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Abstract—The problem of active shielding of some
domains from the effect of the sources distributed in
other domains is considered. The problem can be
formulated either in a bounded domain or in an un-
bounded domain. The active shielding is realized via
the implementation of additional sources in such a
way that the total contribution of all sources leads
to the desirable effect. Mathematically the problem
is reduced to the search of the source terms satisfy-
ing some a priori described requirements to the solu-
tion and belongs to the class of inverse source prob-
lems. From the application standpoint, this problem
can closely be related to the active shielding of noise,
active vibration control and active scattering. It is
important to note that along with undesirable field
(noise) to be shielded the presence of a desirable com-
ponent is accepted in the analysis. The solution of the
problem requires only the knowledge of the total field
on the perimeter of the shielded domain. This is the
first publication where the solution of the problem is
proved in general nonstationary linear and stationary
nonlinear formulations. The examples of acoustic and
Maxwell equations are considered.

Keywords: inverse source problem, active noise shield-

ing, active sound control, distribution.

1 Introduction

The problem of active shielding (AS) of some domains
from the effect of the field (noise) generated in other do-
mains is solved in a quite general formulation. Its solution
is realized via the implementation of additional sources in
such a way that the total contribution of all sources leads
to the desirable effect. Mathematically the problem is
reduced to the search of the source terms satisfying some
a priori described requirements to the solution of an ap-
propriate boundary value problem (BVP). Thus, it can
be formulated as an inverse source problem [1]. From
the application standpoint, this problem can closely be
related to the active noise shielding, active vibration con-
trol and active scattering. Some comprehensive reviews
of the theoretical and experimental methods related to
these subjects can be found in books [2], [3], [4] and re-
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port [5]. Most theoretical approaches assume some quite
detailed information about the undesirable sources and
the properties of the medium. The JMC method [6], [7],
[5], based on the Huygens’ construction, requires only
the value of the undesirable field on the perimeter of the
shielded domain. Yet this method is not used in the case
if a desirable field (“friendly sound”), generated in the
shielded domain, has to be taken into account. More-
over, the JMC method can only be used for the problems
formulated in unbounded domains.

Substantially new opportunities are provided by the Dif-
ference Potential Method (DPM) in [8], [9]. The solution
obtained in a finite–difference formulation requires only
the knowledge of the total field (both desirable and unde-
sirable) at the grid boundary of the shielded domain. Any
other information on the sources and medium is not re-
quired. It is possible to say that the solution demands, in
some sense, minimal information which is a priori avail-
able. The same result can be achieved via the implemen-
tation of Green’s function [10], [11] if it is known for the
BVP studied. A comprehensive study of the general so-
lution [9] in the application to the Helmholtz equation
including its optimization can be found in [11], [12], [13],
[14]. In [15] the problem of AS in composite domains is
formulated for the first time and its general solution is
provided in a general finite–difference formulation. The
principal novelty of the problem considered in [15] is that
it allows a selective communication between different sub-
domains. The solution of the problem is realized via a
predictor–corrector algorithm. The counterpart of the
problem in continuous spaces is considered in [16].

For the acoustic Euler equations in continuous spaces,
the AS solution is first obtained in [19]. The solution
is derived via the apparatus of distributions for time–
harmonic waves under quite general assumptions. It is
shown that there exists equivalence between the DPM–
based discrete solution, if the space step vanishes, and
the obtained solution. The DPM–based solution is ex-
tended to arbitrary hyperbolic systems of equations in-
cluding acoustic equations with constant and variable co-
efficients in [17]. It can be demonstrated, [18], that the
control (additional) sources do not disturb even the echo
of the “friendly” sound component if the AS problem is
considered in bounded domains. In the current paper,
for the first time the approach [19] is generalized to sub-
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stantially nonstationary problems (non time–harmonic
waves). The solution of the stationary nonlinear AS prob-
lem is also obtained in a general formulation. The ex-
amples of the acoustic equations (Helmholtz, Euler and
wave equations), the Maxwell equations and the Euler
nonlinear equations are considered. In the case of the
Maxwell equation the well known problems of a bounded
conductor in an electrostatic field and a superconductor
in a magnetic field are interpreted as AS problems. The
AS solution for the Euler equations and wave equation
are obtained. In the examples it is demonstrated that
the known solutions can be derived as a particular case
from the general solution of the general AS inverse source
problem provided.

2 General formulation of the AS problem

The AS problem can be formulated as follows. Let us
assume that some field (sound) U is described by the
following BVP in a domain D ⊆ Rm:

L(U) = f, (1)
U ∈ ΞD. (2)

Here, the operator L is a differential operator, ΞD is
some functional space specified further. It is supposed
the boundary conditions to be set at the boundary ∂D of
the domain D and they are implicitly included into the
definition of the space ΞD. In particular, the operator L
can correspond to the acoustic equations.

In (1), f ∈ FD where FD is some linear space of functions
f . We assume that the spaces ΞD and FD are specified in
such a way that BVP (1), (2) is correct. Thus, there exists
the inverse operator L−1 : L−1(f) = U . It is supposed
that the solution of the homogeneous BVP (1), (2) exists
and it is only trivial: L−1(0) = 0.

Consider some bounded domain D+: D+ ⊂ D. It is
worth noting that the domain D+ can be composite. It
is assumed that the domain D+ has the smooth boundary
Γ. The sources on the right–hand side can be distributed
both in D+ and outside D+:

f = f+ + f−, (3)

supp f+ ⊂ D+,

supp f− ⊂ D− def
= D�D+.

Here, f+ ∈ FD is the source of a ”friendly” field (sound),
while f− is the source of an ”adverse” field (noise).

Suppose that we know the trace of the function U on
the boundary Γ of the domain D+: UΓ = U(Γ). It is
to be noted that only this information is assumed to be
available. In particular, the distribution of the sources f
is unknown. The AS problem is reduced to the search of
additional sources G in D− such that the solution of the

following BVP

L(U ′) = f + G, (4)

suppG ⊂ D−,

U ′ ∈ ΞD

coincides on the domain D+ with the solution of BVP
(1), (2) if f− ≡ 0:

L(U+) = f+, (5)

U+ ∈ ΞD.

Thus, we seek a source term G such that

U ′
D+ = U+

D+ . (6)

Here and further, VΩ (Ω ⊂ D) means the restriction of
some function V on a domain Ω.

One can note that an ”obvious” solution f = −f− is not
appropriate here because the function f− is unknown.

3 Solution of the stationary linear AS
problem

First, we consider the stationary formulation of BVP (1),
(2). Assume that the operator L is linear and given by:

L
def
=

m∑
1

Ai ∂

∂xi
, (7)

where
{
xi

}
(i = 1, ..., m) is a Cartesian coordinate sys-

tem, where U and f are vector–functions with the dimen-
sion of n; Ai are n × n matrices: Ai(x) ∈ C1(D) (i =
1, ..., m). We also suppose that some linear boundary
conditions are set on the boundary of D.

Thus, BVP (1), (2) reduces to the following:

m∑
1

Ai ∂U

∂xi
= f, (8)

U ∈ ΞD,

f = f− + f+,

supp f+ ⊂ D+, supp f− ⊂ D−.

Let us consider the solution of BVP (1), (2), (7), (8)
in the generalized sense [20], [21]. For this purpose
we introduce the space of basic functions Φ ∈ C∞

0 (D).
Equality (1), (2) is then considered in the weak sense:
< LU,Φ >=< f,Φ > for any Φ ∈ C∞

0 (D) where < f,Φ >
means a distribution determined on the space of the basic
functions C∞

0 (D).

We define the functional space ΞD in such a way that the
weak solution of BVP (1) satisfies the governing equa-
tion in the classical sense almost everywhere, and it is
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bounded. Thus, we require that if U ∈ ΞD then it can be
represented as follows:

U = θ(D+)U+ + θ(D−)U−,

where U+ ∈ Hs(D+), U− ∈ Hs
0(D−), s > 1/2, s �=

integer + 1/2, Hs
0 and Hs are Sobolev spaces, see, e.g.,

[21], θ(Ω) (Ω ⊂ D) is the Heaviside–type characteristic
function equaled to 1 on Ω and 0 outside.

The formulated AS problem is an inverse source problem
and, hence, its solution is not unique [19]. From the
application point of view the most interesting solution is
represented by a single–layer source term and provided
by the next Proposition.

Proposition 1 A solution of the AS problem (1), (2),
(4), (8) is given by the following distribution:

G = G0
def
= AnUΓδ(Γ), (9)

where An
def
=

∑m
1 niA

i, ni are the coordinates of the unit
vector of the external normal n to the boundary Γ, δ(Γ)
is the Dirac delta–function assigned to the boundary Γ.

Proof. Thus, it is required to prove that the solution of
BVP (4) coincides with the solution of BVP (5) on D+:
U ′ = U+ if x ∈ D+. For this purpose, let us consider the
following four auxiliary BVPs.

The first BVP corresponds to BVP (5) generally formu-
lated.

BVP 10:

LU+ = f+, (10)

U+ ∈ ΞD.

The solution of this BVP exists and it is unique since
f+ ∈ FD.

The next BVP is the counterpart of BVP (10), formulated
for the field to be shielded.

BVP 20:

LU− = f−, (11)

U− ∈ ΞD.

The solution of this BVP also exists and it is unique.

BVP 30:

LU = AnUΓδ(Γ), (12)

U ∈ ΞD.

The solution of the formulated BVP is the following:

U(x) =

{
−U−, if x ∈ D+

U+ if x ∈ D− (13)

Indeed,

< LU,Φ >= −
m∑
1

< AiU,∇iΦ > − < ∇AU, Φ >=

−
m∑
1

∫
D

(AiU,∇iΦ)dx− < ∇AU, Φ >=

−
m∑
1

[
∫

D−
(AiU,∇iΦ)dx +

∫
D+

(AiU,∇iΦ)dx]−

< ∇AU,Φ >=<
{
LU

}
,Φ > +

∫
Γ

An

[
U

]
Γ

Φdx =

<
{
LU

}
,Φ > + < AnUΓδ(Γ), Φ >=< AnUΓδ(Γ), Φ >

Here, (a, b) denotes the scalar product of vectors a and

b,
{
LU

}
is the part of LU supported on D\Γ, ∇A

def
=∑m

1 ∇iA
i, [.]Γ means the discontinuity across the bound-

ary Γ:

[V ]Γ
def
= lim

x→Γ∩x∈D−
V (x) − lim

x→Γ∩x∈D+
V (x).

BVP 40:

LU ′ = f + AnUΓδ(Γ), (14)
U ′ ∈ ΞD.

The solution of this BVP exists and it is unique because
of the linearity of the problem.

Then, from BVPs 10 − 30 it follows that:

U ′(x) =

{
U+, if x ∈ D+

U + U+ if x ∈ D−.

�

Thus, the source term provides noise cancelation in the
domain to be shielded and doubles the field propagating
from this domain outside.

It is worth noting that AS solution (9) provided by Propo-
sition1 does not explicitly depend on the boundary condi-
tions. Although the boundary conditions are not explic-
itly specified, we are able to obtain the AS source term
if the solution of the considered IBVP is correct.

As written above, the solution of the AS problem as an
inverse source problem is not unique. Indeed, the AS
source term G can be represented in the following form:

G = G0 + LW, (15)

where W ∈ ΞD and suppW ⊂ D−. It is clear that any
additional source term LW does not affect the field in
the domain D+.
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4 Nonstationary linear AS problem

The single–layer AS solution (9) can be generalized on
a nonstationary formulation in Rm+1 under some addi-
tional requirements.

Suppose that the field U is the solution of a correct
initial–boundary value problem (IBVP) in the cylinder
KT = D × (0, T ) (T > 0):

LU
def
= L

(p)
t U +

m∑
1

Ai ∂U

∂xi
= f, (16)

U ∈ ΞD, (17)

where L
(p)
t is a linear differential operator of an order p

with respect to the time variable t. In (17), in addition
to the stationary formulation, we assume that the space
ΞD consist of the functions smooth enough with respect
to the time variable: ΞD ⊂ Cp(KT ) and satisfying homo-
geneous initial conditions. Thus, if U ∈ ΞD, then

dk

dtk
U(x, 0) = 0, (k = 0, ..., p − 1). (18)

We consider the generalized solution of IBVP (16):∫ T

0

∫
D

(LU − f, Φ)dxdt = 0 (19)

for any Φ ∈ C∞
0 (KT ).

It is to be noted here that without the violation of gen-
erality we can suppose that initial data (18) are homo-
geneous. Indeed, we can always represent the solution of
IBVP (16), (17), (18) as: U = U (f) + U (t), where U (f) is
the solution of IBVP problem with the homogeneous ini-
tial data (18), while U (t) is the solution of IBVP with the
homogeneous right–hand side. It is clear that the func-
tion U (f) has nothing to do with the unwanted component
of the total field U ; it can only represent ”residual” noise.

Then, the AS solution is represented by a source term,
similar to the source term (9), with a time–dependent
density UΓ = U(Γ, t).

Proposition 2 A solution of the AS problem (1), (2),
(4), (16) is given by the following one–layer distribution:

G = G0
def
= AnUΓδ(Γ). (20)

Proof. For the sake of simplicity, we assume that Ai(x) ∈
C∞(D) (i = 1, ..., m). The case of only smooth matri-
ces Ai(x) can be considered identically to the stationary
problem.

Thus, it is required to prove that the solution of problem
(4) coincides with the solution of IBVP (5) in D+: U ′ =
U+ if x ∈ D+. Again, we introduce four auxiliary IBVPs.

IBVP 10:

LU+ = f+, (21)

U+ ∈ ΞD.

IBVP 20:

LU− = f−, (22)

U− ∈ ΞD.

It is clear that the solution of each of the two BVPs exists
and it is unique.

IBVP 30:

LU = AnUΓδ(Γ), (23)

U ∈ ΞD. (24)

The solution of this problem is the following:

U(x) =

{
−U−, if x ∈ D+

U+ if x ∈ D−.
(25)

Indeed,

< LU, Φ >=< L
(p)
t U, Φ > −

m∑
1

< U,∇i(AiΦ) >=

< L
(p)
t U, Φ > −

m∑
1

∫ T

0

∫
D

(U,∇i(AiΦ))dxdt =

∫ T

0

∫
D+

L
(p)
t Udxdt +

∫ T

0

∫
D−

L
(p)
t Udxdt−

m∑
1

∫ T

0

∫
D−

(U,∇i(AiΦ))dxdt−
m∑
1

∫ T

0

∫
D+

(U,∇i(AiΦ))dxdt =<
{
LU

}
,Φ > +

∫ T

0

∫
Γ

An

[
U

]
Γ

Φdxdt =< AnUΓδ(Γ), Φ >

IBVP 40:

LU ′ = f + AnUΓδ(Γ), (26)
U ′ ∈ ΞD.

The solution of this IBVP is provided by:

U ′(x) =

{
U+, if x ∈ D+

U + U+ if x ∈ D−.

�

It is important to note that in this solution we do not
take into account the influence of the AS source term
(feedback) on the value of UΓ(t).

It appears that the inverse AS source problem can be
solved in a nonlinear formulation.
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5 Nonlinear stationary problem

Assume that the operator L is nonlinear and it is as fol-
lows:

L(U)
def
=

m∑
1

∂F i

∂xi
, (27)

where F i = F i(U) ∈ C1(D), F i(0) = 0 (i = 1, ..., m).

Thus, BVP (1), (2) reduces to the following problem:

m∑
1

∂

∂xi
F i(U) = f, (28)

U ∈ ΞD,

f = f− + f+,

supp f+ ⊂ D+, supp f− ⊂ D−.

As in the linear case, the solution of BVP (28) is consid-
ered in the generalized sense. Thus, equality (28) means

< L(U),Φ >=< f,Φ >

for any Φ ∈ C∞
0 (D).

We assume that if U ∈ ΞD, then L(U) ∈ FD. Then, we
arrive at the following important result:

if U ∈ ΞD, V ∈ ΞD, then

L(U) = L(V ) ⇒ U = V. (29)

Then, the following Proposition is valid.

Proposition 3 If Assumption 1 is valid, then a solution
of the AS problem (1), (2), (4), (28) is represented by the
distribution of a single layer:

G = G0
def
= Fn(UΓ)δ(Γ), (30)

where Fn
def
=

∑m
1 niF

i.

Proof. Let us introduce the following decomposition of
the right–hand side f in (28):

f = f
+

+ f
−

, (31)

where

f
+

= L(θ(D+)U),

f
−

= L(θ(D−)U).

Thus,

supp f
+ ⊂ D+ ∪ Γ,

supp f
− ⊂ D− ∪ Γ.

The solution on D+ is fully determined by f
+
. If we

replace f
−

by some function f̃
−

= L(θ(D−)Ũ), where
Ũ ∈ ΞD, then the solution on D+ obviously remains:

L−1(f̃
−

+ f +)|D+ = UD+ .

It is possible to represent f
+

as follows:

L(θ(D+)U) = f+ − Fn(UΓ)δ(Γ).

It follows from

(L(θ(D+)U), Φ) = −
m∑
1

(F i,∇iΦ) =

−
m∑
1

∫
D

F i∇iΦdx = −
m∑
1

∫
D+

F i∇iΦdx =

({L(U)} , Φ) −
∫

Γ

Fn(UΓ)Φdx = f+ −
∫

Γ

Fn(UΓ)Φdx.

Similar, it is possible to obtain that

L(θ(D−)U) = f− + Fn(UΓ)δ(Γ).

Thus, the influence of f− on the domain D+ is realized
only via the single–layer source: −Fn(UΓ)δ(Γ). It fully
corresponds to Huygens’ construction in waves propaga-
tion.

Thus, the AS source term

g0 = Fn(UΓ)δ(Γ) (32)

is capable to provide the noise cancelation.

Indeed, let us consider the contribution of f− + g0 to
the field on D+. It is provided by VD+ where V is the
solution of the following BVP:

L(V ) = f− + Fn(UΓ)δ(Γ),
V ∈ ΞD.

In turn,

f− + Fn(UΓ)δ(Γ) = L(θ(D−)U).

Hence, V = θ(D−)U and VD+ = 0D+ . Thus, the field on
D+ is fully determined by the sources situated on D+ as
long as the total field at the boundary is equal to UΓ.

�

6 Examples

Let us now consider a few examples of AS sources terms
for stationary and nonstationary problems. We assume
that the boundary conditions set for each of the problem
considered such that the appropriate BVP is correct.

10. A bounded metallic body in electrostatic field.
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Consider a metallic bounded body in an external elec-
trostatic field Eout. It is well known that if the problem
is static, then the field inside the body must equal zero.
Charges in the body are redistributed on its surface in
such a way that the internal electric field equals zero.
Thus, the contribution of the surface charges is similar
to shielding the body from the external field Eout. From
the Maxwell equations it follows that

divE = 4πρ + gd, (33)
curlE = gc, (34)

where E is the electric field, ρ is the density of charges,
gd and gc are the AS source terms.

Assume that f− = 4πρ. Let us now represent the AS
source term gd in the following form: gd = 4πσρδ(Γ).

For equations (33), (34) the appropriate matrix An from
(9) is not square and given by

An =

⎛⎜⎜⎝
1 1 1
0 −n3 n2

n3 0 −n1

−n2 n1 0

⎞⎟⎟⎠ , (35)

provided that U = (E1, E2, E3)T where Ei (i = 1, 2, 3)
are the coordinates of the vector E.

Then, we obtain that

gd = Eout|Γ · nδ(Γ), (36)
gc = n × Eout|Γδ(Γ), (37)

where Eout|Γ is the external field on the perimeter of the
body.

Hence,

σρ =
1
4π

Eout|Γ. (38)

From (37) it follows that the external field Eout|Γ must
be orthogonal to the boundary otherwise the field is not
potential since the right–hand side in (34) is not zero. It
fully corresponds to the results known in electrostatics
(see, e.g., [22]) since there is no current in the body.

20. A superconductor in magnetostatic field.

Let us now consider a magnetic field around a supercon-
ductor. It is well known that the magnetic field inside a
superconductor equals zero. The magnetic external field
induces a bound current with a density j which plays the
shielding role.

Consider the Maxwell equations for a static magnetic
field:

divH = gd, (39)

curlH =
4π

c
σE + gc, (40)

where H is the magnetic field, σ is the conductivity. Let
us set that gc = 4π

c jbδ(Γ).

Similar to the previous example, from Proposition 1 we
obtain that gc = n × HΓδ(Γ). Hence,

4π

c
jb = n × HΓ. (41)

From equation (39) we have:

gd = Hn|Γδ(Γ), (42)

where Hn = H · n.

Since the magnetic field is to be solenoidal (gd = 0), the
field must be either orthogonal to the boundary or equals
zero:

Hn|Γ = 0.

This result coincides with the well known result about the
bound current [22] on the surface of a superconductor.

The next four examples are related to active noise shield-
ing in acoustics.

30. Helmholtz–type equation.

Let us consider the following Helmholtz–type equation
with variable coefficients:

∇(p∇φ) + k2φ = s, (43)

where p ∈ C1(D), p > 0.

If p ≡ 1, then equation (43) coincides with the Helmholtz
equation describing the propagation of monochromatic
waves.

We can rewrite (43) as the system of first-order equations:

∇a + k2φ = s, (44)
∇φ − a/p = 0.

In R3, we have:

U = (a1, a2, a3, φ)T , (45)

where ai (i = 1, 2, 3) are the coordinates of the vector a.
Hence,

An =

⎛⎜⎜⎝
n1 n2 n3 0
0 0 0 n1

0 0 0 n2

0 0 0 n3

⎞⎟⎟⎠ , (46)

and

G0(Γ) = (an, φn1, φn2, φn3)T
Γ δ(Γ), (47)

where an = a · n.
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Then, we arrive at the following set of equations:

∇a + k2φ = s + p
∂φ

∂n |Γ
δ(Γ), (48)

p∇φ − a = pφΓnδ(Γ).

Having eliminated the auxiliary vector a and turned back
to the Helmholtz equation for the variable φ, we obtain

Δφ + k2φ = s + g0, (49)

where the shielding function g0 is as follows:

g0 = δ(Γ)p
∂φ

∂n |Γ
+ ∇(δ(Γ)pφΓn)

or

g0 = δ(Γ)p
∂φ

∂n |Γ
+

∂δ(Γ)pφΓ

∂n
. (50)

The AS term is represented via the sum of single–layer
and double–layer additional source terms. Here, the den-
sities of the potentials include the values φΓ and ∂φ

∂n |Γ to
be known. If p ≡ 1, this solution fully coincides with the
solution obtained in [11]. The solution is applicable to the
linear analogue of the Helmholtz equation with variable
coefficients.

Now, we consider three nontstationary linear problems.

40. Wave equation.

In the case of the wave equation

φtt − a2Δφ = s (51)

the operator L is the following: L := ∂2

∂t2 − a2Δ.

Similar to the Helmholtz equation, we can rewrite it as
the system of first-order equations with respect to the
space variables:

φtt −∇a = s, (52)
−∇φ = −a.

From Proposition 2 we obtain:

G0(Γ) = −(an, φn1, φn2, φn3)T δ(Γ). (53)

Having eliminated the auxiliary vector a, we arrive at the
following source term:

g0 = −δ(Γ)
∂φ

∂n
− ∂δ(Γ)φ

∂n
. (54)

Similar to the previous example, this result can be gen-
eralized to the case of variable coefficients. Thus, AS
source term (50), in fact, is applicable to quite arbitrary
nonstationary fields.

50. Acoustic equations.

Next, let us consider the acoustic equations:

1
ρ0c2

0

p′t + ∇u′ =
1

ρ0c2
0

f (p) + qvol, (55)

ρ0u′
t + ∇p′ = f(u) + fvol,

where u′
j (j = 1, 2, 3) are the components of the particle

velocity u′, p′ is the sound pressure, c0 is the sound speed,
the functions marked by 0 correspond to some main flow,
qvol is the volume velocity per a unit volume and fvol is
the force per a unit volume [2]. In this case, we have

U = (u′
1, u

′
2, u

′
3, p

′)T . (56)

Then, the matrix An appears to coincide with the appro-
priate matrix (46) of the Helmholtz equation.

As the result, we obtain the following AS source terms in
the form of a single layer:

qvol = u′ · n|Γδ(Γ), (57)
fvol = p′|Γnδ(Γ).

Thus, the AS solution depends on the normal compo-
nent of the particle velocity u′

n|Γ and the sound pressure
p′Γ on the boundary of the shielded domain. In applica-
tions, these values can to be taken from measurements
and based on the contribution of both desirable and un-
desirable sources without their factorization. It should
be noted that the AS solution (60) was obtained in [19]
for a continuous space and in [17] for a finite–difference
formulation.

Let us now consider the Linearize Euler equations (LEE)
describing acoustic wave propagation in nonhomogeneous
media.

60. Linearized Euler equations

1
ρ0c2

0

(p′t + (u0,∇)p′) + (u′,∇)p0 + ∇ · u′+ (58)

∇ · u0 =
1

ρ0c2
0

f (p) + qvol,

ρ0(u′
t + (u0,∇)u′ + (u′,∇)u0) + ∇p′ = f(u) + fvol,

where, as in the previous example, the functions marked
by 0 correspond to the main flow.

Then, the matrix An is given by

An =

⎛⎜⎜⎝
n1 n2 n3

un

ρ0c2
0

ρ0un 0 0 n1

0 ρ0un 0 n2

0 0 ρ0un n3

⎞⎟⎟⎠ , (59)

where un = u0 · n.
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Thus, we obtain the following AS source terms:

qvol = (u′ · n|Γ +
un

ρ0c2
0

p′|Γ)δ(Γ), (60)

fvol = (p′|Γn + ρ0unu′
|Γ)δ(Γ).

It can be seen that in the case of flux through the bound-
ary Γ some corrections of AS terms (60) are required.

The next example demonstrates the application of the
general AS solution (9) to a nonlinear problem.

70. Euler equations:

Let us now consider the Euler equations for gas dynamics:

L(U) = Ut +
3∑
1

F i(U)xi , (61)

where

U = (ρ, ρu1, ρu2, ρu3, E)T , (62)

F i(U) = uiU + p(0, δ1,i, δ2,i, δ3,i, ui)T , (63)

where: ρ is the density; u1,u2,u3 are the velocity coor-
dinates in some Cartesian coordinate system {xi} (i =
1, 2, 3); E is the total energy density; p is the pressure;
δij = 1 if i = j, δij = 0 if i �= j.

The AS solution is then as follows:

G0 = δ(Γ)× (64)

(ρVn, ρu1Vn + pn1, ρu2Vn + pn2, ρu3Vn + pn3,HVn)T
Γ ,

where H = E + p, Vn = u · n, is the component of the
velocity normal to the boundary Γ .

In contrast to the acoustic equations, solution (64) de-
pends on the all components of the velocity, not only on
the normal one, on the perimeter of the shielded domain.

7 Conclusion

The solution of the AS inverse source problem has been
obtained in general nonstationary linear and stationary
nonlinear formulations. The solution only requires the
knowledge of the total field (desirable and undesirable)
on the perimeter of the shielded domain. It does not use
any additional information on either the characteristics of
the sources or the surrounding medium. The knowledge
of Green’s function of the problem is not required either.
A single–layer AS solution has been obtained for a sta-
tionary nonlinear problem. The application of the gen-
eral AS solution to the Maxwell equations, Helmholtz–
type equation with variable coefficients, wave equation,
linearized Euler equations and nonlinear Euler equations
provide us the appropriate AS source terms.
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[12] Lončarić, J., Tsynkov, S.V., “Optimization of
acoustic sources strength in the problems of active
noise control”, SIAM J. Appl. Math., V63, pp. 1141–
1183, 2003.
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