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Abstract - The problem of convexity runs deeply in economic 
theory. For example, increasing returns or upward slopes 
(convexity) and diminishing returns or downward slopes 
(concavity) of certain supply, demand, production and utility 
relations are often assumed in economics. Quite frequently, 
however, the observations have lost convexity (or concavity) 
due to errors of the measuring process. We derive the Karush-
Kuhn-Tucker test statistic of convexity, when the convex 
estimator of the data minimizes the sum of squares of residuals 
subject to the assumption of non-decreasing returns. Testing 
convexity is a linear regression problem with linear inequality 
constraints on the regression coefficients, so generally the work 
of Gouriéroux, Holly and Monfort (1982) as well as Hartigan 
(1967) apply. Convex estimation is a highly structured 
quadratic programming calculation that is solved very 
efficiently by the Demetriou and Powell (1991) algorithm. 
Certain applications that test the convexity assumption of real 
economic data are considered, the results are briefly analyzed 
and the interpretation capability of the test is demonstrated. 
Some numerical results illustrate the computation and present 
the efficacy of the test in small, medium and large data sets. 
They suggest that the test is suitable when the number of 
observations is very large.  
 
Index terms - Cobb-Douglas, convexity, concavity, data fitting, 
diminishing return, divided difference, Gini coefficient, infant 
mortality, least squares, money demand, quadratic 
programming, statistical test 
 

I. INTRODUCTION 
The problem of convexity runs deeply in economic theory 

[24]. For example, increasing returns or upward slopes 
(convexity) and diminishing returns or downward slopes 
(concavity) of certain supply, demand, production and utility 
relations are often assumed in economics. Similar situations 
are familiar in fields, like decision-making [18], behavioral 
sciences [27], biology [11] etc.  

The purpose of this paper is to present a procedure for 
testing the hypothesis of convexity of a set of univariate 
observations. This procedure relies on the Karush-Kuhn-
Tucker multipliers of the following optimization calculation  
[7]. Let {( , ) : 1, 2,..., }i ix i nϕ =  be data, where the abscissae 

, 1,2,...,ix i = n  are in strictly increasing order, and iϕ  is the 
measurement of an underlying (unknown) function  at ( )f x
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ix  contaminated by random error. If  is convex but 
convexity has been lost due to errors in the measuring 
process, we seek numbers {  that minimize 
the objective function   

( )f x
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subject to the convexity constraints 
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is the i th second divided difference (see, for example, [22]) 
of the required numbers. We refer to this problem as the 
convex estimation problem and we regard the measurements 
and the smoothed values as n-vectors ϕ  and y respectively. 

We see that the constraints on y  are linear and, in order to 
simplify our notation, we denote the constraint normals with 
respect to y  by , 1, 2,..., 2,ia i n= −  so = 1 2[ , , ]i i iy x x x+ +

,T
iy a for  1,2,..., 2.i n= −  Since each divided difference 

depends on only 3 adjacent components of ,y  it follows that 
the constraints have linearly independent normals. Further, 
since the second derivative matrix of (1) with respect to y  
is twice the unit matrix, the problem of minimizing (1) 
subject to (2) is a strictly convex quadratic programming 
problem that has a unique solution. We refer to this solution 
as the convex estimator of the data.   

The calculation of the convex estimator depends on the 
Karush-Kuhn-Tucker conditions (see, for example, [19]) for 
the minimization of (1) subject to the constraints (2). They 
state that *y y=  is the convex estimator if and only if the 
constraints (2) are satisfied and there exist nonnegative 
Karush-Kuhn-Tucker multipliers  such that the 
first order condition 

*{ : }i iλ ∈ S

 
* *1

2 i i
i

y aϕ λ
∈

− = ∑
S

                                                               (4) 
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holds, where  is the subset S *
1 1{ : [ , , ] 0}i i ii y x x x− + = . We 

define 0,iλ = for all integers [2, 1] \ .i n∈ − S  Thus, λ  is a 
-vector.  ( 2n − )

Several general quadratic programming algorithms are 
available [10], but for the convex estimator the algorithm of 
[7] takes account of the constraint structure, least squares, B-
splines (see, for example, [26]) and active set methodology 
providing a very efficient calculation. Because sometimes it 
would be better to employ non-positive instead of 
nonnegative divided differences, this algorithm may well be 
applied after a change of sign of the components of ϕ , thus 

providing a concave estimator to ϕ  by minimizing (1) 
subject to the (concavity) constraints 

 
1 1[ , , ] 0i i iy x x x− + ≤ , .                                    (5) 2,3,..., 1i n= −

 
It might help to state an alternative form of the constraints 

(2), which is given by [17]. Specifically, since the i th 
second divided difference is expressed in a form involving 
the difference of two consecutive first divided differences 
(see, for example, [3]) 
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− +
+ − + −
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⎦
,              (6) 

 
the constraints (2) imply the inequalities (increasing rates of 
change) 

 
1 1

1 1

, 2,3,..., 1,i i i i

i i i i
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− −
≥ =

− −
−                                   (7) 

 
and similarly the constraints (5) imply the inequalities 
(decreasing rates of change) 

 
1 1
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, 2,3,..., 1i i i i
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y y y y
i n

x x x x
+ −
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− −
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− −
.−

 which gives an 
id

 
convexity problem, but it is beyond the scope of this paper. 

 

ure 
for testing the null hypothesis of linearity of the data 

 

                                 (8) 

 
Therefore, the constraints of our problem now are that we 

require increasing rates of change in the convexity case and 
decreasing rates of change in the concavity case. For 
example, conditions (8) might be derived from the 
assumption of diminishing marginal productivity of inputs 
in several production relations [24]. Also, conditions (7) 
might be derived from the assumption of increasing 
marginal utility of a utility curve in decision-making [18]. 
Moreover, these conditions are able to describe a variety of 
underlying functions without relaying on parametric 
expressions.  

The paper is organized as follows. In Section II we 
specify the type of a test statistic for convexity. Specifically, 
we test linearity against convexity, which requires the 
calculation of the Lagrange and the Karush-Kuhn-Tucker 
multipliers of the corresponding constrained optimization 
problems. In Section III and IV we give the numerical 
method for the linearity and convexity case calculation. In 
Section V we give the numerical performance of the test. In 
Section VI we present applications of the test for the 
assumption of convexity on certain economic data and 
reveal important underlying properties. Finally, some 

concluding remarks are presented in Section VII. The 
Fortran program that implements the convexity test consists 
of about 1800 lines including comments,

ea of the size of the required calculation. 
The subject of convex estimation has raised some interest 

over the past years because of its applications to economics, 
statistics and engineering [5], [6], [7], [8], [14], [15], [17], 
[23], [25]. In [15] especially the consistency of the convex 
estimator has been proved, thus providing a good reason for 
using it in statistical and economic analyses. The work of 
[1], [9], [21], [28] and [16] may be further inspiring for 
alternative test statistics and their distribution for the

II.   THE TEST FOR CONVEXITY 
In view of the above data, we wish to develop a proced

0 :H  1 1[ , , ] 0i i ix x xϕ − + = , 2,3,..., 1i n= − ,                           (9) 

against the alternative hypothesis of convexity of the data 
 

 

1 :H  1 1[ , , ] 0i i ix x xϕ − + ≥ , 2,3,..., 1i n= − .                         (10) 
 

Under H0, the estimator of ϕ , say it is y% , is obtained by 
inimizing (1) subject to the equality constraints  

 
m

1 1[ , , ] 0i i iy x x x− + = , 2,3,..., 1i n= − .                                   (11)     
 

Under H1, the estimator of ϕ  is *y .  By using matrix 
notation, the constrain e null hypothesis estimate may 
be e d as 

ts for th
xpresse 0TA y =  and for the alternative as 0TA y ≥ , 

where A  is the ( 2)n n× −  matrix 
co

whose columns are the 
nstraint normals { : 1, 2,..., 2}ia i n= − .   
The null estimate is on the boundary of the constraint 

region of the alternative estimate, because it satisfies 
immediately as equalities all the constraints required by the 
latter estimate. Therefore, the null hypothesis requires an 
estimate to the data that cannot be better than the convex 
estimator, because the latter one allows some inequalities 
that are amp  satisfied.  

Clearly, 
ly
y%  is the unique solution to the corresponding 

equality constrained problem defined by H0, because 
equations 0TA y =  are consistent and the constraint normals 
are linearly independent. We see in section III that the null 
hypothesis estimate is the line fit to the data. Moreover, if λ%  
is the vector of Lagrange multipliers associated with y% , 
then it satisfies the first order conditions 

 
2( )y Aϕ λ− = %% .                                                                 (12) 
 
An efficient method to obtain the Lagrange multipliers from 
(12) is provided by [7] and will be presented in Section III. 

In order to test the null hypothesis, we follow [13] and 
define the Karush-Kuhn-Tucker test statistic KKT LMξ − , 
namely  
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1 ( ) ( )
4

T T
KKT LM A Aξ λ λ λ λ

σ− = − −% % ,      (13) 

as the least value of the objective function  
 

( ) (2

1
4

T TA A )λ λ λ
σ

− % λ− %

n

,                                               (14) 

 
subject to the conditions 0, 2,3,..., 1i iλ ≥ = − . In practice, 
however, we make use of an expression of KKT LMξ −  that 
depends on the following lemma. 
 
Lemma 1  Let  let the function {2,3,..., 1},n⊂S −

 

( ) ( )1 11 1
2 22 2

Tn n
i i i ii i
a aϕ λ ϕ λ− −

= =
+ +∑ ∑ ,                 (15) 

 
and let *λ  be a value of λ  that minimizes expression (14) 

subject to the constraints. Then *λ  is unique and the vector 

 * *1
2 i i

i
y ϕ λ

∈

= + ∑
S

a ,                                                          (16) 

minimizes the function (1) subject to the constraints 
, . 1 1[ , , ] 0i i iy x x x− + = i ∈ S

 
Proof: The proof  is based on [7]. 
 

In view of this lemma and (12) we let |·| denote 
cardinality and express (13) in the form  

( ) ( )* *

2

( ) ( ) ( ) ( )
,

( 2 )

T

KKT LM

y y y y

n

ϕ ϕ ϕ ϕ
ξ

σ−

− − − − − −
=

− −

% %

S
       (17)      

which has certain computational advantages that are directly 
relevant to the methods of calculation of  *y  and y% .  

If 2σ  is known, then KKT LMξ − follows the asymptotic chi 
squared distribution with 2n − − S  degrees of freedom 

[28]. If, however, 2σ  is unknown then we replace 2σ  in 
(17) with the standard unbiased estimate, 2s  say, whose 
value is * *2 ( ) ( ) /Ts y yφ φ= − − S .  In this case, KKT LMξ −  

follows the asymptotic ( 2 ,F n − − S S )  distribution [16]. 
  
 
III. LINEAR REGRESSION IN TERMS OF ZEROED 

SECOND DIVIDED DIFFERENCES 

This section considers a useful interpretation of the 
minimization of (1) subject to the equality constraints (11), 
as defined by the null hypothesis. Since 1 1[ , , ] 0i i iy x x x− + =% , 
the points {( , lie on a straight line. 
Then, in view of constraints (11), it follows that all points 

, ), 1, , 1}k kx y k i i i= − +%

{( , ) : 1, 2,..., }i ix y i n=% , lie on a straight line. Due to 
uniqueness, this remark implies that {  may 
also be obtained from the linear regression model 

: 1,2,..., }iy i n=%

,i i i i iax bϕ ε ε= + + 2(0, ), 1, 2,...,N i nσ =

n

~ ,                    (18) 

where  and b  are parameters to be estimated given the 
observations 

a
{ : 1, 2,..., }i iφ =  at the abscissae 

{ : 1, 2,..., }ix i n= . Besides that the equality constrained 
minimization calculation (1)-(11) avoids the serious loss of 
accuracy that usually occurs in the linear regression model 
(18), there is an important reason to be preferred in our 
calculation.  Because it employs constraints, it is particularly 
informative about those divided differences that have an 
impact on the line fit due to the size of the Lagrange 
multipliers. Indeed, since the Lagrange multipliers can be 
interpreted as a sensitivity measure of ( )yΦ %  to the 

associated constraint, some iλ%  may suggest the possibility 
of further improvement of the linear fit, and they indeed do 
so when the data follow a convex trend. Further, if the 
Lagrange multipliers pinpoint important constraints due to 
the underlying convexity, some breaks may be allowed in 
the sequence (11) leading to the inequality constraints (2). 
This of course makes the convex estimator more flexible 
than the linear estimator of the data. The discussion suggests 
that the Lagrange multipliers of the linear estimate and the 
Karush-Kuhn-Tucker multipliers of the convex estimate 
may prove valuable in the construction of some statistics 
that test the convexity of the data. 

The procedure for obtaining λ%  depends on the first order 
conditions (10), which are written as 

1

2
2( ) n

ii i
y aϕ λ−

=
− = ∑ .                                                       (19) 

Since the constraint normals are linearly independent, it 
follows in theory that the overdetermined vector equation 
(19) is consistent and that it defines a unique vector λ% . The 

calculation of λ%  requires further attention. For each 
2,3,..., 1i n= − , we pick a scaled row of the vector equation 

(19) as follows. We choose the i th row multiplied by 
1 1( i i )x x− +− , so the first and last rows are never chosen, 

which helps numerical stability. Thus, we form a square 
system of equations in the required multipliers 
{ : 2,3,..., 1}i i nλ = − , whose right hand sides have the 
values 1 1{2( )( ) :i i i ix x y ϕ− +− −  . This linear 
system is tridiagonal, the equation that is picked for 

2,3,..., 1}i n= −

iλ  
having two nonzero off-diagonal elements, because the 
integers 1i −  and 1i +  also participate in this construction. 
Thus, the coefficient matrix is 
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Lemma 2  Matrix  is positive definite. D
 
Proof. We immediately see that the diagonal elements of 
 are positive, the off-diagonal elements are negative and 

equal, each diagonal element is at least the sum of the 
moduli of the off-diagonal elements (either in each row, or 
in each column of the matrix), and suitable rows possess 
strict diagonal dominance. Thus, matrix D is positive 
definite. ■ 

D

It follows that the linear system in { : 2,3,..., 1}i i nλ = −  
can be solved efficiently and stably by a Cholesky 
factorization in only  computer operations (see, for 
example, [12]). The calculation of 

( )O n
y%  is carried out by the 

method of Section IV. 

 
IV. AN EFFICIENT NUMERICAL METHOD FOR 

THE CONVEX ESTIMATION 

In this section we outline the quadratic programming 
method of [7] for the calculation of the convex estimator 

*y . It is an elaborate technique that is by far faster than a 
general quadratic programming algorithm, because it takes 
into account the structure of the constraints.  A large part of 
its efficiency is due to a B-spline representation of the 
solution and the banded matrices that occur. For proofs on 
the quadratic programming, one may consult this reference. 
This section, however, is not directed to a precise 
description of the algorithm, but to emphasize the facts that 
are needed in defining the test statistic KKT LMξ − . 

The method begins by calculating an initial 
approximation to the convex estimator in only O(n) 
computer operations, which is an advantage to the quadratic 
programming calculation, because either it identifies the 
optimal active set or it comes quite close to it. Quadratic 
programming generates a sequence of sets { :  1,2,...}k k =S , 
where  is a subset of the constraint indices {2kS ,3,..., 1}n −  
with the property  

0  ,  T
iy a i= ∈S k .                                                (20) 

We call active, the set of the constraints whose indices are 
in  and for each k , we denote by kS ( )ky  the vector that 
minimizes (1) subject to the equations (20). Since the 
constraint normals are linearly independent, unique Karush-
Kuhn-Tucker multipliers  are defined by the 
first order optimality condition  

( ){ :  k
i iλ ∈S }k

( ) ( )2( )
k

k k
i ii

y φ λ
∈

− = ∑ S
a

,

.                                               (21) 

The method starts by deleting constraints if necessary 
from the active set derived by the O(n) approximation until 
all the remaining active constraints have nonnegative 
Karush-Kuhn-Tucker multipliers. This gives . If 

 is not the final set of the active set sequence, then 
the quadratic programming algorithm adds to the active set 
the most violated constraint and deletes constraints with 
negative multipliers alternately, until the Karush-Kuhn-
Tucker conditions (see Section I) are satisfied. 

1S
, 1k k ≥S

Related to each active set , this process requires the 

calculation of 
kS

( )ky  and ( )kλ , the latter being uniquely 

determined by an extension of the method that gives λ% . 
Specifically, for each integer i  in  we pick the i th row 
of (21) multiplied by 

kS

1 1( i i )x x− +− , which gives a block 

diagonal positive definite system of equations. Thus ( )kλ  is 
derived efficiently and stably by a Cholesky factorization in 
only  computer operations, where | | is the 
number of elements of . 

(| |)kO S kS

kS

The equality constrained minimization problem of ( )ky  
forms an important part of the calculation, because it is 
solved very efficiently by a reduction to an equivalent 
unconstrained one with fewer variables due to linear B-
splines. If ,( )y x 1 nx x x≤ ≤ , is the piecewise linear interpol-
ant to the values  , then  is a 
linear spline, with knots in the set { . 
Indeed, 

( ){( , ) :k
i ix y 1, 2,..., }i n= ( )y x

: {1, 2,..., } \ }i kx i n∈ S
( )

1 1[ , , ]k
i i iy x x x− + 0= , whenever ki ∈S , which 

implies colinearity of ,  ( )
1 1( , )k

i ix y− −
( )( , )k

i ix y  and ( )
1 1( , k

i i )x y+ + , 
but if ( )

1 1[ , , ] 0k
i i iy x x x− + ≠ , then  is the index of a knot in 

. Thus the knots of  are determined from the data 
points due to the active set. So let , let 

i
( )y x ( )y x

1 | |kj n= − − S
{ : 1, 2,..., 1}p p jξ = −  be the interior knots of  in 
ascending order, let also 

( )y x

1 0 1xξ ξ− = =  and 1j j nxξ ξ += = , 
and let { : 0,1,..., }pB p j=  be a basis of normalized linear B-
splines defined on the abscissae { : 1, 2,..., }ix i n=  and 
satisfying the equations ( ) 1p pB ξ =  and ( ) 0p qB ξ = , p≠q 
[26] : 

1 1 1

1 1

( ) ( ),
( ) ( ) ( ),

0, otherwise.

p p p p

p p p p p

x x
B x x x 1

p

p

ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ

− − −

+ + +

− − ≤⎧
⎪= − − ≤ <⎨
⎪
⎩

<
                 (22) 

Then  may be written uniquely in the form  ( )y x

10
( ) ( ),j

p pp
y x B x x x xσ

= n= ≤ ≤∑ ,                                  (23) 

where the coefficients { : 0,1,..., }p p jσ =  are the values of 
 at {( )y x : 0,1,..., }p p jξ =  and are calculated by solving the 

normal equations associated with the minimization of 
2

1
[ ( ) ]n

i ii
y x φ

=
−∑ . To be specific the normal equations can 

be written in the form of a square system of equations 

0 1 1
( ) ( ) ( ) , 0,1,...,j n n

k i p i i k i ip i i
B x B x B x k jσ φ

= = =
⎡ ⎤ = =⎦⎣∑ ∑ ∑ .   (24) 

Since  

1
( ) ( ) 0, for | | 1n

k i p ii
B x B x k p

=
= − >∑ ,                         (25) 

system (24) simplifies to the system 

IAENG International Journal of Applied Mathematics, 38:1, IJAM_38_1_08
______________________________________________________________________________________

(Advance online publication: 19 February 2008)
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j

ix ⎤⎦

,              (26) 

where, for , we define 0,1,...,p =

1 1

2

[ , ]
( )

i i i

p p
x

e B
ξ ξ− +∈

⎡= ⎣∑                                                     (27) 

and 

1 1[ , ]
( )

i i i

p p i i
x

b B
ξ ξ

x φ
− +∈

= ∑ ,                                                     (28) 

and, for , we define 1,2,...,p = j

1 1

1
[ , ]

( ) ( )
i i i

p p i p i
x

d B x B
ξ ξ− +

−
∈

= ∑ x .                                           (29) 

We remark that the hat function  overlaps only 
with its closest neighbors  and , and the 
coefficient matrix of the equations (26) is positive definite 
(see, for example, [22]). Thus, Cholesky factorization is 
applied to give { (

( )pB x

1 ( )pB x− 1( )pB x+

) :p pyσ ξ=  0,1,..., 1 | |}kp j n= = − − S  in 
 computer operations. The intermediate components of ( )O j

( )ky  are found by linear interpolation to the coefficients 

pσ ’s due to (23) and (22). Further, suitable updating 
procedures of  during the quadratic programming 
calculation as a knot is inserted into the spline basis (that is 
when a constraint is dropped from the active set) or a knot is 
deleted from the spline basis (that is when a constraint is 
added to the active set) have been employed that require no 
more than  operations. Finally, it is clear that the 
calculation of 

( )y x

( )O n
y%  requires only  and  in (23). 0B 1B

 

 
V. NUMERICAL PERFORMANCE OF THE 

CONVEXITY TEST ALGORITHM 

In this section we present numerical results that illustrate 
the efficiency of the method of Section IV and the 
performance of the test of Section II on several data sets. 
Conclusions concerning the efficiency of the computation 
and the efficacy of the tests are also presented here. 

The data { : 1,2,..., }i i nϕ =  were random perturbations of 
two underlying convex functions, namely,  

1
2( ) exp( ln 2)f x x= − + ,                          (30) (0.1,1.1)x ∈

and  

( ) exp( 1.4 2)f x x= − + , .              (31) ( 0.728,0.034)x ∈ −

The number of data ranges from 500 to 2000, and for 
each  the abscissae have equally spaced values on the 
given intervals. For each of the two underlying functions 
and each , three values of a nonnegative parameter 

n

n σ  

were chosen. Each iϕ  was generated by addi ( )ix  a 
number from th uniform distribution in ( , )

ng to
e

f
 σ σ− . The 

actual values of σ  and n  and some calculated results are 
given in Table 1 for each of the functions (30) and (31). The 
third column displays the CPU time required to perform the 
calculation in double precision arithmetic on an Intel 
Pentium 466 MHz personal computer operating in a 
Windows 98 environment. The fourth and fifth co ns of 
this table show the number of active constraints ( | |S ) and 
the number of active set changes (constraint additions to or 
deletions from the active set) required by the program to 
calculate the convex estimator. The remaining columns 
present the values of the objective function at the convex 
estimator and the linear estimator, the maximum and 
minimum of the Karush-Ku ker and the Lagrange 
multipliers and the tistic 

lum

hn-Tuc
sta KKT LMξ − . The actual values of 

the ( 2 | |,| |)F n − − S S  statistic are not given here, because 
they are by far smaller than the presented val s of ue KKT LMξ − . 
Therefore in all the experiments w reject 0e H . Notice that 
(cf. Table 1) the smaller the error σ  is, the larger KKT LMξ −  
becomes. Indeed, as σ  tends to zero, measurements tend to 
the function values, in which case the convex estimator 

ues, (1  becomes tends to interpolate convex da al 7)ta v
2( ) ) / ( 2 )KKT LM y y s n Sξ ϕ ϕ− = − − −% %  and 2(T− s  tends to 

zero. Hence KKT LMξ −  obtains very large val nd th l 
is rejected. Of course this is true only if 2n > . If 2n

ues a e nul
= , 

then KKT LMξ − is zero, thus the test suggests trivially the 
linearity of the convex estimator. If 1n = , then we trivially 
define KKT LMξ − to be zero. Further, the negative signs of the 
Lagrange multipliers and the large values of the objective 
function (1) at y% , are also grounds for rejecting the null. 
The sizes of the Karush-Kuhn-Tucker multipliers provide a 
measure of the sensitivity of the problem to the constraints.  

The ratio of the CPU time over the active set changes 
shows about the work required by one active set change. It 
also indicates the work required to obtain the linear 
estimator by the equality constrained optimizati  of 
Section II, which includes not only the calculation of 

on
y% , but 

also the calculation of the Lagrange multipliers. The results 
on the active set changes show that the algorithm of [7] is 
quite efficient in obtaining the convex estimator and the 
associated multipliers terminating in a number of active set 
changes that is only a fraction he number n . As one 
active set change requires ( )O n  computer operations, 
column five suggests that this a or

 of t

i
al o respect to 

96. We 
prese ons for each case separately. 

 

lg thm performs in practice 
m st linearly with n . 

 

 
VI.   APPLICATIONS OF THE CONVEXITY TEST 

In this section we apply the convexity test on a set with 
artificial data and on some sets with real data from money 
demand in the U.S.A. for the period 1919–1964, the GNP 
per capita and infant mortality in 147 countries and the Gini 
coefficients in the U.S.A. for the period 1947–19

nt our conclusi
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          Table 1  Numerical results and performance for the Karush-Kuhn-Tucker convexity test statistic

 

A. Artificial data from use of the Cobb-Douglas function 
To illustrate the test we present a numerical example, 

which is a fit to measurements of  that 
is obtained from the Cobb-Douglas curve . An 
advantage of having a known underlying function is that we 
can see immediately whether the convex fit is more accurate 
than the data, and it is. The reason for employing a Cobb-
Douglas function is because of its wide use in economic 
computations under convexity assumptions. One hundred 
data at equally spaced abscissae 

0.3 1/ 0.7( ) (27 / )f x x=
0.3 0.7 27x y =

kx  in the interval [  
were chosen and we simulated data errors by adding to 

 a number sampled from the uniform distribution over 
the interval [ 5 . 

1,100]

( )kf x
,5]−

A Fortran 77 program is provided by [6] that calculates 
the least squares convex estimator *y  and the Karush-Kuhn-

Tucker multipliers *λ . The authors have extended this 
program so as to include the calculation of the equality 
constrained minimization that gives the linear fit ,y%  the 

Lagrange multipliers λ%  and the test statistic (17).  

The Lagrange and the Karush-Kuhn-Tucker multipliers 
yield an indication of the impact of a constraint in both the 
linear and the convex model. Indeed, the Lagrange 
multipliers are all negative with  

and 
1 2min 8968.52i n iλ≤ ≤ − = −%

1 2max i n iλ≤ ≤ − =% 18.92−  implying that the linear fit is too 
restraining for the data and providing, in some sense, a 
measure of the evidence against 0H . 

 

 

 

 

    Value of  (1) Kuhn-Tucker multipliers Lagrange multipliers KKT-LM statistic 

σ  n 
CPU 
time | |S  

Active set 
changes Convex fit Linear fit max min max min  

Function (30) 

 500 0.05 133 0 3.11E-07 1.25E+03 5.03E-07 4.90E-11 -2.30E-03 -3.86E+02 1468884775,64
 .0001 1000 0.05 479 6 1.25E-06 2.48E+03 3.36E-07 1.97E-10 -4.07E-03 -1.94E+02 1832425092,77

  2000 0.68 1318 63 4.01E-06 4.95E+03 3.42E-07 6.63E-10 -8.15E-03 -9.73E+01 2389260255,01

 500 0.10 469 66 1.43E+00 1.24E+03 9.27E-03 4.51E-06 -8.11E-03 -9.68E+01 14034,46
 .1 1000 0.32 962 147 3.03E+00 2.48E+03 9.79E-03 4.12E-07 -4.20E-03 -1.94E+02 21864,70

  2000 1.53 1951 316 6.45E+00 4.95E+03 1.04E-02 9.98E-08 -2.05E-03 -3.86E+02 31794,63

 500 0.10 482 56 1.52E+02 1.30E+03 4.28E-01 7.25E-05 -7.69E-03 -9.31E+01 228,91
 1 1000 0.27 985 146 3.12E+02 2.77E+03 3.70E-01 4.34E-05 -5.41E-03 -1.95E+02 597,32

  2000 0.82 1979 162 3.12E+02 5.57E+03 1.75E-01 3.71E-05 -2.24E-03 -3.85E+02 1754,51

Function (31) 

 500 0.00 197 0 3.68E-07 1.37E+02 1.66E-07 1.27E-09 -3.20E-03 -2.79E+01 244172861,15
 .0001 1000 0.05 624 3 1.65E-06 2.74E+02 1.93E-07 7.27E-11 -1.60E-03 -5.55E+01 277071837,35

  2000 0.98 1571 81 4.85E-06 5.46E+02 3.38E-07 2.35E-10 -7.99E-04 -1.11E+02 414581399,90

 500 0.05 479 60 1.49E+00 1.35E+02 6.96E-03 3.73E-06 -3.16E-03 -2.75E+01 2271,92
 .1 1000 0.27 974 137 3.09E+00 2.77E+02 5.79E-03 2.93E-06 -1.70E-03 -5.56E+01 3591,30

  2000 1.31 1970 285 6.51E+00 5.52E+02 7.89E-03 1.28E-06 -8.15E-04 -1.11E+02 5886,80

 500 0.10 489 74 1.53E+02 2.59E+02 2.52E-01 8.33E-06 -6.62E-04 -2.48E+01 37,99
 1 1000 0.21 989 98 3.14E+02 5.91E+02 2.69E-01 4.34E-05 -4.19E-04 -5.66E+01 96,78

  2000 0.93 1986 218 6.58E+02 1.20E+03 4.73E-01 6.61E-06 2.05E-04 1.10E+02 135,89

Table 2 Convex fit estimates ( ) to data (*
iy iϕ ) from a Cobb- 

Douglas contour and rates of change (first divided differences) 

ix  iϕ  *
iy  

First divided 
differences

1 109,35 109,35  
2 79,21 79,21 -30,1452 
3 64,98 64,98 -14,2281 
4 56,34 56,34 -8,6459 
5 50,78 51,71 -4,6221 
7 43,98 44,91 -3,4009 
8 40,77 42,75 -2,1632 

15 33,35 34,69 -1,1513 
34 21,21 23,29 -0,5999 
36 21,09 22,13 -0,5805 
65 13,76 18,85 -0,1130 
99 10,96 16,09 -0,0811 

100 17,93 17,93 1,8331 

0 20 40 60 80 100

0

40

80

120

 
Figure 1  Best least squares convex and linear estimation to 100 
data generated by the Cobb-Douglas contour of Section VI. The 
data are denoted by (+) and the smoothed values by (○). The 
straight line gives the least squares linear regression to the data. 
Note the piecewise linearity of the best convex estimator. 
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 By relaxing constraints (11) so as to obtain (2), the 
convex fit is a polygonal line with 11 interiors knots (at 
those ,ix  where >0), thus allowing 11 zero 
Karush-Kuhn-Tucker multipliers (one per knot). The 
remaining multipliers vary between 

*
1[ , ,i i iy x x x− +1 ]

min 0.06i iλ∈ =S  and 
max i iλ∈ =S  118.36. As for the extreme values of the 
multipliers, it is interesting to note that the absolute 
Lagrange multipliers are about two orders of magnitude 
larger than the Karush-Kuhn-Tucker multipliers. It is not 
surprising then, that the 11 interior knots of the convex fit 
implied the inequalities *2 2( ) 0.5079 ( ) 0.9662R y R y= < =%  

and *( ) 663.32yΦ = <  9647.71= ( )yΦ % , where  is the 
determination coefficient, both inequalities being in favour 
of 

2 (.)R

1H . In Table 2 we have tabulated ix , iϕ ,  and the first 
divided differences of  at the knots and at the end points. 
The first differences show the in-between the knots rates of 
change of the convex estimate. In Fig. 1 we plot both the 
convex and the linear estimator.  

*
iy

*
iy

However, the validity of the convex model would 
require the test of Section II. Since the variance is equal to 

 8.33, due to the uniform errors that 
we have used in order to generate the data, the value of the 
test statistic (17) is 

2σ = 2(5 ( 5)) /12− − =

KKT LMξ − =1078.56~ , where 
= 19.68 for 

2 (11)χ
2 (11)χ α =0.05 and 24.73 for α =0.01. Since at 

both levels of significance we have , we 
reject the linear model in favour of the convex one. 
Furthermore, assuming that 

2 (11)KKT LMξ χ− >

2σ  is unknown (as it is usual in 
practice), we replace 2σ  in formula (17) by its estimate 

 and obtain 2 7.62s = KKT LMξ − =107.13 that is larger than 
 for (11,87) 1.90F = α =0.05 and 2.46 for α =0.01. So, we 

again reject 0H .  
 

 

 

.   Money Demand 
G rom money demand in the USA 

f

B
iven 44 observations f

or the period 1919–1964, we wish to provide an estimate of 
the demand function and to test the underlying assumption 
of convexity. The source of our data is the U.S. Department 
of Commerce and the time series include the quantity of 
money M (money stock in currency and demand deposits in 
billions of $ in 1958 prices), the interest rate r (U.S. 
Treasury bill yield with a 3 to 6 month maturity in %) and 
the national product Y (GNP in billions of $ in 1958 prices). 
The values of r and M/Y are presented in the first two 
columns of Table 3.  

An interesting feature of Table 3 is that the Lagrange 
multipliers iλ%  occur in two groups. The first 14 multipliers 
are positive and the last 28 multipliers are negative, the 
latter group indicating that the line fit is rather restricting the 
associated range of data. Therefore we may require that a 
certain number of indices of inactive constraints separate 
adjacent indices of the constraints with negative multipliers. 
This idea suggests allowing the inequality constraints (2) 
instead of the equality constraints (11) in the calculation of 
an estimate. Thus, we obtain the convex fit, whose 
components are in column 3, and it is interesting to note that 
it has only one interior knot located at 37 4.38x = (see Fig. 
2). Moreover, the first 38 components nvex fit 
decrease with respect to r with a rate of change equal to 

0.0338,

of the co

−  while the last 8 components (now r exceeds 4%) 
i ith a rate equal to 0.0079. Therefore our method 
reveals what economic theory suggests: if interest rates rise, 
one prefers to hold money than bonds, thus leading M/Y to 
higher values.  Further, the inequalities 

ncrease w

2 ( )R y% =0.5531< 
*2 ( )R y =0.6600 and *( ) 0.0489yΦ = < 0.0643 = ( )yΦ %  are 

ur of the conv hese 
values is so small that it justifies the one-knot convex model 
of Fig. 2. 

in favo ex fit, but the discrepancy of t

Table 3  Th x fit, the line fit and the Lagrange multipliers to dat m m mand in the U.S.A. between 1919-1965 
 

e conve a fro oney de

ix  (r) iϕ  (M/Y) *
iy iy% *

iλ
iλ% ix  (r) iϕ  (M/Y) *

iy iy% *
iλ

iλ%
0.54 0.366 0.396 0.382 - - 2.64 0.314 0.325 0.332 0.1295 -0.429
0.56 0.388 0.395 0.382 0.0012 0.001 2.73 0.357 0.322 0.330 0.1173 -0.465
0.59 0.369 0.394 0.381 0.0034 0.001 2.97 0.275 0.314 0.324 0.0679 -0.572
0.66 0.346 0.392 0.379 0.0120 0.004 3.26 0.261 0.304 0.317 0.0305 -0.674
0.69 0.374 0.391 0.379 0.0184 0.007 3.31 0.324 0.302 0.316 0.0283 -0.686
0.73 0.403 0.389 0.378 0.0284 0.012 3.55 0.255 0.294 0.310 0.0073 -0.747
0.75 0.352 0.389 0.377 0.0328 0.014 3.59 0.282 0.293 0.309 0.0070 -0.753
0.76 0.352 0.388 0.377 0.0357 0.015 3.81 0.310 0.285 0.304 0.0097 -0.773
0.81 0.429 0.387 0.376 0.0542 0.023 3.85 0.280 0.284 0.303 0.0083 -0.777
0.94 0.336 0.382 0.373 0.0910 0.031 3.97 0.271 0.280 0.300 0.0048 -0.783
1.02 0.329 0.380 0.371 0.1211 0.042 3.98 0.282 0.280 0.300 0.0047 -0.783
1.03 0.484 0.379 0.370 0.1259 0.044 4.02 0.277 0.278 0.299 0.0040 -0.782
1.44 0.436 0.365 0.361 0.2363 0.041 4.11 0.273 0.275 0.297 0.0027 -0.774
1.45 0.401 0.365 0.360 0.2376 0.040 4.34 0.266 0.267 0.291 0.0003 -0.745
1.49 0.434 0.364 0.359 0.2399 0.030 4.38 0.236 0.266 0.290 0.0000 -0.737
1.58 0.357 0.361 0.357 0.2324 -0.005 4.52 0.295 0.267 0.287 0.0074 -0.697
1.73 0.351 0.356 0.354 0.2211 -0.063 4.85 0.272 0.270 0.279 0.0067 -0.606
2.16 0.364 0.341 0.343 0.1929 -0.226 5.07 0.270 0.271 0.274 0.0051 -0.542
2.18 0.336 0.340 0.343 0.1906 -0.234 5.37 0.274 0.274 0.267 0.0036 -0.453
2.33 0.362 0.335 0.339 0.1753 -0.295 5.85 0.256 0.278 0.255 0.0012 .317-0
2.46 0.309 0.331 0.336 0.1551 -0.354 6.62 0.319 0.284 0.237 0.0299 -0.102
2.52 0.351 0.329 0.335 0.1483 -0.378 7.50 0.274 0.291 0.216 - - 
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Figure 2  As in Fig. 1, but the 44 data of Table 2 (money demand) 
are used. 

 
In order to test the assumption of linearity against 

convexity, we substitute the estimate s2=0.00119 of 2σ  into 
the formula (17) and we obtain KKT LMξ − = 12.89, which is 
larger than  for (1, 41) 4.08F = 5%α =  and 7.30 for 

1%α = . We reject linearity in both cases. 
 

C.  GNP versus Infant Mortality Rate 
This example is concerned with the relationship between 

the per capita GNP and the infant mortality rate (IMR). The 
data consist of the GNP per capita in thousands of $ and the 
infant mortality rate per 1000 births for the year 1995 for 
149 countries, the data being obtained from the World Bank 
Database. The actual values are not presented here, but in 
Fig. 3 we see their graphical representation together with the 
convex and the line fit. Also in Table 4 we present the knots 
(data index column), the GNP per capita, the convex fit 
(convex estimate of IMR column) and the rates of change 
(first divided differences column) of the convex estimator. 
The convex fit contains 7 interior knots and the calculation 
has given , , 

 and . Further, we obtain 

the inequalities 

min 10224500iλ = −% max 1215iλ = −%

*min 262i iλ∈ =S
*max 50867i iλ∈ =S

2 ( )R y% =0.30< *2 ( )R y =0.74 and 
*( ) 69753yΦ = <190  981 ( )y= Φ % , both in favour of the 

convex fit. We are interested in the convex relation between 
the two variables, which explains the argument that for high 
values of IMR, a small rise in GNP will provoke a relatively 
larger decrease in infant mortality, whereas after an 
adequate value of GNP has been achieved infant mortality 
will not decrease significantly any further and after some 
GNP level, IMR will be almost flat. The convex estimator 
determines the rates of change of this relationship, while it 
reveals the linearity between any two adjacent knots. 
Indeed, we see that the IMR estimated components decrease 
rapidly between the first three knots with negative though 
increasing rates of change and subsequently, after the fourth 
interior knot (GNP=10142.20), they are close to zero. 
However, it has been observed by the theoreticians [2], [4] 

that IMR increases for very high GNP levels. It is 
remarkable that our method has revealed such an increase 
between the last two knots. Indeed, we see in Table 4 that 
the convex IMR estimates decrease from 134.66 down to 
5.11 and then increase up to 7.56. Moreover the method 
estimated that the rates of increase between the last three 
knots are 0.000013 and 0.000281 (which means that as GNP 
increases to the highest level, the rate of increase of IMR is 
about 21 times faster than in the previous GNP level). To 
explain this behaviour ‘urbanization’ theories are employed 
[2], which suggest that in highly developed countries with 
high GNP pc values not only poverty increases, but also 
living conditions are not favourable for measures such as 
life expectancy at birth etc. 

The calculation of the convexity test is performed by 
considering the estimate 2s =498.24 of 2σ , which we 
substitute into the formula (17) and obtain the test statistic 
value KKT LMξ − = 34.76.  Since this value is larger than 

=2.08 for (7,141)F 5%α =  and 2.77 for 1%α = , we reject 
the null hypothesis.  
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Figure 3  As in Fig. 1, but 147 data of the GNP pc versus the 
Infant Mortality Rate are used (Source: the World Bank Database 
for the year 1995). 
 
 

Table 4  GNP pc and IMR convex estimate for GNP versus Infant 
Mortality Rate for the year 1995 for 149 countries 

Data index
 

GNP pc
Convex estimate 

of IMR  
First divided 

differences 
1 85.09 134.66 - 

18 276.45 98.06 -0.191263
48 696.24 60.41 -0.089688
80 1785.24 27.89 -0.029862

118 10142.20 10.41 -0.002092
132 19522.11 6.46 -0.000421
133 23463.75 5.11 -0.000342
145 33692.07 5.24 0.000013
149 41935.20 7.56 0.000281
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D.  Gini coefficient time series 
We consider the Gini coefficient (see, for example, [20]) 

and its evolution in the U.S.A. for the time period 1947 to 
1996. Fifty data points were retrieved from the World 
Income Inequality Database of the U.S. Bureau of Census 
1997 and presented in the first two columns of Table 5, the 
remaining columns been explained in Table 3. The interest 
here does not lie on any theoretical assumption of convexity 
nor on any underlying relation that has to be validated, but 
on investigating the macroeconomic trend of the Gini 
coefficient. The convex estimator of the Gini data yields an 
estimate of the rate of income inequality change over a long 
time period perspective. We see in Table 5 that 

 , ma ,  

and 

min 535,83iλ = −% x 5.36iλ = −% *min 0.133i iλ∈ =S

*max i iλ∈S 13.62= . Also, we find that 2 ( ) 0.40R y =% < 
*2 ( )R y =0.94  and *( ) 13.56<128.28= ( ).y yΦ = Φ %   All these 

values are in favour of the convex fit, which contains 8 
interior knots (where ) and it is illustrated in Fig. 4. 
Moreover, we can calculate from Table 5 the in-between the 
knots rates of change of the Gini estimate, namely 

* 0ιλ =

0.21− , 
, , 0.10, 0.10, 0.25, 0.32 and 0.50, with respect 

to the periods [1947–53], [53–56], [56–69], [69–75], [75–
76], [76–78], [78-79], [79–91] and [91–96]. Thus the Gini 
coefficients decrease during the first half of the time range 
(1947–68) and subsequently increase during (1969–96), 
with a rate of change of income inequality that increases 
gradually to positive values.  

0.08− 0.08−

1940 1950 1960 1970 1980 1990 2000

34
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Figure 4  As in Fig. 1, but the 50 data (Gini coefficients) of Table 
4 are used. 

 
 
In order to test linearity against convexity we use the 

estimate s2=0.33 of σ2
 in (17) and the value of the statistic is 

KKT LMξ − = 49.54 > =2.24 for α=0.05 and 3.11 for 
α=0.01. Therefore we reject linearity over convexity. 

(7, 41)F

 

 

 

Table 5 As in Table 3, but the data are from the Gini coefficients in the U.S.A. between 1947-1990 
 

ix
Year

iϕ
Gini coef 

*
iy iy% *

iλ iλ%  
 

ix
Year

iϕ
Gini coef

*
iy iy% *

iλ iλ%  
 

1947 37.6 37.75 34.92 - - 1972 35.9 35.50 37.36 1.24 -535.83
1948 37.1 37.54 35.02 0.30 -5.36 1973 35.6 35.59 37.46 0.71 -534.95
1949 37.8 37.33 35.11 1.47 -14.89 1974 35.5 35.69 37.56 0.17 -530.37
1950 37.9 37.12 35.21 1.71 -29.79 1975 35.7 35.78 37.65 0.00 -521.66
1951 36.3 36.91 35.31 0.39 -50.07 1976 35.8 35.88 37.75 0.00 -509.06
1952 36.8 36.70 35.41 0.29 -72.33 1977 36.3 36.13 37.85 0.17 -492.54
1953 35.9 36.49 35.50 0.00 -97.37 1978 36.3 36.38 37.95 0.00 -472.93
1954 37.1 36.41 35.60 0.90 -123.21 1979 36.5 36.63 38.04 0.00 -450.03
1955 36.3 36.33 35.70 0.42 -152.03 1980 36.5 36.95 38.14 0.27 -424.04
1956 35.8 36.24 35.80 0.00 -182.06 1981 36.9 37.27 38.24 1.44 -394.76
1957 35.1 36.16 35.90 0.47 -212.09 1982 38.0 37.60 38.34 3.36 -362.80
1958 35.4 36.08 35.99 3.06 -240.54 1983 38.2 37.92 38.44 4.48 -330.17
1959 36.1 36.00 36.09 7.02 -267.79 1984 38.3 38.24 38.53 5.02 -297.07
1960 36.4 35.92 36.19 10.80 -295.06 1985 38.9 38.56 38.63 5.44 -263.50
1961 37.4 35.84 36.29 13.62 -322.76 1986 39.2 38.88 38.73 5.17 -230.47
1962 36.2 35.76 36.38 13.33 -352.68 1987 39.3 39.20 38.83 4.26 -198.38
1963 36.2 35.69 36.48 12.17 -382.23 1988 39.5 39.52 38.92 3.15 -167.24
1964 36.1 35.61 36.58 9.98 -411.23 1989 40.1 39.84 39.02 2.07 -137.25
1965 35.6 35.53 36.68 6.80 -439.26 1990 39.6 40.16 39.12 0.47 -109.42
1966 34.9 35.45 36.77 3.47 -465.14 1991 39.7 40.48 39.22 0.00 -82.55
1967 34.8 35.37 36.87 1.24 -487.26 1992 40.4 40.98 39.31 1.09 -56.65
1968 34.8 35.29 36.97 0.13 -505.25 1993 42.9 41.49 39.41 3.35 -32.92
1969 34.9 35.21 37.07 0.00 -518.89 1994 42.6 41.99 39.51 2.78 -16.16
1970 35.3 35.30 37.17 0.48 -528.20 1995 42.1 42.49 39.61 1.00 -5.59
1971 35.5 35.40 37.26 0.96 -533.77 1996 42.5 43.00 39.71 - - 
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VII. DISCUSSION 
 

In this paper we have been concerned with the problem of 
testing the convexity of a set of  univariate observations that 
include random errors. The convex estimation problem was 
published first by [17]. It addresses the question of making 
the least sum of squares change to the observations so that 
the piecewise linear interpolant to the smoothed data to be 
convex. This problem is a highly structured quadratic 
programming calculation that is solved very efficiently by 
the special algorithm of [7]. We have provided a Karush-
Kuhn-Tucker test statistic based on [13], [16] and [28]. Our 
work has been helped substantially because of a Fortran 
implementation of the quadratic programming algorithm by 
[6] that allowed the practical application of the testing 
procedure. Of course, the algorithm and the Fortran codes 
have been enhanced so as to include the linearly equality 
constrained calculation that gives the linear estimate and the 
test statistic. 

The efficacy of the convexity test on artificial 
measurements from a Cobb-Douglas curve and on real data 
sets from money demand in the U.S.A., the GNP per capita 
and infant mortality in 147 countries and the Gini 
coefficients in the U.S.A. for the period 1947-1996 was 
demonstrated.  

The convexity test was proved capable in practice and 
consistent with the economic theories that underlie the data 
that was tested on. It is expected to find important 
applications in computations in economics, especially in 
large-scale computations, when the required assumption is 
that of increasing returns. It should be mentioned, however, 
that the test is also suitable when it would be better to 
assume diminishing instead of increasing returns.  
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