – 14.10 
Mean 6.87 7.72 8.32 8.76 

Dispersion 0.01 0.05 0.08 0.09 
1st Percentile 6.08 4.76 4.25 4.65 

10
Y
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ou

po
n 

bo
nd

  
re

tu
rn

,%

5-
st

ag
e 

tre
e 

99th Percentile 8.04 12.35 15.71 15.00 
 
Table VIII. Characteristics of scenario trees when 3=K  

Decision moments, in Years Student’s  
t2-dependence t=5 t=10 t=15 t=20 

Mean – 7.16 – 8.66 
Dispersion – 0.06 – 0.11 

1st Percentile – 4.56 – 4.53 

3-
st

ag
e 

tre
e 

99th Percentile – 11.17 – 16.93 
Mean 6.15 7.16 8.02 8.66 

Dispersion 0.01 0.07 0.11 0.14 
1st Percentile 5.03 3.17 2.29 2.49 

1Y
 c

ou
po

n 
bo

nd
 

 re
tu

rn
, %

 

5-
st

ag
e 

tre
e 

99th Percentile 7.81 13.66 15.66 17.90 
Mean – 7.72 – 8.76 

Dispersion – 0.05 – 0.09 
1st Percentile – 5.39 – 5.06 

3-
st

ag
e 

tre
e 

99th Percentile – 11.40 – 15.46 
Mean 6.87 7.72 8.32 8.76 

Dispersion 0.01 0.06 0.09 0.11 
1st Percentile 5.65 4.16 3.41 2.98 

10
Y

 c
ou

po
n 

bo
nd

 re
tu

rn
, %

 

5-
st

ag
e 

tre
e 

99th Percentile 8.63 13.62 15.18 16.12 
 

The remarks on obtained results are as follows. It turns out 
that for a larger branching factor K , the data of discount bond 
returns become more diverse, the interval between the 1st and 
the 99th percentiles becomes wider, but the mean value remains 
the same. The same effect is observed when more decision 

dates are defined. It holds for both Gaussian copula and 
Student’s t2-copula correlated data. The initial fan of individual 
scenarios and the constructed scenario trees show that the data 
obtained under Student’s t2-dependence have smaller mean 
value, representing the smaller bond returns than data obtained 
under Gaussian dependence. These inferences can be approved 
from the graphical representation of constructed scenario trees 
(see Fig. 13 – Fig. 16). 
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Fig. 13.  3-stage scenario trees of 1Y Coupon bond yields with decisions at 
t={10,20} years 

 

0  10  20  
0 %

4 %

8 %

12 %

16 %

20 %

Years
0  10  20  

0 %

4 %

8 %

12 %

16 %

20 %

Years

10Y Coupon bond yields when K=2

0  10  20  
0 %

4 %

8 %

12 %

16 %

20 %
10Y Coupon bond yields when K=3

Years
 

(a) Gaussian dependence structure 
 

0  10  20  
0 %

4 %

8 %

12 %

16 %

20 %
10Y Coupon bond yields when K=2

Years
0  10  20  

0 %

4 %

8 %

12 %

16 %

20 %
10Y Coupon bond yields when K=2

Years
0  10  20  

0 %

4 %

8 %

12 %

16 %

20 %
10Y Coupon bond yields when K=3

Years
0  10  20  

0 %

4 %

8 %

12 %

16 %

20 %
10Y Coupon bond yields when K=3

Years
 

(b) Student’s t2 dependence structure 
Fig. 14.  3-stage scenario trees of 10Y Coupon bond yields with decisions at 

t={10,20} years 
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(b) Student’s t2 dependence structure 
Fig. 15.  5-stage scenario trees of 1Y Coupon bond yields with decisions at 

t={5,10,15,20} years 
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Fig. 16.  5-stage scenario trees of 10Y Coupon bond yields with decisions at 
t={5,10,15,20} years 

 
Scenario tree with a higher branching factor lets to model 

more extreme scenarios. Using of Student’s t2-copula as 
dependence measure between real interest rate and inflation 
rate has effect to obtain lesser values of discount bond yields 
comparing with the case when the Gaussian copula is used. 

In the scenario fan, each scenario has the same probability. If 
1000 scenarios are generated, then probability of any scenario 
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(b) Student’s t2 dependence structure 

Fig. 17.  Values of 1Y Coupon bond yields with their probability 
 

is equal to 10-3. But this is not the case for scenario tree, where 
probability of each scenario is conditioned by cluster size. For 
instance, let take the scenario tree with 3=K  branching factor 
and decisions at { }20,15,10,5=t  years. Fig. 17 depicts the 
distribution of 1Y Coupon bond yields under different 
dependence structures at time 20=t . It shows the relationship 
between value of random variable (node of scenario tree) and 
its probability. 

 

VI. CONCLUDING REMARKS 
In the present paper we described the procedure based on 

both simulation and clustering to generate the scenario trees out 
of data paths. The computational experiment showed that the 
size of generated scenario trees is much smaller than the 
dimension of scenario fan, and nevertheless, they are good 
approximations with respect to the Euclidean distance used to 
measure the time-dependent data paths. Answering to our 
question, does the copula features are captured in the 
approximate representation of uncertainty in the form of 
scenario tree, we conclude that different dependence structures 
with the same correlation coefficient between stochastic 
variables affect the structure of multistage scenario tree. The 
accomplished analysis of scenario trees shows that scenario 
trees generated from dependent data based on Student’s 
t2-copula are more extreme than generated from dependent data 
employing Gaussian copula. The effect of using Student’s 
t2-copula as dependence measure between real interest rate and 
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inflation rate is to decrease value of discount bond yields. It 
results from the feature that using Gaussian copula the extreme 
events are independent, so we don’t get really extreme 
scenarios.  

Future research on this topic includes the improving 
clustering approach by adding some constraints on cluster’s 
size, on cluster’s character. Then, the evaluation of 
quality/stability of scenario generation method for a given 
stochastic program can be considered. 
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