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Optimality Conditions for Best L1 Data Fitting
subject to Nonnegative Second Differences

S. S. Papakonstantinou® and I. C. Demetriou

Abstract— If plotted values of measurements of
function values show some gross errors and away from
them the function seems to be convex, then it is suit-
able to make the least sum of absolute change to
the data subject to the condition that the second
divided differences of the smoothed data are non-
negative. The constraints enter by the assumption
of non-decreasing returns of the underlying function,
which implies convexity. It is a highly structured con-
strained L1 approximation problem, which can be ex-
pressed as a linear programming calculation. Neces-
sary and sufficient conditions for a solution to this L1
problem are presented.
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1 Problem definition

We present characterization conditions for the problem of
calculating a best ¢; convex approximation to measured
values of a function f(z). The data are the pairs (z;, ¢;),
i = 1,2,...,n, where the abscissae x;, i = 1,2,...,n,
satisfy the inequalities 1 < xzo < -+ < x,, and ¢; is
the measurement f(z;). We assume that ¢; = f(x;) +
€;, where ¢; is a random number. We also assume that
there are some gross errors in the data due to blunders.
As an error consequence the convexity property of the
(unknown) underlying function has been lost. We address
the problem of calculating numbers y;, 1 = 1,2, ..., n, from
the measurements that are smooth and closer than the
measurements to the true function values. We regard the
original data and the smoothed values as n-vectors, ¢ and
y respectively, and consider the problem of minimizing
the sum of the moduli of the errors
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subject to the convexity constraints

y[mi,1,$i,$i+1} 207 7::2,3,...,TL—]., (2)
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is the i-th second divided difference on the components of
y. We call y a best £; convex fit to ¢, and also we call fea-
sible any m-vector that satisfies the constraints (2). The
constraints on y are linear and in order to simplify our
notation, we denote the constraint normals with respect
toy by a;, j=1,2,...,n— 2, and we set

y['rj7xj+17x]+2] :Q?gv .7:172’?”_2 (4)
Since each divided difference depends on only 3 adjacent
components of y, it immediately follows that the con-
straints have linearly independent normals.

This problem may also be derived when the data come
from processes that show increasing rates of change (cf.
convexity), but one does not have sufficient information
to set up a parametric form for the underlying function
(see [5]). Thus, by writing the i-th second difference in
the form

Y [$71—1,33i,3?i+1] =
1 Yirl — Yi
Ti41l — Tj—1

Yi —Yi—1
- ) (5)
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the inequalities on the rates of change of the sequence
{y;: i=1,2,...,n}

Yi+1 — Y > Yi —Yi—1 (6)
Ti41 — X4 Tj — Tj—1

imply the inequalities (2). Therefore, an alternative ex-
pression of the constraints (2) is that we require increas-
ing rates of change on [z1,z,], a property that is quite
common in fields like economics and evolution processes,
where a potential shape for the underlying function is
that of a convex curve (see [6], [14], [15]). The piece-
wise linear interpolant of the smoothed values (x;,y;),
i=1,2,...,n, provides some useful geometric description.
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We begin by noting that if all the divided differences are
zero then the smoothed values lie on a straight line. Oth-
erwise some divided differences are nonnegative and at
least one of them is positive. This gives to the piecewise
linear interpolant the convexity property.

Besides that the convexity shape is likely to strike imme-
diately a user’s eye when he inspects the data, two prop-
erties of our calculation that provide some advantages
over other smoothing calculations are as follows. First,
the approximation process is a projection because, if the
data satisfy the convexity constraints, then they provide
the required approximation. Second, there is no need
to choose a set of approximating functions, because the
missing property of convexity is imposed as a smoothing
condition, namely inequalities (2), and the optimization
calculation defined in the beginning of the section under-
takes the smoothing process.

Similar problems are studied and characterized by [11],
where (1) is replaced by the supremum norm

¢ —yll = max |6 —uil (7)

1<i<n

and by [4], where (1) is replaced by the least squares norm

n
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Expression (7) is appropriate when the data errors have
a uniform distribution, for example, if the measuring
process rounds each measurement to the nearest integer,
while expression (8) is appropriate when the data errors
have a normal distribution. On the other hand, meth-
ods that rely upon (1) are well suited to long tailed error
distributions, like Cauchy or Laplace, and have the re-
markable property of ignoring some gross errors in the
data (in the bibliography this property is called robust-
ness). This occurs because a best ¢ fit y* depends on
the data through the signs of the differences (¢; — y),
so that once a difference exceeds a certain amount, this
difference is ignored in the calculation (see [9]).

We express the constraints (2) in the matrix form CTy >
0, where C7 is the (n — 2) x n matrix whose rows are
the constraints normals QJT, j=12,..,n—2 and we
formulate the linear programming problem that gives a
best ¢; convex fit to the data by following [2]:

Minimize (u + v) (9)
subject to

g/ —g” +Q_Q:9

Y,y uv,u =0,

where for the n-vector y we put y = Q, — y”; u and v

"o, o, .
are n-vectors and v is a (n — 2)-vector. Therefore, it is

rather straightforward to solve problem (1)-(2) by apply-
ing standard linear programming techniques to (9)-(10)
or to its dual (see [1], [3]), where one should take account
of the constraints structure. However, since several thou-
sand data points may occur in many calculations, we need
a special technique for this problem, which is faster than
applying a general linear programming algorithm.

The purpose of this article is to express conditions for
the solution of problem (1)-(2) in terms of Karush-Kuhn-
Tucker multipliers. Thus, in Section 2, necessary and
sufficient conditions for a best ¢; convex fit are obtained
that are more useful than the linear programming form
of the problem. In Section 3, we state some concluding
remarks.

2 The characterization theorem

It is well known that a best ¢; fit from a linear subspace
to ¢ satisfies certain interpolation conditions (see [10],

[12]), which in our case may be expressed in the form of
the following theorem.

Theorem 1 Let A be a nonempty subset of
{1,2,...,n — 2} and denote by |A| the number of
elements of A. Then there exists a wvector vy that

minimizes (1) subject to the equality constraints

ajy=0, j €A,

(11)
and that has the property

yi:¢i,i€I§{1,2,...,n}, (12)

with set I containing at least n — |A| indices.

Proof: See [8]. B

It follows that a best ¢; fit y to ¢ subject to (11) may be
calculated by seeking a set I that allows y to be obtained
by interpolation to the points {¢; : i € I}. Therefore,
in order to minimize (1) subject to (2), Theorem 1 sug-
gests searching for a best ¢; fit among feasible vectors
defined by the conditions of this theorem. Theorem 4
below is useful for testing whether a feasible vector that
satisfies the conditions of Theorem 1 is optimal, in terms
of some parameters \;, i ¢ I. Theorem 4 makes use of a
characterization of a best £; fit subject to linear equal-
ity constraints (Lemma 2) and the separating hyperplane
theorem (Theorem 3). Let s; be the sign of y; — ¢;. Ob-
viously, s; is +1, if i ¢ I.

Lemma 2 A vector y € R" minimizes (1) subject to
(11) if and only if there exists a vector v in

V:{QGRHZ "Ul|§]., Ui:Si,i¢I}

such that

<
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Proof: Let {B; : j = 1,2,...,n — |A|} be a basis for
the linear subspace that is defined by (11) (see [8] for a
suitable construction), where each B, is defined on the
abscissae x;, i = 1,2,...,n. We define B to be the n x
(n — |A]) matrix with (¢,j) elements

Bj(z;), j=1,2,...,n—|A], i=1,2,...,n. (13)
n—| Al

Then y is written as y = > o¢,;B; = Bg, where g has
Y 17 =

to be determined by the minimization of ||¢ — Ba||;. In
view of Theorem 6.1 of [12], ¢ is optimal if and only if
there exists v € V such that

BTv=0

or
o'BTy =0 or gTy =0.1

Theorem 3 (Separating Hyperplane) For any m X n
matriz M and any m—vector v, either MA = v, A > 0
has a solution \, or MTd >0, vT'd < 0 has a solution d,
but not both.

Proof: See, for example, [13]. B

Theorem 4 We assume that a vector y* satisfies the
conditions of Theorem 1. Then, y* minimizes (1) subject
to Q;*»Fg >0,7=12,..n—2, if and only if there exist
multipliers \;, j € A, such that

Z CHIES Z Ajay, (14)
il JEA

where s} is the sign of y7 — ¢;.

Proof: Let y* be a feasible vector that satisfies the con-
ditions (11) and (12) of Theorem 1. To prove the first
part of the theorem, suppose there exist A;, j € A, that

satisfy (14) and (15). Then we define the function

n

Fly) =) si(yi— )

=1

(16)

which, due to the choice of s* and y*, obtains the value

F(y*) = lly” = 2l

We show next that the problem of minimizing F(y) sub-
ject to the constraints

(17)

ajy >0, j€A, (18)

is solved by the specific y*. Indeed, since inequalities (18)
are satisfied, for the active set conditions

QJT,* =0, j¢€ Av (19)

are satisfied, since F(y) is a differentiable function of y,
since VF = s* and equation (14) imply the equation

VF =Y \a, (20)

JjEA

and since, by assumption, the nonnegativity conditions
(15) hold, we have sufficient conditions for y* to be opti-
mal for the problem of minimizing F(y) subject to (18).
In addition, these are also sufficient conditions for y* to
minimize F'(y) subject to the constraints ;

(21)

because y* is feasible and, for the specific set A, (20) and
(15) hold.

Now, for every y

S silyi— o) <Y Isillyi — dil < lyi — ol (22)
=1 i=1 =1

but at the specific (feasible) y* due to (17) this inequality
is satisfied as an equation. Since the left-hand side of
inequality (22) is also the minimum value of F' at y* over
all feasible vectors, it follows that (14) and (15) provide
sufficient conditions for y* to minimize (1) subject to the
constraints (2), which completes the proof of this part of
the theorem.

To prove the converse result, suppose that y = y* mini-
mizes (1) subject to (2) and that there are no nonnegative
Aj, j € [1,n — 2], that satisfy the conditions (14).

Since, by assumption, y minimizes (1) subject to the con-
straints (11), in view of Lemma 2, there exists a vector
v € V such that

y'v=0. (23)

We are going to construct such a vector v. Suppose v is
written as a linear combination of a;, j € 4,

v = Z Ajaj,

JEA

(24)

which allows (23) to be satisfied, since Qfg =0,j5€ A
Then, in view of the free signs of ); in (24) and Theorem
3, there exists a vector d € R™, that gives

Qfd >0, je A, and vTd < 0. (25)

It follows that there exists a small and positive number
a, such that y + ad is feasible, whenever y is feasible. In
addition, the value of the objective function is reduced
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along d. Indeed,

Z:l|yi+adi_¢i|:
Z|yi+adi—¢i|+Z\yi+adi—¢i|:

i€l il

Yoaldi| + 30 s (yi +ad; — ¢;) =

icl igl

Soaldil 4+ > si(yi — i) + > siad; =

iel igl igl

2o lyi — il +alX |di + 3 sidi] =

i=1 el i1

oy — dil +ald” sign (di) di + ) sidi] =
=1 icl igl

1

where v € R" is defined by
sign(d;), 1€l

”i_{ s, i¢l

Thus, the construction of v is complete, this vector be-
longing to set V', since

Vi = Sq, Z¢I7 "Ul|§]., i€ 1.

.
Il

Hence the conditions of Lemma 2 are satisfied.

Since the value of the objective function is reduced as we
move from y along d, for dTy < 0, a contradiction to the
optimality of y is derived. Therefore the assumption on
the signs of )\; is not true, and the proof of the second
part of the theorem is complete. B

Theorem 4 is useful, because one can find out whether a
trial ¢ convex fit to ¢, which is at a linear subspace of
the space of variables (that is, it satisfies equality con-
straints (11)), is optimal by checking only the conditions
(14) and (15). Moreover, the proof of the second part of
the theorem provides a constructive method for obtain-
ing another convex fit that is better than y* if condition
(15) is not satisfied. a

3 Concluding remarks

We have provided characterization conditions for a best
{1 convex fit to univariate data, where convexity is de-
fined by nonnegative second divided differences of the
smoothed data, in terms of Karush-Kuhn-Tucker multi-
pliers. It is a remarkable result, which suggests the idea
of minimizing objective function (1) in a feasible descent
direction (see, for example [7]) and in a way that will take
advantage of the signs of the Karush-Kuhn-Tucker type
multipliers of our problem.

The corresponding least squares and supremum norm
problems had been studied and characterized by [4] and
[11].

It is straightforward to generalize the theorems of this
paper to the case of a discrete best ¢; approximation
with linear inequality constraints.
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