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Abstract—Partial differential equations for domains
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solved numerically using meshless finite difference

schemes. The advantage of the approach is that it

is easy to add nodes where there is a requirement
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schemes are considered in this context and some nu-

merical examples are computed showing applications

of the methods.
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1 Introduction

Moving interfaces and moving boundaries occur in many
physical situations. Some examples are liquid-air inter-
faces, ice melting in water, the deformation of bubbles,
oil flowing under ice and the active interface during com-
bustion in a solid fuel rocket engine.

The partial differential equations describing such prob-
lems must take the interfaces and boundaries into account
since material properties and behaviors are normally dis-
continuous there. A version of the finite element methods
is usually implemented in order to solve the problems nu-
merically with the interfaces and boundaries handled in
some fashion (see for example [6]). Other approaches in-
clude the smoothed particle hydrodynamics used in the-
oretical astrophysics computations (see [9, 8]) and radial
basis function methods (see [3, 12]).

The finite element methods commonly used for these
problems can be classified into methods

• where the grid is fixed and the interface is moving
[16],

• where level sets are used [13, 11],

• where the grid deforms keeping pace with the moving
discontinuities [15, 2, 14]

∗Department of Statistics, Xiamen University, Xiamen, China
†Department of Computer Science, The University of Calgary,

Calgary, Alberta, Canada

• where the grid is refined locally to the discontinuities
[4],

• where there is no grid (gridless methods) [17].

The commonality of the first four kinds of methods is a
dependence on a grid, either fixed or deforming in some
manner. More recently gridless methods have been inves-
tigated. Examples of these are methods based on super-
position of basis functions of various kinds and smoothed
particle hydrodynamics. In this paper a meshless method
based on finite differences is considered. In [10] a previous
discussion of meshless finite difference methods was pre-
sented and some examples were given. This paper can
be viewed as a continuation of that paper to problems
involving moving interfaces.

There is a clear advantage in using gridless methods for
these problems in that a suitably chosen set of nodes
can deform and move as the boundaries and interfaces
change. This also means that more nodes can be added
at critical points where there are large discontinuities thus
improving the approximating properties of the solutions.

In this paper a meshless method is established where the
only requirement is that a coordinate system is available.
The effect of moving the nodes on the computational
stencils is considered followed by refining and coarsen-
ing of the stensils. A discussion of the construction of
meshless difference methods with high resolution proper-
ties and some examples concludes the paper.

2 Moving nodes

The problems considered here are two dimensional prob-
lems whose solution are time-dependent velocity fields.
These velocity fields are assumed to be computed at dis-
crete time-steps. Because of this we call a velocity field
at a particular time-step a time layer. A set of nodes
P = {P} on each time layer define the points where a
given problem is approximated (and it should be noted
that by node is meant both the name of the node as well
as the coordinates of the node).

We first introduce some notations:

ν is the velocity field for the present layer,
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(νx, νy) is the velocity at a point (x, y),

β = Δt · ν, where β is an increment and

Δt is a time step,

ξ = P + β, means that a new point ξ is found

by adding β to node position P .

In the following by ν, β, ξ is meant the velocity compo-
nent, increment and node position at a given point x, y.

The advantage of meshless methods is that the position of
a node can be changed adaptively according to the state
of the solution as time progresses.

The progression of a solution from time layer tk to tk+1
is now considered.

Two approaches are normally used:

(i): In the first approach the information from the solu-
tion on the present layer is used for the following layer.

For this case a simplified directional difference quotient
with respect to time is

u(ξ, tk+1)− u(P, tk)

Δt

=
u(x+ βx, y + βy, tk +Δt)− u(x, y, tk)

Δt

=
∂u

∂t
+ νx

∂u

∂x
+ νy

∂u

∂y
+O(Δt) (1)

where

νx =
βx

Δt
, νy =

βy

Δt
. (2)

In order to approximate νx
∂u
∂x + νy

∂u
∂y at a node P two

known directional quotients Δu

Δ
→

l1

and Δu

Δ
→

l2

with respect

to space are considered. For this two nodes P1, P2 are
needed that are at distances Δli = |P − Pi| from P ,
i = 1, 2 as indicated in Figure 1.

The directional quotients can then be written as

Δu

Δ
→

l1

=
Δx1
Δl1

·
∂u

∂x
+
Δy1
Δl1

·
∂u

∂y
+O(Δl1), (3)

Δu

Δ
→

l2

=
Δx2
Δl2

·
∂u

∂x
+
Δy2
Δl2

·
∂u

∂y
+O(Δl2). (4)

Setting Δxi

Δli
= Si,

Δyi

Δli
= Ti, i = 1, 2 we obtain

A
Δu

Δ
→

l1

+B
Δu

Δ
→

l2

= (AS1 +BS2)
∂u

∂x

+(AT1 +BT2)
∂u

∂y
+O(Δl1 +Δl2) (5)

where A, B satisfy{
AS1 +BS2 = νx,
AT1 +BT2 = νy.

This solves to

A =
νxT2 − νyS2
S1T2 − S2T1

, B =
νyS1 − νxT1
S1T2 − S2T1

(6)

and we note that it is required that S1T2 �= S2T1 and
P �= Pi, i = 1, 2.

Therefore we get from (1)

∂u

∂t
=

u(ξ, tk+1)− u(P, tk)

Δt

−A
Δu

Δ
→

l1

−B
Δu

Δ
→

l2

+O(Δt +Δl1 +Δl2) (7)

using (3), (4) and (5).

(ii): In this approach, indicated in Figure 2, the solution
on the next layer is used as well. The computational
cost is larger than in the first approach, but it can adapt
more easily to the changes in fluids over time due to the
forecasting of the future velocity field. The velocity field
is extrapolated as follows:

ν(t+
1

2
Δt, ·) =

3

2
ν(t, ·)−

1

2
ν(t−Δt, ·) (8)

or

ν(t+
1

2
Δt, ·) =

11

6
ν(t, ·)−

7

6
ν(t−Δt, ·) +

1

3
ν(t− 2Δt, ·)

(9)
and a β∗ is computed iteratively by means of dP

dt =

ν(P, t) ≈ β∗

Δt which leads to the recursion

βm+1 = Δt · ν(t+
1

2
Δt, P +

1

2
βm), m = 0, 1, · · · (10)

where βm → β∗. Thus

ξ = P + β∗. (11)

Therefore the simplified directional quotient with respect
to time is written as

u(ξ, tk+1)− u(P, tk)

Δt

=
u(x+ β∗x, y + β∗y , tk +Δt)− u(x, y, tk)

Δt

=
∂u

∂t
+ ν∗x

∂u

∂x
+ ν∗y

∂u

∂y
+O(Δt). (12)

Similarly to the above, we can use the combination of
two known directional quotients with respect to space
to eliminate the influence of spatial directions from the
movement of a node. That is, we have

A∗
Δu

Δ
→

l1

+B∗
Δu

Δ
→

l2

= ν∗x
∂u

∂x
+ ν∗y

∂u

∂y
+O(Δl1+Δl2) (13)
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Figure 1: Directional difference quotients based on the present time layer

∗β

t tk=

ξ

+1

P
t tk=

Δt

1

l1

P

2

2

lΔ
Δ

P

Figure 2: Directional difference quotient using future layer

where A∗, B∗ satisfy{
A∗S1 +B∗S2 = ν∗x,
A∗T1 +B∗T2 = ν∗y

and we obtain

∂u

∂t
=

u(ξ, tk+1)− u(P, tk)

Δt

−A∗
Δu

Δ
→

l1

−B∗
Δu

Δ
→

l2

+O(Δt+Δl1 +Δl2) (14)

using (12) and (1).

In order to improve the approximation, we can construct
a directional quotient on several time-layers as indicated
in Figure 3.

For instance, to improve the approximation in the time
direction, we have

u(P + β1, tk+1)− u(P − β−1, tk−1)

2Δt

=
1

2

u(P + β1, tk+1)− u(P, tk)

Δt

+
1

2

u(P, tk)− u(P − β−1, tk−1)

Δt

=
1

2

∂u

∂t
+
1

2
ν1x

∂u

∂x
+
1

2
ν1y

∂u

∂y
+
1

4
Δt

∂2u

∂t2

+
1

2
ν1xβ1y

∂2u

∂x∂y
+ · · ·+

1

2

∂u

∂t
+
1

2
ν−1x

∂u

∂x
+
1

2
ν−1y

∂u

∂y

−
1

4
Δt

∂2u

∂t2
−
1

2
ν−1x β−1y

∂2u

∂x∂y
− · · ·

=
∂u

∂t
+
1

2
(ν1x + ν−1x )

∂u

∂x
+
1

2
(ν1y + ν−1y )

∂u

∂y
+ · · · .(15)

After eliminating the effect of moving a node we obtain
second order precision in the time direction.

We can also combine time difference quotients to elimi-
nate the effect of spatial shifts.

A
u(P + β1, tk+1)− u(P, tk)

Δt

+B
u(P, tk)− u(P − β−1, tk−1)

Δt

+C
u(P − β−1, tk−1)− u(P − β∗, tk−2)

Δt

=
1

Δt
[Au(P + β1, tk+1) + (B −A)u(P, tk)

+(C −B)u(P − β−1, tk−1) + (−C)u(P − β∗, tk−2)]

= A ·Δt−1u(P, tk) +A
∂u

∂t
+Aν1x

∂u

∂x

+Aν1y
∂u

∂y
+O(Δt) + (B −A) ·Δt−1u(P, tk)

+(C −B) ·Δt−1u(P, tk)− (C −B)
∂u

∂t

−(C −B)ν−1x

∂u

∂x
− (C −B)ν−1y

∂u

∂y
+O(Δt)

−(−C) ·Δt−1u(P, tk)− 2(−C)
∂u

∂t
− (−C)ν∗x

∂u

∂x

−(−C)ν∗y
∂u

∂y
+O(Δt) =

∂u

∂t
+O(Δt) (16)
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Figure 3: Directional difference multi-layer construction

where A, B, C satisfy⎧⎨
⎩

A+B + C = 1,
ν1xA+ ν−1x B + (ν∗x − ν−1x )C = 0,
ν1yA+ ν−1y B + (ν∗y − ν−1y )C = 0.

3 Node refining and coarsening

For each interior node, we have to construct a differ-
ence scheme by means of arcs connecting adjacent nodes.
Figure 4 shows two types of node stencils for star-like
schemes of nine points.

If we need to increase the precision of the approximation
then this can be done by combining directional quotients.

If a new node is inserted new arcs can be constructed to
existing nodes. Usually, the quotient approximation of
(1, 2, 3, 4) order needs a combination of (3, 6, 10, 15)
nodes and (2, 5, 9, 14) directional quotients. Finding the
combination coefficients requires the solution of a system
of linear equations of the (2, 5, 9, 14) order. If any of the
systems are singular then the singularity can be avoided
by perturbating one or more of the nodes. An example
of an order 2 approximation on 5 nodes requiring the
solution of a 5 × 5 system of equations is given in [10],
equations (12)-(14).

Except for the case of moving nodes, adaptive computa-
tion can add and delete nodes according to the state of
the local error. An error indicator for a computational
region ΩL is therefore defined for each tk as follows:

I(P, tk) =
∣∣u(P, tk)− uk(P )

∣∣ , P ∈ int ΩL, (17)

where u(P, tk) is the current solution and uk(P ) the ap-
proximation such that I(P, tk) reflects the approximating
degree of the solution around the node P on a given time-
layer. Here there are two computable constants C > 0
and R such that a local posteriori error estimation∣∣u(P, tk)− uk(P )

∣∣ ≤ C ·R(uk(P )) (18)

holds.

Adding or eliminating nodes is carried through according
to the following rule:

Let I∗k = maxP∈ΩL I(P, tk), and let θref, θcoa be two
tolerances such that: 0 < θcoa < θref < 1. Then

node P is added if I(P, tk) > θref · I
∗
k (19)

node P is removed if I(P, tk) < θcoa · I
∗
k . (20)

In order to balance the opposing requirements of ap-
proximation degree and computational effort we add new
nodes in ΩL if I is large and we remove current nodes
from ΩL if I is small. In addition to this it is neces-
sary to match the schemes for adding or removing nodes.
When a new node is added, we must establish a differ-
ence scheme based on this node. Similarly when a node is
eliminated, we should at the same time delete the differ-
ence scheme which is centered on this node. Sometimes,
we need to also keep the balance between the number of
entering arcs and that of exiting arcs for each node dur-
ing addition or removal of nodes. As an example consider
the scheme in Figure 5.

If we add a new node P0 with adjacent nodes
P1, P2, P3, P4, assuming that P1, P2, P3, P4 are arranged
in anticlockwise order and that arc directions are

�P4P1, �P3P2, then these two arcs are removed and the
paths P4 → P0 → P1, P3 → P0 → P2 are established. If
we remove the node P0 with adjacent nodes P1, P2, P3, P4,
assuming that original paths are P2 → P0 → P4, P3 →
P0 → P1 then these two paths and the node P0 are re-
moved, and we replace them by the arcs �P2P4, �P3P1.

In order to simplify the programming we first mark all
nodes which might possibly be used in the computation
as well as the difference schemes on these nodes. At the
same time we associate two flags to each node to indicate
whether the scheme on that node will enter the compu-
tational process at that moment. If that node is added
at a given moment, then the corresponding scheme is ac-
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tivated and the computation is performed. If the node
is removed, then the corresponding scheme is said to be
dormant.

It must be pointed out that a weakness of Lagrangian
methods is that the distance between two nodes may be
changed significantly as a node moves. If there is a link
between two nodes and they are moved so that they are
far apart then the link can be removed if the nodes are
in the interior of a region. If, however, the nodes are at
the edge of a region, for example near a discontinuous in-
terface, then we cannot modify the linking line between
the nodes since we want to avoid destroying the inter-
face which the scheme represents, see Figure 6. In this
case, we should add new nodes on the linking line be-
tween the two nodes along the approximating interface.
If necessary, we should also consider interface indicators
such as Level Sets. When we establish the corresponding
schemes, it is still noted that the adjacent nodes must
be established on one side of a moving interface so as to
enhance the resolution for the interface.

In Figure 7 two examples of node progressions are indi-
cated. In Figure 7(A) the nodes follow the flow of the
fluids and the movements of the nodes are calculated as
part of the process of approximating the equations result-
ing in the node structure in the lower figure. The local
a posteriori estimate (18) is used to estimate the accu-
racy of the solution on that layer and, as shown in the
figure nodes are added when condition (19)) requires it
and deleted when condition (20) holds.

The sequence Figure 7(B) indicates that if there is an
interface indicated by the dotted line then points on the
interface should only be added not deleted even though
condition (20) is satisfied.

4 Meshless TVD schemes

We now consider Total Variation Diminishing (TVD)
schemes [7, 5].

The 2D scalar conservation law is stated as

ut + f(u)x + g(u)y = 0, (21)

or

ut +∇ · F = 0, F = (f, g)T , ∇ =

(
∂

∂x
,

∂

∂y

)
(22)

and
∂f

∂u
= a(u),

∂g

∂u
= b(u) (23)

that is
ut + a(u)ux + b(u)uy = 0. (24)

It is noted that, given any two independent directions
�l1, �l2 we have

∂f

∂�l1
= cosα1

∂f

∂x
+ cosβ1

∂f

∂y
, (25)

∂f

∂�l2
= cosα2

∂f

∂x
+ cosβ2

∂f

∂y
(26)

where cosαi, cosβi are the directional cosines of �li, i =
1, 2. Thus,

∂f

∂x
= A

∂f

∂�l1
+B

∂f

∂�l2
(27)

where {
A cosα1 +B cosα2 = 1,
A cosβ1 +B cosβ2 = 0.

Similarly
∂g

∂y
= C

∂g

∂�l1
+D

∂g

∂�l2
(28)

where {
C cosα1 +D cosα2 = 0,
C cosβ1 +D cosβ2 = 1.

Therefore, on a given node, we can construct a ”one-
dimensional” scheme along a path passing through that
node, and then establish a full scheme combining several
different paths. Also, it will be shown in Section 7 that
we can employ the splitting technique on different compu-
tational paths. In this section, we consider the difference
scheme

uk+1(P+) = uk(P )− r∗(f̂k
P+P − f̂k

PP−) (29)

where r∗ = 2Δt/(|P+P |+ |PP−|) and

f̂k
P+P ≡ f̂+(u

k(P+), uk(P ); r∗), (30)

f̂k
PP− ≡ f̂−(u

k(P ), uk(P−); r∗) (31)

are the numerical fluxes of this scheme, see Figure 8,
which satisfies the following consistency condition

f̂+(u, u; r∗) = f̂−(u, u; r∗) = f(u). (32)

The scheme (29) will approximate the following equation

ut +A
∂f

∂�l1
+B

∂f

∂�l2
= 0. (33)

From now on we do not consider moving the node. Doing
this would just add a modification term written as

C∗1
Δf

Δ�l1
+ C∗2

Δf

Δ�l2

to the spatial direction in the scheme.

Let L = max{l} where l is the length of an arc. We
suppose that

|P+P |

|P+P |+ |PP−|
→ C∗, (L → 0). (34)
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For scheme (29), we have

(i): When conditions (32) and (34) hold, the scheme is
consistent. This is because

f̂+(u(P
+), u(P ); r∗) = f̂+(u, u; r∗)

+(f̂+)
′
1(u, u; r∗)[u(P+)− u(P )] +O(L2), (35)

f̂−(u(P
+), u(P ); r∗) = f̂−(u, u; r∗)

+(f̂−)
′
2(u, u; r∗)[u(P−)− u(P )] +O(L2). (36)

Thus

u(P, t+Δt)− u(P, t)

Δt

+
f̂+(u(P

+), u(P ); r∗)− f̂−(u(P ), u(P
−); r∗)

(|P+P |+ |PP−|)/2

= u′t + (f̂+)
′
1(u, u; r∗)

u(P+)− u(P )

|P+P |

·
2|P+P |

|P+P |+ |PP−|

−(f̂−)
′
2(u, u; r∗)

u(P−)− u(P )

|PP−|

·
2|PP−|

|P+P |+ |PP−|
+O(L)

= u′t + 2C∗ · (f̂+)
′
1(u, u; r∗)

∂u

∂�l+

+2(1− C∗) · (f̂−)
′
2(u, u; r∗)

∂u

∂�l−
+O(L)

= u′t + 2C∗
∂f̂+

∂�l+
+ 2(1− C∗)

∂f̂−

∂�l−
+O(L). (37)

(ii): If uk(P ) → 0 as node P tends to infinity, then
scheme (29) implies that

∑
all P

uk+1(P ) =
∑
all P

uk(P ), (38)

that is, scheme (29) is conserving and we note that (29)
is the flux form. We also employ another two forms in

practice. Let

Qk
P+P =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩ r∗

f(uk(P )) + f(uk(P+))− 2f̂k
P+P

uk(P+)− uk(P )
,

when uk(P+) �= uk(P ),{
r∗[(f̂+)

′
1(P ) + (f̂+)

′
2(P )],

when uk(P+) = uk(P ).

(39)
Here

f̂k
P+P =

1

2
[f(uk(P )) + f(uk(P+))]

−
1

2r∗
Qk

P+P · [u
k(P )− uk(P )] (40)

and scheme (29) can be written as

uk+1(P+) = uk(P )−
1

2
r∗[f(uk(P+))− f(uk(P−))]

+
1

2
[Qk

P+P · (u
k(P+)− uk(P )) (41)

+ −Qk
PP− · (u

k(P )− uk(P−))]. (42)

This is called the viscosity form for scheme (29) and
Qk

P+P is called numerical coefficient of viscosity.

Moreover, scheme (29) can still be written as the follow-
ing increment form

uk+1(P+) = uk(P )− Ck
PP− · (u

k(P )− uk(P−))

+Dk
P+P · (u

k(P+)− uk(P )) (43)

where

Ck
PP− =

1

2
(Qk

PP− + r∗ak
PP−), (44)

Dk
P+P =

1

2
(Qk

P+P − r∗ak
P+P ) (45)

and

ak
P+P =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎧⎨
⎩

f(uk(P+))− f(uk(P ))

uk(P+)− uk(P )
when uk(P+) �= uk(P ),{ (
∂f
∂u

)k

(P ),

when uk(P+) = uk(P ).

(46)
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In the following several examples are given.

Example 1. Meshless explicit upwind scheme:

uk+1(P+)

= uk(P )−
1

2
r∗[f(uk(P+))− f(uk(P−))] (47)

+
1

2
r∗|ak

P+P | · [u
k(P+)− uk(P )]

−
1

2
r∗|ak

PP− | · [u
k(P )− uk(P−)]. (48)

The numerical flux of the scheme is

f̂k
P+P =

1

2
[f(uk(P ))− f(uk(P+))]

−
1

2
|ak

P+P | · [u
k(P+)− uk(P )]. (49)

From this it follows that the numerical coefficient of vis-
cosity is Qk

P+P = r∗|ak
P+P |.

Here we note that the scheme becomes

uk+1(P+) = uk(P )− r∗[f(uk(P ))− f(uk(P−))] (50)

when ak
P+P ≥ 0 and it becomes

uk+1(P+) = uk(P )− r∗[f(uk(P+))− f(uk(P ))] (51)

when ak
P+P < 0.

Example 2. Meshless Lax-Friedrichs scheme:

uk+1(P+) =
1

2
[uk(P+)− uk(P−)]

−
1

2
r∗[f(uk(P+))− f(uk(P−))]. (52)

The numerical flux is

f̂k
P+P =

1

2

[
f(uk(P )) + f(uk(P+))

]
−

1

2r∗
[uk(P+)−uk(P )].

(53)
From this it follows that the numerical coefficient of vis-
cosity is Qk

P+P = 1.

Example 3. Meshless Lax-Wendroff scheme:

uk+1(P+) = uk(P )−
1

2
r∗[f(uk(P+))− f(uk(P−))

+
1

2
r∗

2

(ak
P+P )

2 · [uk(P+)− uk(P )]

−
1

2
r∗

2

(ak
PP−)

2 · [uk(P )− uk(P−)]. (54)

The numerical flux of this scheme is

f̂k
P+P =

1

2
[f(uk(P )) + f(uk(P+))]

−
1

2
r∗(ak

P+P )
2 · [uk(P+)− uk(P )]. (55)

From this it follows that the numerical coefficient of vis-
cosity is Qk

P+P = (r∗ak
P+P )

2.

In the following we will discuss so-called TVD property
which is of special significance in the computation of
sharply discontinuous interfaces.

The difference solution {uk(P )}, uk(P ) ≡ 0 when P is far
away from the computational region is given. We call

TV(uk) = L ·
∑
all P

|uk(P+)− uk(P )| (56)

the total variation of the difference solution. If the in-
equality

TV(uk+1) ≤ TV(uk), ∀k (57)

holds, then the corresponding scheme is called a TVD
scheme.

For a meshless TVD scheme, we will generalize the fol-
lowing two familiar properties:

PROPERTY 1 (Harten lemma [7]) For the increment
form (43) of scheme (29), if

Ck
P+P ≥ 0, Dk

P+P ≥ 0, Ck
P+P +Dk

P+P ≤ 1, ∀P (58)

then this scheme is a TVD scheme.

This is because

(a) uk+1(P+) = uk(P+)

−Ck
P+P · [u

k(P+)− uk(P )]

+Dk
P̃P+ · [u

k(P̃ )− uk(P+)], (59)

(b) uk+1(P ) = uk(P ) +Dk
P+P · [u

k(P+)− uk(P )]

−Ck
PP− [u

k(P )− uk(P−)] (60)

(see also Figure 8). Subtracting equation (b) from equa-
tion (a) we get

[uk+1(P+)− uk+1(P )]

= (1− Ck
P+P −Dk

P+P ) · [u
k(P+)− uk(P )]

+Ck
PP− · [u

k(P )− uk(P−)]

+Dk
P̃P+ · [u

k(P̃ )− uk(P+)]. (61)

Taking the absolute values on both sides and summing
for all P , we obtain∑

all P

|uk+1(P+)− uk+1(P )|

≤
∑
all P

(1− Ck
P+P −Dk

P+P ) · |u
k(P+)− uk(P )|

+
∑
all P

Ck
PP− · |u

k(P )− uk(P−)|
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Figure 9: Harten lemma configuration

+
∑
all P

Dk
P̃P+ · |u

k(P̃ )− uk(P+)|

=
∑
all P

{(1− Ck
P+P −Dk

P+P )|u
k(P+)

−uk(P )|+ Ck
P+P |u

k(P+)− uk(P )|

+Dk
P+P · |u

k(P+)− uk(P )|}

=
∑
all P

|uk(P+)− uk(P )|. (62)

Hence TV(uk+1) ≤ TV(uk) that is the scheme (42) is a
TVD scheme.

PROPERTY 2 For the viscosity form (42) of scheme
(29), if

r∗|ak
P+P | ≤ Qk

P+P ≤ 1, (63)

then this scheme is a TVD scheme.

This is because the viscosity form (42) can be rewritten
as

uk+1(P ) = uk(P )−
1

2
(Qk

PP− + r∗ak
PP−)

·[uk(P )− u(P−)]

+
1

2
(Qk

P+P − r∗ak
P+P ) · [u

k(P+)− u(P )] (64)

From condition (63) and the Harten lemma it follows that

Qk
P+P ± r∗ak

P+P ≥ 0, (65)

1

2
(Qk

P+P + r∗ak
P+P )

+
1

2
(Qk

P+P − r∗ak
P+P ) ≤ 1 (66)

for all P , that is, this scheme is a TVD scheme.

Under the condition r∗|ak
P+P | ≤ 1 and according to (63)

it follows that the meshless explicit upwind scheme is a
TVD scheme since Qk

P+P = r∗|ak
P+P | ≤ 1. The mesh-

less Lax-Friedrichs scheme is also a TVD scheme since
Qk

P+P = 1. But the meshless Lax-Wendroff scheme is
not a TVD scheme since Qk

P+P = (r∗ak
P+P )

2 does not
satisfy the condition (63). The above schemes usually
are of order one because of the precision limitation of the
node stencils.

5 Meshless ENO schemes

In order to improve the precision of TVD schemes, we
must extend the node stencils using a meshless essential
nonoscillatory (ENO) scheme. Previous work in this area
can be found in [1, 3].

5.1 Successive extensions of a node stencil

Let P+
1/2 be the middle point of the arc P+P and P−1/2

the middle point of the arc PP−, see Figure 10. The
equation which we have to approximate is written as

∂u

∂t
= A

∂f

∂�l1
+B

∂f

∂�l2
(67)

where �l1 =
−→

PP+, �l2 =
−→

P−P .

First the construction of an integral averaging scheme is
considered. The above equation will be integrated along

the path Γ =
−→

P−1/2P
+
1/2 and noting that |Γ| =

1
2 (|

−→

l1 | +

|
−→

l2 |) we have∫
Γ

∂u

∂t
ds = −

∫
Γ

(
A

∂f

∂�l1
+B

∂f

∂�l2

)
ds

= −A[f(u(P+
1/2))− f(u(P ))]

−B[f(u(P ))− f(u(P−1/2))]. (68)

Defining the path average of u(x, t) as

uP =
1

|Γ|

∫
Γ

u(s, t)ds (69)

we get

d

dt
uP +A

f(u(P+
1/2, t))− f(u(P, t))

|Γ|

+B
f(u(P ), t)− f(u(P−1/2, t))

|Γ|
= 0. (70)

In the following we will discuss the approximations of
higher order to u(P+

1/2) and u(P−1/2). In order to avoid dis-

continuities when extending the stencils we employ direc-
tional divided difference quotients to judge the smooth-
ness degree of u within the stencils.
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Figure 10: Extending the node stencil
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=
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=
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Figure 11: Path through P

Choose a path passing through P . The number of
nodes in a local disc with center P is 2k − 1 :
{P−k+1, . . . , P−1, P0, P1, . . . , Pk−1 (see Figure 11). The
center of Pj−1Pk is denoted by Pj/2. Let

u[P0] = uP0
. (71)

The directional quotient of first order is

u[P0, P1] =
u[P1]− u[P0]

|P1P0|
(72)

and the directional quotient of order k − 1 is

u[P0, . . . , Pk−1] =
u[Pk−1, . . . , P1]− u[Pk−2, . . . , P0]

|Pk−1P0|
(73)

and we note the close connection with divided differ-
ences in this development. The arc lengths |PjP0|(j =
2, . . . , k − 1) can be calculated recursively from the arcs
|P1P0|, |P2P1|, . . . , |PjPj−1|, that is

|P2P0| =√
|P1P0|2 + |P2P1|2 − 2|P1P0||P2P1| · cos θ1,

|P3P0| =√
|P2P0|2 + |P3P2|2 − 2|P2P0||P3P2| · cos θ2

· · ·

(see Figure 12).

A stencil will be adaptively extended by comparing the
absolute values of the directional quotients. At first, the
initial stencil S1 = {P0} is determined. To add a node,
we have two choices

S2 =

⎧⎨
⎩

S1 ∪ {P−1},
or,
S1 ∪ {P1}

(74)

that is, it will be decided whether to add a node to the
left or to the right. We make our choice depending on
the absolute values of directional quotients. If

|u[P0, P−1] ≤ |u[P0, P1]|

then we add the node P−1, that is, S2 = S1 ∪ {P−1}.
Otherwise we add the node P1, that is, S2 = S1 ∪ {P1}.
The remainder follows by analogy. We prescribe that the
nodes passing through from P to Pj have all been used if
a node Pj is picked up on this path except for P . Thus,
a stencil can finally be determined on the path P−k+1 →
· · · → P0 → · · · → Pk−1. Based on this stencil, we can
establish a Newton type interpolation formula with up to
degree k − 1 on the path P−1/2 → P → P+

1/2:

u(Z) = u(P0) +

(
u(Z)− u(P0)

|ZP0|

)
· |ZP0|

= u(P0) + u[Z, P0] · |ZP0|

= u(P0)

+

(
u[P1, P0] +

u[Z, P0]− u[P1, P0]

|ZP1|
· |ZP1|

)
· |ZP0|

= u(P0) + u[P1, P0] · |ZP0|

+u[Z, P1, P0] · |ZP1| · |ZP0|

= . . .

=

k−1∑
j=0

u[Pj , . . . , P0] · Π
j−1
i=0 |ZPi|

+u[Z, Pk−1, . . . , P0] · Π
k−1
i=0 |ZPi|

Δ
= ΦP (Z) +O(Lk) (75)

where
Δ
= means that the quantity on the right is de-

fined by the quantities on the left. Further we get the
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Figure 12: Recursive calculation of difference quotient

approximating values on the both sides of the path as
u−

P+

1/2

= ΦP (P
+
1/2) and u+

P−
1/2

= ΦP (P
−

1/2) and we have

u−
P+

1/2

= ΦP (P
+
1/2) = u(P+

1/2, t) = O(Lk), (76)

u+
P−

1/2

= ΦP (P
−

1/2) = u(P−1/2, t) = O(Lk). (77)

Hence we obtain a semi-discrete scheme

duP

dt
+A

f̂(u−
P+

1/2

, u+
P+

1/2

)− f(u(P, t))

|Γ|

+B

f(u(P, t))− f̂(u−
P−

1/2

, u+
P−

1/2

)

|Γ|
= 0 (78)

where f̂(u−, u+) is the numerical flux of ENO methods,
which satisfy the following properties:

(i) (consistency) f̂(u, u) = f(u)

(ii) (monotonicity) f̂(↑, ↓) which is not increasing for the
first component and not decreasing for the second com-
ponent

We can still construct the immediate difference-like
scheme on each node.

The value of a node is noted as uP = u(P, t), and f̂P+

1/2

is the numerical flux. In order to construct a k’th order
scheme, that is

A
f̂P+

1/2

− f(u)

|Γ|
+B

f(u)− f̂P−
1/2

|Γ|

=

(
A

∂f

∂
→

l1

+B
∂f

∂
→

l2

)
P

+O(Lk) (79)

we require an interpolating function Ψ(Z) such that

1

|Γ|

∫
PP+

AΨ(Z)dZ +
1

|Γ|

∫
P−P

BΨ(Z)dZ

= f(u(P, t)) +O(Lk) (80)

where Ψ(Z) satisfies the following integral averaging in-
terpolation condition

1

|Γ|

∫
PP+

AΨ(Z)dZ +
1

|Γ|

∫
P−P

BΨ(Z)dZ = f(uP ).

(81)

Taking f̂P+

1/2

= Ψ(P+
1/2) we have(

A
∂f

∂
→

l1

+B
∂f

∂
→

l2

)
P

= A
Ψ(P+

1/2)−Ψ(P )

|Γ|

+B
Ψ(P )−Ψ(P−1/2)

|Γ|
+O(Lk). (82)

Hence we get a semi-discrete scheme

duP

dt
+A

Ψ(P+
1/2)−Ψ(P )

|Γ|
+B

Ψ(P )−Ψ(P−1/2)

|Γ|
= 0. (83)

5.2 Linear combination ENO methods

The precision of the approximation in a smooth region
can be increased by forming linear combinations of sten-
cils. Suppose that there are k stencils

Sr(P ) = {P−r, . . . , P0, . . . , Pk−1−r}, r = 0, . . . k − 1

for a given difference.

From the above Newton interpolation, we can find k dis-

tinct reconstructions u
(r)

P+

1/2

, r = 0, . . . , k − 1 of uP+

1/2

on

each stencil. The LCENO (Linear Combination of ENO)
scheme approximates u(P+

1/2, t) using linear combinations

of all u
(r)

P+

1/2

:

uP+

1/2

=

k−1∑
r=0

wru
(r)

P+

1/2

(84)

where it is required that
∑k−1

r=0 wr = 1 in order to satisfy
the consistency condition.

Moreover, if u is smooth on all the stencils then we can
find dr such that

k−1∑
r=0

dru
(r)

P+

1/2

= u(P+
1/2, t) +O(L2k−1) (85)

and we still have
∑k−1

r=0 dr = 1 because of consistency.

In the smooth case, we require that wr = dr +
O(Lk−1), r = 0, . . . , k − 1 and we get

k−1∑
r=0

wru
(r)

P+

1/2

−

k−1∑
r=0

dru
(r)

P+

1/2
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=
k−1∑
r=0

(wr − dr)(u
(r)

P+

1/2

− u(P+
1/2, t))

k−1∑
r=0

O(Lk−1) ·O(Lk) = O(L2k−1). (86)

The method therefore has order 2k − 1 precision, that is

uP+

1/2

=

k−1∑
r=0

wru
(r)

P+

1/2

= u(P+
1/2, t) +O(L2k−1). (87)

If there is a discontinuity in a LCENO scheme for a given
stencil, then wr should be taken as zero. In practical
computations, {wr} may be chosen as follows

wr =
αr∑k−1

s=0 αs

, r = 0, . . . k − 1, αr =
dr

(ε+ βr)2
(88)

where βr = O(Lk−1) and ε > 0 is introduced to avoid a
vanishing denominator. Hence we have

wr =
dr∑k−1

s=0 ds

(
ε+βr

ε+βs

)2
=

dr∑k−1
s=0 ds

(
1− βs−βr

ε+βs

)2 = dr

1−O(βs − βs)

= dr +O(βs − βr)⇒ βs − βr = O(Lk−1). (89)

6 Runge-Kutta like time discretization

In the above discussion, we obtained a semi-discrete
scheme ut = L(u), where L(u) is an approximation for

−A
∂f

∂�l1
−B

∂f

∂�l2
.

In the following we will further consider the time dis-
cretization so as to obtain a full-discrete scheme.

If the total variation norm is defined as ‖·‖ = TV (·) then
the Euler forward difference method

uk+1 = uk +Δt · L(uk) (90)

is TVD stable if the time step satisfies δt ≤ Δt0 and we
have

‖(I +ΔtL)(uk)‖ ≤ ‖uk‖. (91)

The general TVD Runge-Kutta time discretization
scheme is

u(i) =
i−1∑
s=0

(αisu
(s) +Δt · βis · L(u

(s))), i = 1, . . . , m,(92)

u(0) = uk, u(m) = uk+1. (93)

Assume that the coefficients αis and βis satisfy αis ≥ 0,
βis ≥ 0,

∑i−1
s=0 αis = 1. If the time step is chosen as

Δt ≤ cΔt0 and c = min
i,s

αis

βis
(94)

then the scheme is a TVD scheme.

There is no TVD Runge-Kutta scheme of fourth order
such that αis ≥ 0, βis ≥ 0. Therefore the conjugate
operator L̃ of L is defined in order to introduce the Euler
backward difference method:

uk+1 = uk −Δt · L̃(uk). (95)

For instance, for the equation

ut +A
∂f

∂�l1
+B

∂f

∂�l2
= 0 (96)

we can define

L(u) = −
f(u(P ))− f(u(P−))
1
2 (|P

+P |+ |PP−|)
,

L̃(u) = −
f(u(P+))− f(u(P ))
1
2 (|P

+P |+ |PP−|)
. (97)

Thus

1. The computations of quantities needed for L and L̃
are the same.

2. L is stable for the Euler forward difference.

3. L̃ is stable for the Euler backward difference.

If αis ≥ 0, βis is negative and the operator L̃ is used
instead of L, then the scheme (99) is a TVD scheme under
the following restriction of the time step

Δt ≤ cΔt0 and c = min
i,s

αis

|βis|
. (98)

6.1 Linear multistep TVD schemes

The general linear m step scheme is

uk+1 =

m−1∑
i=0

(αiu
k−i +Δt · βi · L(u

k−i)). (99)

Let the coefficients αis and βis satisfy αi ≥ 0, βi ≥ 0 and∑m−1
i=0 αi = 1. If the time step is chosen as

Δt ≤ cΔt0 and c = min
i

αi

βi
(100)

then the scheme is a TVD scheme.

There is still no TVD linear multistep scheme of fourth
order such that αi ≥ 0 and βi ≥ 0. Therefore the conju-
gate operator L̃ is used.

IAENG International Journal of Applied Mathematics, 38:2, IJAM_38_2_01
______________________________________________________________________________________

(Advance online publication: 20 May 2008)



If αi ≥ 0 and βi < 0 and the conjugate operator L̃ is
used instead of operator L, then the scheme (98) is a
TVD scheme under the following restriction of time step

Δt ≤ cΔt0 where c = min
i

αi

|βi|
. (101)

7 Splitting, compounding and coupling

break

The above only considers the construction of a scheme on
a single path, for approximating the equation

ut + A
∂f

∂�l1
+B

∂f

∂�l2
= 0. (102)

In order to obtain an approximation to the original equa-
tion

ut +A
∂f

∂x
+B

∂f

∂y
= 0 (103)

we must employ a two path construction as shown in
Figure 13. This results in

a

(
A1

∂f

∂
→

l1

+B1
∂f

∂
→

l2

)
+ b

(
A2

∂f

∂
→

l3

+B2
∂f

∂
→

l4

)

+c

(
A3

∂g

∂
→

l1

+B3
∂g

∂
→

l2

)
+ d

(
A4

∂g

∂
→

l3

+B4
∂g

∂
→

l4

)

= a

[
A1

(
cosα1

∂f

∂x
+ cosβ1

∂f

∂y

)

+B1

(
cosα2

∂f

∂x
+ cosβ2

∂f

∂y

)]

+b

[
A2

(
cosα3

∂f

∂x
+ cosβ3

∂f

∂y

)

+B2

(
cosα4

∂f

∂x
+ cosβ4

∂f

∂y

)]

+c

[
A3

(
cosα1

∂g

∂x
+ cosβ1

∂g

∂y

)

+B3

(
cosα2

∂g

∂x
+ cosβ2

∂g

∂y

)]

+d

[
A4

(
cosα3

∂g

∂x
+ cosβ3

∂g

∂y

)

+B4

(
cosα4

∂g

∂x
+ cosβ4

∂g

∂y

)]
= [(A1 cosα1 +B1 cosα2)a

+ (A2 cosα3 +B2 cosα4)b]
∂f

∂x
+[(A1 cosβ1 +B1 cosβ2)a

+ (A2 cosβ3 +B2 cosβ4)b]
∂f

∂y

+[(A3 cosα1 +B3 cosα2)c

+ (A4 cosα3 +B4 cosα4)d]
∂g

∂x

+[(A3 cosβ1 +B3 cosβ2)c

+ (A4 cosβ3 +B4 cosβ4)d]
∂g

∂y
. (104)

Solving the equations

(A1 cosα1 +B1 cosα2)a+ (A2 cosα3 +B2 cosα4)b = 1,
(A1 cosβ1 +B1 cosβ2)a+ (A2 cosβ3 +B2 cosβ4)b = 0,
(A3 cosα1 +B3 cosα2)c+ (A4 cosα3 +B4 cosα4)d = 0,
(A3 cosβ1 +B3 cosβ2)c+ (A4 cosβ3 +B4 cosβ4)d = 1

(105)
we get

ut + a

(
A1

∂f

∂
→

l1

+B1
∂f

∂
→

l2

)
+ b

(
A2

∂f

∂
→

l3

+B2
∂f

∂
→

l4

)

+c

(
A3

∂g

∂
→

l1

+B3
∂g

∂
→

l2

)
+ a

(
A4

∂g

∂
→

l3

+B4
∂g

∂
→

l4

)

= ut +
∂f

∂x
+

∂g

∂y
= 0. (106)

Finally we will discuss the case of the system of convec-
tion equations, that is, the system of 2D conservation
laws

Ut + f(U)x + g(U)y = 0 (107)

where with u = (u1, · · · , um)
T

f(U) =

⎛
⎜⎝

f1(u1, · · · , um)
...
fm(u1, · · · , um)

⎞
⎟⎠ ,

g(U) =

⎛
⎜⎝

g1(u1, · · · , um)
...
gm(u1, · · · , um)

⎞
⎟⎠ . (108)

In the following we consider two approaches to such equa-
tions.

(1): Splitting-coupling break

According to the above analysis, we have to solve the
system of equations

Ut +A∗1
∂f(U)

∂
→

l1

+A∗2
∂f(U)

∂
→

l2

+A∗3
∂f(U)

∂
→

l3

+A∗4
∂f(U)

∂
→

l4

+B∗1
∂g(U)

∂
→

l1

+B∗2
∂g(U)

∂
→

l2

+B∗3
∂g(U)

∂
→

l3

+B∗4
∂g(U)

∂
→

l4

= 0 (109)

at P .

We may employ a quarter time step Δt to obtain

1

4
Ut +A∗i+1

∂f(U)

∂
−→

li+1

+ A∗i+2
∂f(U)

∂
−→

li+2

= 0,
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l2

l1

l3

l4

Figure 13: Combination of two paths

1

4
Ut +B∗i+1

∂g(U)

∂
−→

li+1

+B∗i+2
∂g(U)

∂
−→

li+2

= 0,

(110)

i = 0, 2. (111)

This can be solved using the method for scalar equations.
Additionally, since

A∗i+1
∂f(U)

∂
−→

li+1

+ A∗i+2
∂f(U)

∂
−→

li+2

=

A∗i+1

(
cosαi+1

∂f

∂x
+ cosβi+1

∂f

∂y

)

+A∗i+2

(
cosαi+2

∂f

∂x
+ cosβi+2

∂f

∂y

)

= (A∗i+1 cosαi+1 +A∗i+2 cosαi+2)
∂f

∂x

+(A∗i+1 cosβi+1 +A∗i+2 cosβi+2)
∂f

∂y

= A∗i
∂f(U)

∂
−→

lAi

(112)

where

A∗i = (A∗i+1 cosαi+1 +A∗i+2 cosαi+2)
2

+(A∗i+1 cosβi+1 +A∗i+2 cosβi+2)
2

and

A∗i =

√
A∗i ,

→

lAi = ((A∗i+1 cosαi+1 +A∗i+2 cosαi+2)/A
∗
i ,

+(A∗i+1 cosβi+1 +A∗i+2 cosβi+2)/A
∗
i ). (113)

and hence we can write (111) as

1

4
Ut + A∗i

∂f(U)

∂
−→

lAi

= 0,

1

4
Ut + B∗i

∂g(U)

∂
−→

lBi

= 0 (114)

or

1

4
Ut +A∗i

∂f(U)

∂U
·

∂U

∂
−→

lAi

= 0,

1

4
Ut +B∗i

∂g(U)

∂U
·

∂U

∂
−→

lBi

= 0 (115)

where A∗i
∂f(U)

∂U , B∗i
∂g(U)

∂U are computed by a local freez-
ing approach. For instance, the value of f ′ at P can be
chosen as the arithmetic average of two points on the
arc P−P+ as A∗i f

′(12 (U(P
−

1/2) + U(P+
1/2))), or the Roe

average A∗i f
′(12 (U

Roe(P−1/2) + U(P+
1/2))).

In the following we consider a particular system of equa-

tions. Let the matrix A∗i
∂f(U)

∂U have m real eigenvalues

λ1(U) ≤ λ2(U) ≤ · · · ≤ λm(U)

and a system of complete eigenvectors

r1(U), r2(U), · · · , rm(U).

Then A∗i
∂f(U)

∂U can be diagonalized by a similarity trans-
formation, that is,

R−1(U)A∗i
∂f(U)

∂U
R(U) = Λ(U) (116)

where

Λ(U) = diag(λ1(U), . . . , λm(U)),

R(U) = (r1(U), . . . , rm(U)). (117)

Setting V = R−1U , we obtain

1

8
R−1Ut +R−1A∗

∂f(U)

∂U
R · R−1

∂U

∂
→

li

= 0,

1

8
Vt + Λ

∂U

∂
→

lAi

= 0. (118)

Therefore the coupled equations can be broken into m
independent equations⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
8(ν1)t + λ1

(
∂ν1

∂
→

li

)
= 0,

...

1
8(νm)t + λm

(
∂νm

∂
→

li

)
= 0

(119)
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which can also be solved using the method for scalar equa-
tion. After getting V we find U from U = RV .

(2): Compounding-Roe like coupling break

For Ut + f(U)x + g(U)y = 0, if both sides are integrated
on the convex hull N(P ) of the node stencil involving in
the difference scheme at P we get

d

dt

∫
N(P )

UdΩ +

∫
N(P )

(f(U)x + g(U)y)dΩ

=
d

dt

∫
N(P )

UdΩ+

∫
∂N(P )

(�F · �n)ds = 0 (120)

where ∂N(P ) is the boundary of N(P ), �n is the outer

unit normal at a boundary line of N(P ) and �F = (f, g).
This is indicated in Figure 14.

The semi-discrete form for this is

A0
dU

dt

∣∣
N(P ) = −

∑
l∈N(P )

(�F · �n)→
l
·Δl (121)

where A0 is the area of N(P ), which can be expressed as
the linear combination of nodal values on N(P ). �nl is the

outer unit normal of boundary line �l and Δl is the length
of �l.

The numerical flux can be written as

(�F · �n)→
l
=
1

2
{(�F · �n)(U−

→

l
) + (�F · �n)(U+

→

l
)

−

∣∣∣∣∣∂(
�F · �n)

∂U

∣∣∣∣∣→
l

· (U+
→

l
− U−

→

l
) (122)

where (U−
→

l
, U+

→

l
) are the U values of at the sides of

→

l . As

in (32), the simple arithmetic average or Roe average of
∂(�F ·�n)

∂U

∣∣∣→
l
is diagonalized by a similarity transformation:

R−1(U)
∂(�F · �n)

∂U

∣∣∣∣∣→
l

R(U) = Λ(U). (123)

Noting that V ±
→

l
= R−1U±

→

l
we have

(�F · �n)→
l
=
1

2
{(�F · �n)(U−→

l
) + (�F · �n)(U+

→

l
)

−R(U)|Λ(U)|R−1(U)(U+
→

l
− U−

→

l
) (124)

=
1

2
{(�F · �n)(RV −→

l
) + (�F · �n)(RV +

→

l
)

−(|λ1|r1, · · · , |λm|rm) · (V
+
→

l
− V −→

l
). (125)

Computational Example 1. Forward facing step prob-
lem.

In Example 2, almost 8000 nodes are assigned for com-
puting, and in Example 3, also 8000 nodes are assigned,
and 2D shallow water equation is used.

This is a standard test example for high resolution meth-
ods. The problem is as follows: In a windtunnel, 3 long
and 1 wide a step is 0.2 high is located 0.6 from the left-
hand end of the tunnel (see Figure 15).

We use an Euler system of equations of conservative type
to describe the flow of fluids. Almost 12000 nodes are as-
signed on one time-layer for computing, and a improved
Wendroff scheme with a splitting flux and adaptive strat-
egy was implemented as discussed in previous sections.

The initialization is a Mach 3 flow from the right. Re-
flective bounds are set up along the walls of the tunnel,
The in-flow and out-flow bounds are set up at the en-
trance (right-hand end) and the exit (left-hand end). In
the Figures 15-17 we present the result of the improved
meshless splitting Wendroff like method of the computa-
tion at times ta < tb < tc.

Computational Example 2. Double Mach reflection.

The computational domain for this problem is taken to
be [0, 4] × [0, 1]. The reflecting wall lies on the bottom
of the computational domain starting at 1/6 from the
left-hand end (see also Figure 18). Approximately 8000
nodes are provided initially.

The initialization is a Mach 10 shock from the left posi-
tioned on the bottom starting at 1/6 from the left-hand
end and has a 600 angle with the axis. For the bottom
bound, the post-shock condition is imposed for the part
from left-hand end to 1/6 and a reflective condition is for
the remaining distance. For the top bound of the com-
putational domain, the flow values are set up to describe
the motion of the Mach 10 shock. In Figures 18 and
19 several results of our meshless difference method are
presented.

Computational Example 3. Problem of dam failure
with the 2D shallow water equation.

A 200 × 200 computational domain is considered where
there is dam which divides water storage into two equal
parts. The upper part is 80 depth, and lower part is
20 deep. A segment on the dam body suddenly breaks.
This segment is 75 long and 95 away from one side of
the water storage. The flow of water obey 2D shallow
water equation. Approximately 8000 nodes are provided
initially.

In Figures 20 and 21 several results of our meshless dif-
ference method are presented.
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Figure 14: Convex hull of node stencil at P

Figure 15: Forward facing step problem, a

Figure 16: Forward facing step problem, b
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Figure 17: Forward facing step problem, c

Figure 18: Double Mach reflection, a
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Figure 19: Double Mach reflection, b

Figure 20: Dam failure, a

Figure 21: Dam failure, b
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