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LMMSE Estimation Based on Counting
Observations
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Abstract— The problem of estimating the inten-
sity process of a doubly stochastic Poisson process
is analyzed. Using the knowledge of the first and
second-order moments of the intensity process, a re-
cursive linear minimum mean-square error estimate
is designed. Moreover, an efficient procedure for
the computation of its associated error covariance is
shown. The proposed solution becomes an alternative
approach to the Kalman filter which is applicable un-
der the only structural assumption that the intensity
process to be estimated has a finite-dimensional co-
variance function.
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1 Introduction

This paper is focused on the problem of estimating the
intensity process from counting observations of doubly
stochastic Poisson processes (DSPP). These processes,
introduced in [1], are Poisson processes whose rate is
modulated by a second stochastic process, known as the
intensity process. In the recent engineering literature,
this problem has been of great interest since estimates of
the intensity process are required in expressions for the
counting and time statistics for DSPP which arise natu-
rally in many practical situations of such diverse areas as
optical communication systems [2], quantitative financial
[3], network theory [4], among others [5, 6].

Thus, suppose that {N(t),t > to} is a DSPP with a
stochastic intensity process {A(t),t > ¢y} whose mean
E[A(t)] and covariance function Ry(t,s) are known. We
consider that the observation interval [to,t¢) is parti-
tioned into m disjoint intervals according to the times
th < t1 < tp < ... <ty = ty, and the number of
points occurring in each subinterval is observed. Denote
{Nl,NQ,... ,Nm}, with Nz = N(tl) — N(tifl)l, these
counting observations.

Observe that, the mean function E [N;] and the covari-
ance function Ry (t;,t;) associated with the observations
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IN; represents the points occurred in the observed doubly
stochastic Poisson process during the interval [t;_1,t;).

N; are given by the expressions [2]

E[N) = / " BN 0)]do
tit;1 . (1)
RN(ti,t]‘) = / / R,\(O’,T)dO'dT + E[NZ}(SH

where d;; is the Kronecker delta function.

Moreover, the cross-covariance function between the in-
tensity process A(t) and the observation N;, Ryn(t,t;), is
of the form

Ran(t.t:) = /t Ra(t, 0)do @)

Next, our purpose is to derive a linear estimate S\(t) of
the intensity process A(t) from the set of counting obser-
vations {N1, Na, ..., Ny, }, with ¢ > t,,. Specifically, we
seek estimators which are optimal in the sense of mini-
mizing the mean-square error

Under this error criterion it is well known that the best so-
lution, the linear minimum mean-square error (LMMSE)
estimate, can be expressed as a linear functional of the
data of the form [2]

m

A(t) = ENO]+ D h(t,t) {N; = E[Ni]}, t >t (4)

i=1

where the impulse-response function h(t,-), must satisfy
the equation

m

Ran(t,t;) = h(t,t:)Ry(ti,t;) (5)

i=1
for t1 <t; <ty and t > ty,.

As a consequence, the LMMSE estimation problem is
theoretically determined from the solution of the equation
(5) which only involves the covariance functions (1) and
(2), that is, only requires the knowledge of the first and
second-order moments of the intensity process. However,
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from the practical point of view an efficient algorithm
for its computation is desirable. In this framework, dif-
ferent techniques have been applied to obtain recursive
LMMSE estimation procedures for the intensity process
of an observed DSPP (see, for example, [2] and [7]). In
particular, the most extensively applied algorithm is the
popular Kalman filter which requires that the intensity
process to be estimated satisfies a state-space model. Al-
though this condition is valid for a wide class of processes,
there is a great number of practical situations where no
linear dynamic model for the intensity process of a DSPP
is available.

Therefore, in this paper we propose an alternative
approach which is applicable under less restrictive struc-
tural conditions on the intensity process and leads to an
efficient algorithm for the LMMSE estimator of the in-
tensity process of a DSPP. In fact, we only assume that
the intensity process has a finite-dimensional covariance
function of the form

Rx(t,s) = a'(t)b(s) (6)
where a(-) and b(-) are vector-valued functions of dimen-
sion q.

Note that, this is not a very restrictive hypothesis since
the kernel form of covariance (6) is easy to obtain (e.g.
via inverse Fourier) and is suitable for expressing both
stationary and non-stationary processes. Then, this type
of covariance appears naturally in many general applica-
tions [2].

Next, under the hypotheses established in this section,
efficient procedures for computing the LMMSE estimator
(4) and its associated minimum mean-square error (3) are
developed in the next section.

2 LMMSE Estimation Algorithm

The main objective now is the design of an efficient al-
gorithm for the LMMSE estimate A(t) for the intensity
process A(t) of a DSPP N(t), based on the discrete time
counting observations {Ny, No, ..., Ny}, with ¢ > ¢,
For that, we first seek the solution, the optimal impulse-
response function h(t,t;), of the equation (5). In the fol-
lowing theorem, a feasible procedure for its computation
is presented.

Theorem 1 The optimal impulse response funtion
h(t,t;) can be expressed in the form

h(tatj) = al(t)g(tj7tm)a tq S tj S tmv t 2 tm, (7)
where the g-dimensional vector-valued function g(t;,-) is
resursively computed as follows
gltr te)Y (te)g(ts ti—1)  (8)

g(tj, tx) = g(tj, te—1) —

for t; < ty, with
{I — Q(tr-1)} ¥ (te)p(tr) ! 9)

Y (t )Q(tk DY (te)}, I s
= ftk o)do, P(ty) =

gty tr) =

where p(tp) = {Rn(tk,tr) —
the identity matriz, ~(ty)

tt:,l b(o)do, and the q x q-dzmenszonal matriz Q(t),
k=1,...,m, satisfies the recursive equation

Q(tr) = Q(tu—1) + g(tw, tr)Y' (te) {1 — Q(te-1)} (10)

Q(to) = 0gxq

with Ogxq the g X g-dimensional matriz whose elements
are all zero.

Proof

First of all, it should be observe that from (6) the co-
variance function Ry (t;,t;) associated with the counting
observations N; defined in (1) can be written as

Ry (i, t5)

=/ (k) () + EINGo; (1)

t
with ~(tx) ftk o)do and P(tx) = [," b(o)do.
Moreover, the cross-covariance function Ryn(t,t;) be-
tween the intensity process A(t) and the observation N;
given in (2) becomes

Ran(t,t;) = a'(t)y(t:) (12)
Thus, substituting (11) and (12) in (5) we have
h(t, 1) EIN) = &' (t)3(t;) — D h(t ta) (1) ()
i=1
where t; <t; <t,, and t > ¢,
Then, introducing a function g(t;, tx) such that
k
g(ty, ) E[N;] = (t;) — Y &(ti, b)Y (t:)(t;)  (13)
i=1

for t1 < t; < ty, the equation (7) for the optimal impulse-
response h(t,t;) holds.

On the other hand, from (13) it follows that

{g(t;, tx) — g(t), tr—1)} E[N;] =

k-1
- Z {g(ti te) — &(ti tu-1)} ¥ (t:)2(t))

—g(tr, tr)Y (tr)®(t;)

Therefore, taking (13) into account, the recursive formula
(8) is derived.
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Furthermore, for j = k, the equation (13) becomes

k

gtk te) EINk] = ¥ (tr) — Zg(tmtk)“/'(tiW(tk)
- i=1
=(te) — Y gt te)Y (t:) ()
1=1

— gtk tre)Y (tr)p(tr) (14)

Now, from (11), the equation (14) can be written as fol-
lows:

>
|
—

gtk tr) RN (e, te) = ¥ (te) — > &(ti, ti)Y (t:) Y (tr)

%

Il
_

As a consequence, using (8) in this last equation, it can
be checked that

E

-1

g(ti, te—1)Y (t:)(tr)
1

g(tk, ti) By (s ti) = ¥ (te) —

7

k—1
+g(tr, te)Y (te) > gt te—1)Y (t)e(tr)  (15)
i=1
Therefore, if we introduce the auxiliary function
k
Q) = gt b () (16)

=1

the equation (15) becomes

g(th, tr) [RN (s tr) — ¥ (tr) Q(th—1)% (tr)]
= (tr) — Qtr—1)¥(tr)

and hence, the expression (9) is obtained.

Finally, using (8) and (16), we can write

Q(tr) — Q(tr-1)

k-1
= g(tr, tr)Y (tx) + Z {g(titr) — g(ti tr—1)}~'(t:)

k—1
= g(tr, tre)Y (tr) — g(tr, tr)Y (tr) Z g(ti, te—1)y ()

= g(tr, tr)y (tr) {I — Q(tr—1)}

and thus, it is obvious that Q(¢x) obeys the equation (10)
with the initialization at £k = 0, Q(to) = 0O4xq and the
theorem is proven.

Next, from Theorem 1, a recursive algorithm for the
LMMSE estimator of the intensity process is provided
in the following result.

Theorem 2 The LMMSE estimate for the inten-
sity process A(t), A(t), based on the observations
{N1,Na,... ,Np,}, witht > t,,,, can be computed through
the equation

At) = E[A®)] +a' (t)e(ty), t>tm (17)

where the g-dimensional vector e(ty), k = 1,... ,m, obeys
the recursive erpression

e(tk) = e(tk—l)
+ gt tk) {Nk — E[Ni] —~'(tx)e(te-1)}
e(to) = 04
(18)

with 0, the g-dimensional vector whose elements are all
zero and the function g(tx,tr) given by the equation (9).

Proof

Substituting (7) in (4) we get

m

i=1

Then, introducing the auxiliary function

k

e(tr) =Y g(ti,tr) {N; = E[Ni]}

i=1

(19)

the expression (17) for the LMMSE estimate A(t) holds.

Moreover, from (8) and (19), we have
e(ty) —e(tk—1) = g(tk, tx) {Nr — E [Ny]}
k-1
+ Z {g(ti; te) — g(ti; te—1)} {N;: — E[Ni]}

= gtk ti) {Ni — E'[Ni]}
k—1
— g(tr, i)Y (t) D g(ti te—1) {N: — E[Ni]}

i=1

= g(th, tx) {Nr. — E [Ng] — ' (tr)e(te-1)}

and the equation (18) for e(¢x) is obtained with the ini-
tialization at k = 0, e(to) = 0,.

In the next theorem, a recursive procedure for computing
P(t), a measure of the estimation accuracy for the
LMMSE estimate of the intensity process (17) is shown.

Theorem 3 The LMMSE estimation error covariance
P(t) associated with (17) is
P(t) = Ra(t,t) —a'(t)Q(tm)b(t), t=tm

where Q(ty,) satisfies the equation (10).

(20)
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Proof

From (4), the minimum mean-square error (3) can be
written as

m

P(t) = Ra(t,t) = Y h(t,t:) Rua(ti t), t>tm

i=1
Now, using (2) and (7) in the above equation, we get

m

P(t) = R)\(t,t) — a’(t) Zg(ti,tm) /ti R)\(U, t)da

i=1 tim1

Then, applying that Ry (o,t) is a finite-dimensional co-
variance function of the form (6), we have

m

P(t) = Ra(t,t) —a'(t) Y g(ti, tw) (t:)b(t)

i=1

Finally, taking (16) into account, the equation (20) is
verified.

3 Numerical Example

In this section, the behavior of the proposed LLMSE esti-
mate is numerically analyzed. For that, as an illustrative
example, we consider a DSPP {N(¢),¢ > 0} whose inten-
sity process {A(t),t > 0} is a gaussian random process
with mean function

EXNt)]=1—e%
and covariance function

Ry(t,s) = 3(1 —e )1 —e?) (21)

It should be noted that, processes with exponential co-
variance are common in different areas such as in telecom-
munications networks with the aim of modelling the call
arrival intensity of any given traffic stream [8] or in quan-
titative financial for modelling the intensity rate in the
study of the pricing of defaultable derivatives, such as
bonds, bond options, and credit default swaps (see, e.g.,
[9] and [10]).

Moreover, remark that the covariance function of the
intensity process Rx(t,s) given in (21) is a finite-
dimensional covariance of the form (6) where a(t) =
1(1—e ) and b(t) = (1 — e~ ).

On the other hand, we consider that the process N (t)
is observed in the interval [0,10) which is partitioned
into m = 100 disjoint intervals according to the times
t; =(i—1)/10, for i =1,... ,100. Thus, we have the ob-
servations set { Ny, ..., N1go}, with NV; = N(¢;)—N(t;—1).

Next, from the set of counting observation {Ny, ... , Ny, },
the LMMSE filtering estimate (17) of the intensity pro-
cess A(t), A(t) with ¢ = t,,, as well as its mean square
error (20), have been computed.

Figure 1 illustrates the simulated values for the inten-
sity process in comparison with their filtering estimations
computed through Theorem 2. Notice that different sim-
ulations have been made and the one presented here is
representative. Furthermore, the LMMSE filtering error
(2) associated with the above estimate (20) is shown in
Figure 2.

14

1.2f B

Figure 1: Simulated values for A(t) (solid line) and the
filtering estimate A(t).
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Figure 2: LLMSE filtering error P(t).

4 Conclusions and Future Work

In this paper, a new LMMSE estimation algorithm has
been developed for computing the intensity process of
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a DSPP under the only assumption that the inten-
sity process has a finite-dimensional covariance func-
tion. This hypothesis is valid for general stationary and
non-stationary processes and then, it can be widely ap-
plied. Hence, the proposed methodology is an alternative
approach to the Kalman-Bucy filter for those situations
in which a state-space model is not readily at hand.

In future work our efforts will be directed to developing a
general LMMSE estimation algorithm valid for all types
of estimators (smoothing, filtering and prediction esti-
mates) of any linear or nonlinear operation of the inten-
sity process and extend these results to those situations
where more than one DSPP is observed simultaneously,
that is, to include doubly stochastic multichannel Poisson
processes.
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