
 
 

 
 

 

 
Abstract — The robust feed-back control schemes to provide 

the sustainable growth of investor capital under the absence of 
certain risks are introduced. These schemes are based on the 
current dynamics of the asset prices. It is assumed that the price of 
asset follows rather general stochastic differential equation. In 
contrast to the generally used self-financing strategy the control is 
realized within the framework of an open system. The latter 
implies the possibility to invest cash into the portfolio in the 
process of trading. 
 

Index Terms — Portfolio management, assets trading, 
stochastic control methods, integrated volatility.   
 

I. INTRODUCTION 
The attempts to apply classical methods of optimization 

based on the theory of optimal and adaptive control to realize 
the management of an investment portfolio very often tumble 
over serious problems. For instance the application of control 
theory as the stochastic version of dynamic programming 
approach [5], [6] implies the detailed information about the 
structure of factors in stochastic differential equations 
describing the dynamics of constituting portfolio assets. The 
latter information in contemporary financial markets seems 
hardly to be available. The methods of adaptive control theory 
are also not very often applicable because of the strongly 
nonstationary behavior of parameters of these or those 
modeling equations describing the dynamics of portfolio value. 

Because of the aforesaid it is not surprising that the problem 
to create special control methods adapted to the investment 
portfolio management has long drawn the attention of 
researchers. Usually such methods imply the creation of control 
providing in a particular sense the positive dynamics of profit 
along with the minimization of quantitative and qualitative 
information about the structure of modeling equations. 
Moreover one of the most common models for assets pricing is 
the model of geometrical Brownian motion. Nevertheless when 
following this way to create the control of investment portfolio 
there arise a number of difficulties which may be formulated as 
 

  Manuscript received October 26, 2007. 
S. A. Vavilov is with the Department of Applied Cybernetics, Faculty of 

Mathematics and Mechanics of St. Petersburg State University, Universitetsky 
prospekt, 28, Peterhof,  Saint-Petersburg, 198504, Russia (e-mail: 
svavilov@mail.wplus.net).  

K. Yu. Ermolenko is with the Department of Economic Cybernetics, Faculty 
of Economics of St. Petersburg State University, ul. Chaikovskogo, 62, 
Saint-Petersburg, 191194, Russia (e-mail: k.ermolenko@econ.pu.ru). 

follows. The heart of the matter is that the designing of control 
up till now has been based as a rule on the principles of 
self-financing strategy (see for instance [2], [7], [8], [10], [11]). 
The latter means that the purchase or sale of any assets 
automatically implies sale or purchase of a volume in the 
equivalent money terms of other assets constituting portfolio. 

It is essential to note that realization of any circuit of 
management based on self-financing strategy implies (at least 
in terms of the literature available to the authors of the present 
work) the required number of assets in the portfolio 
significantly depends not only on the prices of struck bargains 
but also on the volatilities of corresponding assets. 

The latter fact causes some inquires that seem to be an 
impediment in implementation of corresponding control 
systems. The point is that for majority of liquid assets the 
values of their volatilities have strongly non-stationary and 
pronounced palpitating character. It makes the tracking of their 
values with arbitrary precision in real time hardly possible. It is 
also important to keep in mind the property of delay inherent in 
each control system based on continuous model of pricing and 
the necessity to realize discrete procedure for their 
implementation. In this connection it is clear that the 
occurrence of essential mistakes is possible while defining the 
amount of assets included in a portfolio. How significantly 
such errors can affect the ultimate goal of management to 
provide the profitableness of portfolio remains not clear. 

The aforesaid makes reasonable to pose the problem of 
creating the management of portfolio with a feed-back control 
based only on the prices of struck bargains to provide in some 
sense portfolio profitableness on a certain time interval and 
within the framework of the pricing model corresponding to 
geometrical Brownian motion. 

The main goal of the present study is to solve the problem 
under consideration within the framework of a management 
alternative to self-financing strategy. It implies the possibility 
to invest additional cash from outside during the whole period 
of portfolio management. Moreover the release of cash as a 
result of trading allows its reinvestment to acquire new required 
assets. 

The present paper is the revised and extended version of the 
authors’ previous publication [14]. 

II. FORMULATION OF THE PROBLEM AND THE MAIN RESULT 
Originally consider elementary structure of the investment 

portfolio including only one type of assets. Assume that the 
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price of asset tx  is a stochastic process on a time interval 

[ ]0,T  and follows stochastic differential equation  

 t t t t t tdx c x dt x dWσ= + , (1) 
where a factor of volatility ( , )t tσ σ ω=  and ( , )tc c t ω=  
generally speaking are measurable random functions, tW  is a 
standard Wiener process. 

Portfolio value is set by the dependence 
 t t t tf a x m= + , (2) 
where ( , )ta a t ω=  is a measurable random function defining 
the number of assets, ( , )tm m t ω=  is a measurable random 
function responding to some money equivalent which 
economical sense is given below. 

Further, to avoid misunderstanding  the realization of any 
random process in contrast to the process itself will be denoted 
by the corresponding letter with wave, as for example tx~  and 

tx . 
Consider the control defined for each moment t  by the 

relationship 
 ( , )t t t tdf a dx l t x dt= + , (3) 
where tdx  is defined by the right hand side of equation (1) 
while the existence of stochastic differential tdf  is supposed. 

The second term in dependence (3) is interpreted as cash 
flow on the time interval dt  invested and processed by the 
control system, while 0),( ≥txtl . Consequently ),( txtl  is 
regarded as a regulator of the amount of cash processed by the 
control system and acts as control function.  

Appling to the left and right hand sides of relationship (2) the 
procedure of calculating the stochastic differential, which 
implies the existence of stochastic differentials tda  and tdm , 
one arrives to the relationship 
 t t t t t t t tdf a dx x da dx da dm= + + + . 

The latter one by making use of dependence (3) may be 
rewritten as follows 
 ( , )t t dt t tdm x da l t x dt+= − + , 

where t dtx +  is defined as :t dt t tx x dx+ = + , or in the integral 
form 

 
0 0

( , )
t t

t dm x da l x dτ τ τ ττ τ+= − +∫ ∫ . (4) 

Sufficient conditions to provide the existence of stochastic 
integral in relationship (4) as the limit of corresponding sums 
will be clarified below. 

The first term in dependence (4) taken with minus is the 
value of assets constituting portfolio as the result of effected 
trading and it will be further referred to as portfolio cost. 

Define profit tp~  for the observable value of price tx~  as the 
difference between the current price of assets and the portfolio 
cost 

 
0

t

t t t d tp a x x daτ τ+= − ∫% % % % % . (5) 

Keeping in mind formulas (2), (3), (4) the latter dependence 
is equivalent to the relationship  

 
0

( , )
t

t tp f l x dττ τ= − ∫%% % , (6) 

where tf
~

  is a portfolio value for the observable price. 
For the initial instant the portfolio is considered to be empty 

containing neither assets nor cash. 
Consider the notions of the lower and upper bounds of 

sensitivity which are considered as the respective borders of the 
price band symmetric with respect to the price of the first 
bargain struck by the control system. Further, it is supposed the 
price of the asset is inside the pointed out band during the 
whole period of control [ ]T,0 . For the utility and brevity of 
calculations the price of asset will be made dimensionless and 
scaled with respect to the lower bound of sensitivity, thus, 
defining the aforementioned price band as an interval ),1( β  
where 1>β  is fixed.  

We say that the control provides profitableness of an 
investment portfolio on the time interval [ ]T,0  if 0~ >Tp . 

Pose the problem of the existence and realization of portfolio 
control to provide its profitableness on a given time interval 
[ ]T,0 . 

Theorem. Let the following conditions hold on the time 
interval [ ]T,0 , where 0T > : 

1. The price of asset tx  follows stochastic differential 
equation (1), moreover volatility tσ  is considered as a 
nonrandom function of time and consequently one can put 
down t tσ σ= % . 

2. Integrated volatility is subjected to the following 

condition of growth: 2 ( )
T

s ds T
τ

σ γ τ≥ −∫  for arbitrary [ ]0,Tτ ∈ , 

where γ  is strictly positive number. 

3. The observable realization of price tx~  does not pierce the 
borders of the price band ),1( β , where 1β >  is an arbitrary 
finite number. 

Then if fixed T  and β  correspond to sufficiently large γ  
there exists control providing the profitableness of an 
investment portfolio on the time interval [ ]T,0 . Moreover, 
within the framework of such control the amount of assets in 
the portfolio for each instant depends on the prices of struck 
bargains but does not depend explicitly on the volatility values. 

 
Proof. Seek unknown tf  as the function of two 

variables ( , )t tf f t x= , where tx  follows equation (1). 

Applying to ( , )tf t x  Ito’s formula and comparing it with ratio 
(3) one arrives to the dependences  

 
2

2 2
2

1 ( , ) ,
2 t t t

t

f fx l t x
t x

σ∂ ∂
+ =

∂ ∂
 (7) 
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 .t
t

fa
x

∂
=

∂
 (8) 

The control ( , )tl t x  is set according to the relationship  
 ( , ) ( ) ( ),t tl t x r t xϕ=  (9) 
where ( )xϕ is the eigenfunction corresponding to the first 
eigenvalue 1λ  of the following Sturm-Liouville problem 

 
22

1
2 2 0,d

dx x
λϕ ϕ+ =  (10) 

 (1) '( ) 0.ϕ ϕ β= =  (11) 
The structure of function ( )r t  will be clarified bellow.  
As for the initial instant of control 0t =  the portfolio is 

empty then  
 (0, ) 0.tf x =  (12) 

Besides the following boundary conditions are introduced 

 0
t

f
x

∂
→

∂
as tx β→ , (13) 

 ( , ) 0tf t x → as 1tx → . (14) 
Owing to ratio (8) the fulfillment of boundary condition (13) 

implies the system of control takes long position, i.e. 0ta ≥ , 
and tends to get rid of assets when the price converges to the 
upper bound of sensitivity. 

To clarify boundary condition (14) make use of relationships 
(2) and (4). The management efficiency in some cases implies 
the portfolio cost to exceed the cash flow spent for the 
acquisition of assets, i.e. the inequality 0tm <  is to be valid. In 
particular, as it is shown below, when asset price converges to 
the lower bound of sensitivity it is reasonable that the whole 
amount of cash released in the process of the effected sales to 

be reinvested in purchasing of the assets, namely t
t

t

m
a

x
→ −  as 

1tx → , what precisely matches, owing to relationship (2), the 
fulfillment of boundary condition (14). 

Taking into account relationship (9) seek solution to the 
initial-boundary value problem (7), (12), (13), (14) in the form 
 ( , ) ( ) ( )t tf t x K t xϕ= , 
where ( )K t  is the unknown function. 

As the result of trivial transformations ultimately one arrives 
to the relationship 

 
2 2
1

1
2

0

( , ) ( ) ( )

t

st ds

t tf t x e r d xτ

λ σ

τ τ ϕ
∫

= ⋅∫ , (15) 

while the value of 1λ  and structure of function ( )txϕ  are 
determined by the formulas [9] 

 2 2
1

1
4

bλ = + , ( ) sin( ln )t t tx x b xϕ = , (16) 

where b  is the minimal strictly positive root of the equation 
 ( ln ) 2tg b bβ = − . (17) 

By introducing the new variable lnz b β=  equation (17) 
may be rewritten as follows 

 2( )
ln

ztg z
β

= − . (18) 

The graphical solution to the derived transcendental equation 
is presented at fig. 1. 

 

 
Fig. 1. Graphical solution to the transcendental equation. 
 
Note that relationships (16), (17) describe the whole set of 

eigenvalues and eigenfunctions of Sturm-Liouville problem 
(10), (11). However the choice of the first eigenvalue provides, 
as one can easily note, the corresponding eigenfunction to be 
separated from zero inside the specified price band ( )1, β . 

Relationships (8), (15) define the amount of assets in the 
portfolio according to the formula  

 
2 2

1
1
2

0

( ) ( )

t

s

t t

t t

t ds

t t x x
t x x

fa e r d x
x

τ

λ σ

τ τ ϕ
=

=

∫⎛ ⎞∂ ′= = ⋅⎜ ⎟∂⎝ ⎠
∫ %

%

% . (19) 

Partition the time interval [ ]0,T  in n  parts as follows 

0 10 nT T T T= < < < =K . 
Define function ( )r τ  as the limit of pointwisely converging 

sequence of functions determined by the relationship 

 
2 2

1
1
2( )

( )
( )

Ti

s ds
n

n
u

r e
x

τ

λ σ

τ

τ
τ

ϕ

− ∫
=

%
, (20) 

where ( ]1,i iT Tτ −∈ , ( )nu τ  are given functions, while the 

sequence ( )nu τ  as n → +∞  is supposed to converge 
pointwisely to the function ( )u τ  for a uniform partition. 

Substituting in (19) instead of ( )r τ  sequence (20) one 
arrives to the relationship 

 
1

1

( )
( )

( )

i

j t T j
i

Tj
n n
T t x x

i T

u
a d x

xτ

τ
τ ϕ

ϕ
−

=
=

′= ⋅∑ ∫ %
%

%
,  

or 

 
0

( )
( )

( )

j

j t T j

T
n n
T t x x

u
a d x

xτ

τ
τ ϕ

ϕ =
′= ⋅∫ %

%
%

. 

Ultimately, realizing limit transition as n → +∞  and within 
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the framework of uniform partition one arrives to the formula 
describing the continuous distribution of the amount of assets 
in time under the observable realization of asset price tx% : 

 ( )
0

( ) sin( ln )
sin( ln )

t t

t

t t t
t x x

ua d x b x
xx b xτ τ

τ τ
=

∂
= ⋅

∂∫
%

%
% %

. (21) 

By making use of the same arguments and taking into 
account relationships (6), (9), (15), (20) write down the value 
of profit at the moment of time T  for the observable realization 
of asset price tx% : 

 
2 2
1

0

1
2

0

( ) sin( ln )
sin( ln )

( )

T

s
t

T

T T T
t t

T ds

u tp dt x b x
x b x

e u t dt
λ σ−

= ⋅ −

∫
−

∫

∫

% % %
% %

. (22) 

Note that the transition to the control function ( )u t  makes it 

possible to get rid of the explicit dependence on tx%  in the 
second term of formula (22)corresponding to the cash flow 
processed by the control system by the moment T . 

When the control function ( )u t  is represented by any a 
priori given piecewise constant nonnegative function which is 
not identically equal to zero, the first term in formula (22) is 
strictly positive while the second term may be taken arbitrary 
small because of the second condition of the Theorem. Thus, 
the constructed portfolio management really provides the 
profitableness of an investment portfolio on the time interval 
[ ]0,T  that makes the proof of the Theorem completed. ♦ 

Remark 1. It is worth noting that relationship (21) explicitly 
does not depend both on tc  and on volatility tσ  from equation 
(1). Thus, to construct the required management defining the 
amount of assets in portfolio there is no necessity to identify the 
pointed out factors to provide the profitableness of portfolio. 
On the other hand from formula (22) one can see that the 
increasing of integrated volatility leads to the essential growth 
of profit in time. ♦ 

Remark 2. One can easily check that nonnegative values of 
the function ( )u t  provide the system of control to take the long 
position, i.e. 0ta ≥%  for arbitrary t . ♦ 

Remark 3. Note that the constructed management provides 
under certain conditions the profitableness of portfolio but the 
optimality of such management is not guaranteed. In other 
words the existence of some other management providing 
higher profitableness is possible. ♦ 

Remark 4. Note that the stochastic integral on the right hand 
side of formula (5) is regarded as the limit of the following 
sums sequence  

 ( )1
1

( )
i i i

j

n T T T
i

S t x a a
−

=

= −∑% % % %  (23) 

for ( 1,j jt T T− ⎤∈ ⎦ , obtained in the process of the time interval 

[ ]0,T  partition 0 10 nT T T T= < < < =K  and converging in 

[ ]2 0,L T  norm as n → +∞ . The values ( , )
i iT i Ta a T x=% %  are 

defined by formula (21). Thus, the supposition of sums (23) 
convergence in [ ]2 0,L T  norm imposes certain restrictions on 

the process tx . By making use of Ito’s formula the stochastic 
integral on the right hand side of relationship (4) may be 
presented as the sum of Riemann integral determined on the 
trajectories of random process tx  and Ito’s integral: 

 1 2
0 0 0

( , ) ( , )
t t t

dx da x d x dWτ τ τ τ τ τψ τ τ ψ τ+ = +∫ ∫ ∫ , (24) 

where 1ψ , 2ψ  are smooth functions defined by the relationship 
( , )t ta a t x=  according to the formula  

 ( )
0

( ) sin( ln )
sin( ln )

t

t t t
t

ua d x b x
xx b xτ τ

τ τ ∂
= ⋅

∂∫ % %
.  

Thus, to provide the existence of corresponding integrals in 
relationship (24) one may use standard sufficient conditions 
either in the form of restrictions on the process tx  itself or in 

the form of restrictions on the factors tc  and ( )t tσ σ=   of 
stochastic differential equation (1). One can easily show that 
the existence of integrals on the right hand side of relationship 
(24) when [ ]0,t T∈  implies the convergence of sums (23) in 

[ ]2 0,L T  norm almost sure. ♦ 
Remark 5. Note that the value of γ  to provide the Theorem 

statement may be individual for different realizations tx%  of the 

random process tx . ♦ 
Remark 6. It is worth noting that the Theorem statement 

remains valid in the case when volatility ( , )t tσ σ ω=  is a 
random function of time, but it should not  depend on the 
process tx . 

III. SOME USEFULL ESTIMATES 
It is reasonable that the construction of control function 

( )u t as well as the width of the price band want further detailing 
as they are to be matched to the duration of investment, the 
distribution of invested cash flow in time and the global 
dynamics of integrated volatility within the framework of 
condition 2 of the Theorem. 

Take into account the situation when the whole amount of 
cash, which is denoted by V , is deposited on the broker’s 
account of an investor. In this situation the control function 

( )u τ  is considered to be a constant and one may put 0( )u uτ = . 

The time horizon of investments [ ]0,T  either is given in 
advance or to be chosen while the profitableness of an 
investment portfolio is to be provided on the pointed out time 
interval. 

Take into consideration the integrated volatility 

 2

0

( )
t

sJ t dsσ= ∫ %  
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on the time interval [ ]0,T . There is strong evidence, confirmed 
by the numerous experimental data for the broad class of high 
liquid assets, that the value of integrated volatility oscillates in 
the vicinity of a linear function and, consequently, admits 
approximation  
 ( )J t tα≈ ⋅ , (25)  
where α  is an a priori known at the initial moment 0t =  
quantity. Moreover, the value of α  may be different for 
different type of assets. 

Now suppose that relationship (25) is fulfilled not 
approximately but precisely and correspondingly γ α= . Then 
the following estimates are valid 

 
( )

2 2
1

2
1

1
20

0
0 0

1
0 2

0
0 0

0
0 2

10

sin( ln )
sin( ln )

sin( ln )
sin( ln )

2
sin( ln ) .

sin( ln )

T

s
t

T T ds

T T T
t t

T T
T t

T T
t t

T

T T
t t

u
p dt x b x e u dt

x b x

u
dt x b x e u dt

x b x

udtu x b x
x b x

λ σ

λ α

λ α

−

− −

∫
= ⋅ − =

= ⋅ − ≥

≥ ⋅ −

∫ ∫

∫ ∫

∫

% % %
% %

% %
% %

% %
% %

 

 
If one admits that the specific scale of price variance is 

sufficiently less than the price of the first bargain struck by the 

control system: 0

0

1tx x
x
−

<<
% %

%
, then it is not hard to estimate the 

time interval [ ]0,T  to provide the profitableness of an 
investment portfolio  

 2
1

2T
λ α

≈
⋅

. (26) 

Moreover, in this case it is possible to estimate the value of 

0u  keeping in mind the general amount of investments V : 

 0
2

1

2u
V

λ α
≈

⋅
. 

Actually dependence (26) determines the ratio between 
T , β  and γ  under conditions of the Theorem. Thus, the 
value of T  from relationship (26) defines the distinctive time 
interval of investments to provide under the pointed out 
additional conditions the portfolio profitableness. 
Simultaneously it determines the value of 2

1λ  and 
consequently the value of β , i.e. the width of the price band in 
accordance with transcendental equation (18). Ultimately, the 
whole amount of investments V  defines the value of control 
function 0u . Note that the diminishing of the price band width 

leads to the decreasing of T  value but on the other hand 
increases the risk of the price to pierce the band borders. 

For different high liquid assets the value of α  
corresponding to the one year time unit interval varies in the 
range between 0.15 and 0.3. In table 1 the results of numerical 
evaluation for T  as the dependence of α  and β  are 
presented. 

 
TABLE 1. THE RESULTS OF NUMERICAL EVALUATION FOR T   

AS THE DEPENDENCE OF α  AND β . 

α  β  T , 
months 

0,2 1,1 0,44 
0,2 1,2 1,61 
0,2 1,3 3,32 
0,2 1,4 5,44 
0,2 1,5 7,86 
0,2 1,6 10,51 
0,2 1,7 13,31 
0,2 1,8 16,23 
0,2 1,9 19,23 
0,2 2,0 22,28 

 
Note, that the described control system can provide portfolio 

profitableness even on the time intervals when the trend of the 
asset price slumps but under the condition of the integrated 
volatility sufficiently sharp growth. To demonstrate this fact 
consider the chart at fig. 2 presenting price dynamics of 
depositary receipts (ADR) on Unified Energy System of Russia 
(UESR) shares in the period from 9.04.2007 till 3.07.2007. 
Simultaneously the chart at fig. 3 demonstrates the effected 
trading profit dynamics. 
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Fig. 2 Price dynamics of the UESR Depositary Receipts in the period from 
9.04.2007 till 3.07.2007. 
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Fig. 3 The effected trading profit dynamics of the portfolio constituted by 
UESR Depositary Receipts in the period from 9.04.2007 till 3.07.2007. 
 

It is remarkable that the price of the first bargain struck by 
the control system was 145.46 dollars per one ADR while the 
price of the last one was 138.07 dollars. 
Pose the question if the proposed control system is 
arbitrage-free. Pay attention that the possibility of a price to 
pierce the low border of the price band may be regarded as the 
basic risk factor. To remove it expand the lower border of the 
price band to its utmost limit, i.e. to zero, thus realizing the limit 
transition β → +∞ . Analyzing transcendental equation (18) 
one can easily see that in this case its minimal strictly positive 

root z π→  and consequently 2
1

1
4

λ → . Note that second term 

in formula (22) taken with minus may be interpreted as the 

value of cash flow with the discount factor 
2

1

2
λ

αΔ =  when 

relationship (25) is supposed to be fulfilled precisely. Thus, in 
the absence of the basic risk factor one arrives to the rate of 
return providing by the control system defined as follows 

8
α

Δ = . For a one year time unit one may put 0.3α ≈  and 

consequently 3.75%Δ ≈ . Simultaneously the time interval 
defined by relationship (26) on which the portfolio 
profitableness is provided constitutes approximately 27 years. 
It is worth noting that the estimates obtained are very close to 
the basic characteristics such as the rate of return and the time 
to maturity for American Treasury Bills. Estimate the rate of 
return by making use of the different arguments. Define the rate 
of return as the ratio of the profit value on the time interval 

],0[ t  to the non-discounted cash flow 0
2

1

2u
V

λ α
=  multiplied by 

t :  

 0 0
0 2 2

1 1

2 2 1 1u uu t t
T tλ α λ α

⎛ ⎞ ⎛ ⎞
Δ = − ⋅ = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
,  

where 2
1

2T
λ α

= . As t → +∞  the rate of return 1
T

Δ → , i.e. to 

the quantity obtained earlier. 

IV. EXPERIMENTAL AND THEORETICAL EVIDENCE OF THE 
PRICING MODEL ADEQUACY 

Introduce the notion of theoretical profit for each instant 
[ ]0,t T∈ in accordance with formula (22) 

 
2 2

1

0

1
2

0

( ) sin( ln )
sin( ln )

( ) .

t

s

t

t t t

t ds

up d x b x
x b x

e u dτ

τ τ

λ σ

τ τ

τ τ
−

= ⋅ −

∫
−

∫

∫

% % %
% %

 (27) 

 Note that theoretical value of profit according to formula 
(27) may be estimated from above and below by making use of 
the limit values of volatility ( 0tσ =  and tσ = +∞ ) as follows 

 L H
t t tp p p≤ ≤% % % , 

where 
 

 
0 0

( ) sin( ln ) ( )
sin( ln )

t t
L
t t t

up d x b x u d
x b xτ τ

τ τ τ τ= ⋅ −∫ ∫% % %
% %

, 

 
0

( ) sin( ln )
sin( ln )

t
H
t t t

up d x b x
x b xτ τ

τ τ= ⋅∫% % %
% %

. 

 
Define the notion of real profit on the basis of formula (5) as 

the limit of the following sums sequence 

 ( )1
1

( )
i i i i i

j

n T T T T T
i

g t a x x a a
−

=

= − −∑% % % % % %  (28) 

for ( 1,j jt T T− ⎤∈ ⎦ , obtained in the process of the time interval 

[ ]0,T  partition: 0 10 ... nT T T T= < < < =  and converging in 

[ ]2 0,L T  norm as n → +∞  to the function denoted as ( )g t% .  

The values ( ),
i iT i Ta a T x=% %  are defined by formula (21). Note 

that the value of real profit does not depend explicitly on the 

volatility. 

For high liquid assets traded both at American and Russian 
financial markets the pointed out estimates of theoretical profit 
have a high degree of direct correlation with real profit. 
Moreover, in all cases considered up till now when 

0( ) 0u uτ = >  the real profit curve was strictly in the range 

between L
tp%  and H

tp% . This fact, at least indirectly, confirms 
the adequacy of the introduced model. 

The examples of the respective charts are presented at fig. 4 
and 5 when the management of two portfolios containing 
respectively stocks of UESR and Dell Computers Corporation 
takes place. 
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Fig. 4 Charts of theoretical profit estimates (in US dollars) and of real profit 
dynamics corresponding to the management of portfolio constituted by UESR 
stocks in the period from 3.01.2001 till 30.05.2003. 

 

 
Fig. 5 Charts of theoretical profit estimates (in US dollars) and of real profit 
dynamics corresponding to the management of portfolio constituted by Dell 
Computers Corporation stocks in the period from 7.05.2001 till 19.11.2003. 

 
It is worth noting that admissibility of condition 1 of the 

Theorem may be indirectly confirmed not only by experimental 
data but also in the framework of certain theoretical arguments 
presented below. 

Take into account the pricing model )exp( tt hx = , where tx  

is a price of an asset while th  is the auto-regression process of 
arbitrary finite order with nonrandom factors 
 tntnttt hchchch ε++++= Δ−Δ−Δ− K221 , (29) 

where tε  is a white noise, Δ  is a given time interval. 
As it is well known [4], relationship (29) can be rewritten in 

finite differences 
 ttntnt

n
t

n hahahaha ε=+∇++∇+∇ +
−

1
1

21 K , (30) 

where ia  are the factors defined by the values ic  while 

)(1
t

k
t

k hh ∇∇=∇ +  and Δ−−=∇ ttt hhh . 
Write down the continuous analogue of the difference 

equation (30) as follows 

 ttn
t

nn
t

n
n

n
t

n
n ha

dt
dh

a
dt

hd
a

dt
hd

a ε=+Δ++Δ+Δ +−

−
−

11

1
1

21 K .(31) 

The solution to Cauchy problem for equation (31) on the 
interval ],0[ t  can be presented in the form  

 ∫ −+=
t

st dWstGth
0

)()(ϕ , (32) 

where )(tϕ  is a deterministic function while )( stG −  is the 
transfer function as an integrand in Ito’s integral which is also 
not random. Consider t to be fixed and introduce the new 
notation )()( stGsF −=  for the convenience of calculations. 
As )(sF  is a deterministic function it is possible to apply 
integration by parts to Ito’s integral in expression (32). Thus, 
the following transformations are valid 

 0 0 0

0 0 0

( ) ( ) ( ) ( )

(0) ( ) (0) ( )

t t t

s s t s

t t t

t s s s

G t s dW F s dW F t W W F s ds

G W W G t s ds G dW W G t s ds

′− = = − =

′ ′= + − = + −

∫ ∫ ∫

∫ ∫ ∫
 

that leads to the relationship 

 0

0

( ) (0) (0)

( )

t

s t t

t

s

d G t s dW G dW W G dt

W G t s ds dt

⎡ ⎤
′− = + +⎢ ⎥

⎣ ⎦
⎧ ⎫⎪ ⎪′′+ −⎨ ⎬
⎪ ⎪⎩ ⎭

∫

∫
. 

Ultimately, keeping in mind (32) the following 
representation for th  may be written down 

 
0

( ) (0) ( ) (0)
t

t t s tdh t W G W G t s ds dt G dWϕ
⎡ ⎤

′ ′ ′′= + + − +⎢ ⎥
⎣ ⎦

∫ . 

Applying to the function )exp( tt hx =  Ito’s formula one 
directly arrives to the relationship 

 
2

0

1( ) (0) ( ) (0)
2

(0)

t

t t s t

t t

dx t W G W G t s ds G x dt

G x dW

ϕ
⎧ ⎫⎡ ⎤⎪ ⎪′ ′ ′′= + + − +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

+

∫ , 

which is precisely the special case of equation (1) where  

 2

0

1( ) (0) ( ) (0)
2

t

t t sc t W G W G t s ds Gϕ′ ′ ′′= + + − +∫ , 

 )0(Gt =σ . 

Thus, volatility tσ  does not depend on tW  and 

consequently on tx . Accordingly, when the number of terms 
and the values of factors in auto-regression process (29) vary 
the volatility value )0(Gt =σ  is subjected to the transition. 

V. THE PROCEDURE TO CALCULATE INTEGRATED VOLATILITY 

Consider the direct method of integrated volatility 2

0

t

s dsσ∫  

evaluation when [ ]0,t T∈  on the basis of relationships (27) 
and (28) omitting the intermediate stage of calculating the 
volatility sσ itself inside the time interval [ ]0,T . 

Note that there has been published substantial amount of 
literature concerning the problem of calculating integrated 
volatility including both original papers (see, for instance, [3]) 
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and detailed reviews (see, for instance, [1]). Under rather 
general conditions it was shown the convergence in probability 
of specially constructed sums (realized variance) defined by the 
statistical data to the value of integrated volatility 

 
1

2

2

1 0

ln i

i

tn
t

s
i t

x
ds

x
σ

−=

⎛ ⎞
→⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∫

%
%

%
 as n → +∞ . 

 Here the value 
it

x%  corresponds to the price of the bargain 

struck at the instance it  on the time interval [ ]0, t . 
Nevertheless in a number of recent publications [15], [16] it 

was shown that the proposed algorithm is not robust towards 
different kind of errors arising as the result of the market 
microstructure effects, in particular, because of the bid-ask 
spread existence. Thus, the observable values are not  

it
x%  but 

i i it t ty x ε= +% % , where 
it

ε  are independent random variables with 

zero mathematical expectations and finite dispersions. It turned 
out that under the pointed out circumstances the realized 
variance is not more the consistent estimate for integrated 
volatility. It is remarkable that the experimental data provides 
strong evidence of this theoretical inference. 

One of the possible ways to design robust algorithm of 
integrated volatility evaluation is to make use of the following 
arguments. Equate the expression for theoretical profit (27) to 
the limit value ( )g t%  of real profit defined by sequence (28). 
Thus, considering ( ) 1u τ ≡ one arrives to the integral equation 
with respect to the unknown function ( )tν  

 
0

( ) ( ) ( ) ( )
t

d t t h tν τ τ χ ν− =∫ , (33) 

where 
2 2

1
0

1
2( ) 1

t

s ds

t e
λ σ

ν
∫

= − , 

 
0

( ) sin( ln ) ( )
sin( ln )

t

t t
dt x b x g t

x b xτ τ

τχ = −∫ % %
% %

, 

( ) ( )h t t tχ= − . 
Note that the transformations performed provide the 

fulfillment of condition (0) 0ν = .  
The derived integral equation is a standard ill-posed problem 

as the functions ( )tχ and  ( )h t  are not differentiable because 
of their dependence on the trajectory of Wiener process. 

The desired function ( )tν  for equation (33) is searched in 

the space [ ]2 0,L T  on the set of functions of bounded variation 
M . This set is a compact one owing to the Helly’s second 
theorem [12] thus providing the boundedness of the inverse 
operator 1A−  corresponding to the operator on the left hand 
side of  relationship (33) 

 
0

( ) ( ) ( )
t

A d t tν ν τ τ χ ν= −∫ % . 

The existence of the inverse operator 1A−  is provided by the 
easily verified triviality of the operator A  kernel. 

Thus, owing to the well known results [13] the inverse 
problem (33) has the unique quasisolution.  

Recall that element Mν ∈%  is called a quasisolution to 
equation (33) if the following relationship is valid 
 ( ) ( )

2 2
, inf ,L LM

A h A h
ν

ρ ν ρ ν
∈

=% . 

Because any continuous functions ( )tχ and ( )h t  in 2L  
metrics may be approximated with arbitrary precision by 
continuously differentiable functions the above mentioned 
infimum may be made arbitrary small.  

Thus, the integrated volatility on the time interval [ ]0, t  may 

be expressed via function ( )tν  as follows 

 [ ]2
2

10

2 ln ( ) 1 , 0
t

s ds t t Tσ ν
λ

= + ≤ ≤∫ .  

It is worth noting that the numerical solution to the derived 
integral equation (33) obtained on the basis of variational 
approach is robust towards small perturbations of functions 

( )tχ and ( )h t  in 2L  metrics. 

CONCLUSIONS 
Within the framework of the proposed portfolio management 

the control system is not supposed to forecast the direction of 
price dynamics but carries out the effective procedure to 
diminish the weighted average price of the assets constituting 
portfolio. The usage of the considered strategy implies, in 
essence, two kinds of risks. The first one is stipulated by the 
possibility of a price to pierce the lower border of the 
corresponding price band. This kind of risks may be supervised 
by purchasing put options with strikes in the vicinity of the 
price band lower border. The second kind of risks deals with 
the possibility of the temporal sharp slowdown of the integrated 
volatility growth. Such situation may take place because of the 
approximate character of relationship (25). This kind of risks 
may lead to the temporal suspension of the control system 
functioning. 

Finally, it is worth noting that the control system when a 
short position takes place may be constructed by making use of 
the analogues arguments. It suffices to scale prices with respect 
not to the lower as in the case of a long position trading but to 
the upper border of the corresponding price band and 
reiterating the previous arguments to shift boundary conditions 
(13) and (14) each one for another. Thus, basic formulas (21) 
and (22) preserve their structure but the selected root of 
transcendental equation (18) turns out to be different as in this 
case the quantity βln  is evidently to be negative. 
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