
 
 

 

  
Abstract—This paper introduces a model for finding the 

optimal replacement policy for Condition Based Maintenance 
(CBM) of a system when the information obtained from the 
gathered data does not reveal the system's exact degradation 
state, and the process of collecting data is costly or non-costly. The 
proposed model uses the Proportional Hazards Model (PHM) 
introduced by D. R. Cox to represent  the system’s failure rate. 
The PHM takes into consideration the system's degradation state 
as well as its age. Since the acquired information is imperfect, the 
degradation state of the system is not precisely known. Bayes' rule 
is used to estimate the probability of being in any of the possible 
states. The system's degradation process follows a Hidden 
Markov Model (HMM). By using dynamic programming, the 
system's optimal replacement policy and its long-run average 
operating cost are found. Based on the total long-run average cost, 
the optimal interval between data collection, and the 
corresponding replacement criterion are specified. A numerical 
example compares between two systems, one which collects data 
at no cost, and the other having costly observations. The optimal 
intervals for data collection and the optimal costs are found in 
both cases. 
 

Index Terms— Condition Based Maintenance (CBM), Costly 
Observations, Imperfect Information, Proportional Hazard 
Model (PHM), Hidden Markov Model (HMM). 
 

I. INTRODUCTION  
For a system subjected to Condition Based Maintenance 

(CBM) program, inspections are performed to obtain proper 
information about the degradation state of the system.  In this 
paper, the information acquired during the inspections does not 
reveal the exact degradation state of the system but represents 
some data which are stochastically related to the system's 
degradation state  [11],  [13]. This information is called 
imperfect or partial.  The data are then used to calculate the 
probability of being in a certain degradation state, and to find 
the optimal replacement policy. In CBM studies, several 
models have been used to take into account the system's 
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degradation state. One of these models is the Proportional 
Hazards Model (PHM), introduced by  [4], which has been 
widely used in medical studies. Recently, an increasing 
application of the PHM to the CBM is reported  [10],  [1]. 
According to the PHM, the system's failure rate (also called 
hazard rate) is estimated based on its age as well as its 
degradation state. In this paper, the PHM is used to calculate 
the optimal replacement policy and long-run average cost for a 
system with imperfect information.  

Afterwards, the unrealistic assumption of non-costly 
observations is relaxed and the corresponding optimal 
replacement policy and total long-run average cost are found. 
In the CBM modeling, if the observations are taken at no cost, 
the optimal observation interval is zero i.e. the best choice is to 
monitor the system continuously. That is because the higher 
frequency of observations will provide more frequent 
information about the degradation state of the system with no 
extra cost. Consequently, this will reduce the likelihood of 
performing unnecessary preventive replacements, hence, will 
result in a more cost effective maintenance system. When there 
is considerable cost for collecting and analyzing the 
observations, an optimal observation interval that minimizes 
the total maintenance cost including the observations cost 
should be applied. In reality, in many cases, observations 
require personnel, equipment, and may be destructive tests, and 
sometimes it is necessary to stop or suspend the operations 
when collecting the observations  [9]. In addition, some actions 
for analysis and extraction of useful information may be 
needed; therefore, some costs are associated to the collection 
and analysis of observations. Finding the optimal total long-run 
average cost of the maintenance policy, with costly 
observations, leads to comparison and selection of the optimal 
observation interval amongst several possible intervals. The 
replacement criterion that corresponds to the optimal total 
long-run average cost is then obtained.  

This paper consists of four more sections. In section 2 a brief 
literature review of the principle models in replacement 
optimization is presented. Section 3 deals with the assumptions, 
the details of the proposed model and the optimal solution. 
Section 4 presents a numerical example. The conclusion and 
the areas of further researches are presented in section 5. 

II. LITERATURE REVIEW 
Reference  [9] investigated the maintenance policy for a 

system whose exact degradation state is known through the 
observations. The objective is to find the optimal replacement 
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criteria and observation interval that minimizes the long-run 
average cost of the whole maintenance system. Reference  [3] 
considered a system with perfect information which reveals 
exactly the system's degradation state. The objective is to 
determine the next observation schedule, based on the 
information obtained to date.  Reference  [7] modeled a CBM 
policy where both the replacement threshold and the 
observation schedule are decision variables. It is allowed to 
have unequal observation periods. Reference  [8] considered a 
system revealing perfect information with an obvious failure 
which is detected as soon as it happens. Reference  [2] 
considered an optimal observation time with a hidden failure 
being detected through observation. A pre-defined threshold 
for the failure is assumed and associated costs are considered 
for the observations, repairs and replacements.  [12] considered 
a replacement problem for a system with perfect information  
using PHM while the observations are non-costly. 

III. PROBLEM FORMULATION 
This paper presents optimal replacement policy and optimal 

inspection interval of a deteriorating system subjected to 
random failure. The degradation state of the system is 
represented by a finite set of non-negative integers, i.e. by state 
space { }1, 2, ,...,S N= . State 1 indicates the best possible 

state for the system which means that the system is new or like 
new. The degradation state process ( ){ }1, 2,...,X t N= , is a 

discrete time homogeneous Markov chain with N  
unobservable states. All N  degradation states are working 
states and do not include the failure state which is a 
non-working state.  Figure 1 shows the Markov transition 
process between degradation states along with transition from 
each degradation state to the failure state. ijp  is the probability 

of going from degradation state i  to the degradation state j  
during one observation period knowing that the system has not 
failed yet, despite the fact that, if  is the probability of going 

from degradation state i  to the failure state. The circles 
represent the states. 

 
Figure 1: Markov process transition and transition to failure 

The degradation states of the system are not observable 
except at the time 0t =  when the degradation state of the 
system is certainly 1. The transition matrix P  is an upper 
triangular matrix, i.e. 0 ijp =  for all ij < , and ijp =  

( ) ( )( )Pr | ,X t j X t i T t+ ∆ = = > + ∆ , 0, , 2 ,...t = ∆ ∆
otherwise, meaning that the system degradation state does not 
improve spontaneously, which is true in most practical cases.  

T is a random variable representing the system's failure 
time. The system indicators are observed at times; 

, 2 ,...t = ∆ ∆ . The indicators obtained, θ , can take a value in 

a finite set of M  non-negative integers, i.e. θ ∈Θ =  

{ }1, 2,..., M . It is supposed that a value of θ  is observed 

with a known probability of jq θ , when the degradation state 

of the system is j . Q  represents the stochastic matrix which 

specifies these probabilities, i.e.  ,  ,  jQ q j Sθ θ= ∈ ∈ Θ   .  

The failure is not a degradation state. It is a condition that 
causes the system to cease functioning and is outwardly 
obvious. If the failure happens, it is immediately recognized 
and the only possible action is “Failure Replacement”. 
Otherwise, at any observation point, we can decide whether to 
perform “Preventive Replacement” or “Do-Nothing”. Failure 
Replacement and Preventive Replacement renew the system 
and return it to state 1 and period 0k = . The cost for 
preventive replacement is C , while a failure replacement 
costs K C+ , , 0K C > . Failure Replacement and 
Preventive Replacement actions are assumed instantaneous. 

The system's failure rate is following the PHM. In the 
PHM, the failure rate of the system ( ), kh t X =  

( ) ( )0 kh t Xψ  is a product of two independent functions, 

where ( ).0h  is a function of the system's age only, and ( ).ψ  
is a function of the system's degradation state only. 

( )kX X k= ∆  is the degradation state of the system at 

period k , and ∆  is the fixed observation interval. We assume 
that degradation state of the system remains unchanged during 
each period, and each degradation state transfer is assumed to 
take place at the end of each period, just before observation 
point. 

The first objective of this work is to determine the optimal 
replacement policy for the assumed system, while the 
observation interval is pre-defined and fixed. The second 
objective is to find the optimal observation interval that 
minimizes the total long-run average cost per unit time for the 
replacement and consequently the optimal replacement policy. 
In the second objective, a considerable cost is assumed for 
performing the observations. 

A. Alternative state space  
Since the degradation state of the system is not observable 

we introduce an alternative state space called the conditional 
probability distribution of the system's degradation state, kπ  
which is defined as: 
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probability of being in degradation state i  at k th observation 
point. 

B. Alternative state's transition 
At the k +1st observation point, after observing θ , the 

prior conditional distribution of the system’s degradation state 
kπ , is updated to ( )θπ 1+k

j  which is calculated by using the 

Bayes’ formula as: 

( )1 1

1 1
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k
i ij j

k i
j N N
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i il l

i l

p q
j N

p q

θ

θ

π
π θ

π

+ =

= =

= =
∑

∑∑
 (1’) 

This updated conditional distribution carries all the history 
of the observations and the performed actions since the last 
replacement. At any replacement, the observation period’s 
counter k , will be reset to 0 and the conditional probability 
distribution of the system degradation state will be set to 0π . 

C. Decision space 

The decision space of the model is { }0,∞ , where 0  
means “Replace the system immediately”, and ∞  means “Do-
Nothing until the next observation point, or replace at the 
failure time, if the failure happened before the next 
observation point”. 

IV. OPTIMAL REPLACEMENT WITH PRE-DEFINED OBSERVATION 
INTERVAL 

In this section, we assume that the observation interval is 
pre-set based on the experts' opinion or system’s limitations 
and will find the optimal replacement policy for the system 
with the properties assumed earlier. 

A. Dynamic Programming Formulation 

Let ( )kkV π,  denote the minimum cost from period k  
until next renewal point, where the updated conditional 
distribution of the system degradation state is kπ : 

( ) ( ) ( ){ }0, min 0, , , ,k kV k C V W k gπ π π= +  (1) 

where ( )00,C V π+  is the expected cost in the case of 

preventive replacement and ( )gkW k ,,π  is the expected cost 
of leaving the system to work until the next observation point.  

( )
( ) ( ) ( )

( )( ) ( ) ( )

0

1

1

, ,

0, 1 , , , ,

1, Pr | , , ,

k

k k

M
k k k

W k g

K C V R k g k

V k k R k
θ

π

π π τ π

π θ θ π π+

=

=

+ + − ∆ − ∆

+ + ∆

     
 
  
∑

   

 (2) 

( ), ,kR k π ∆ and ( ), ,kkτ π ∆  are respectively the 

probability that the system is still working during the k + 1st 
period and, the mean sojourn time of the system during 
k + 1st period when the conditional probability distribution of 

the system’s degradation state at the k th period is kπ , and are 
calculated as: 

( ) ( )( ) ( ) k
i

N

i

kk tikRkkTtkTtkR πππ ∑
=

=∆>+∆>=
1

 ,,,,|Pr,,  

( ) ( ) ( ) ( )
0 0

, , | , , , , ,
a ak k k kk a tF dt k dt aR k a R k t dtτ π π π π= + =∫ ∫  

and ( ) ( )
0

, , , ,  k kk R k t dtτ π π
∆

∆ = ∫ .  

The failure rate of the system is assumed to follow the PHM, 
accordingly, the conditional reliability of the system at k -th 
observation point while the degradation state of the system is 

kX  is  [12]: 

( )

( )( )
1 2

0

( , , ) | , , ,...,

exp ( ) ) ,

k k

k t
k k

R k X t P T k t T k X X X

X h s ds tψ
∆+

∆

= > ∆ + > ∆

= − ≤ ∆∫
 

g  is the average cost of the maintenance policy per unit 

time over an infinite horizon and consequently ( )∆,, kkg πτ  
is the expected cost of the overlapped time of two consecutive 
replacements of the system when the system has failed and 
replaced. Figure 2 shows an instance of the case. 

 
Figure 2-Observations after a failure replacement 

It should be noticed that even after a failure replacement the 
observations are performed based on the schedule plan.  

1 1

Pr( | )
N N

kk
i ij j

i j

p q θθ π π
= =

= ∑∑  is probability of observing 

indicator θ  at k + 1st observation epoch knowing that the 
conditional probability distribution of the system’s 
degradation state at the k th period is kπ . 

B. Optimal Policy 
In this section, we establish the decision criterion that helps 

to decide whether to replace the system preventively or leave 
it to work until next observation point. This criterion is a 

IAENG International Journal of Applied Mathematics, 38:2, IJAM_38_2_04
______________________________________________________________________________________

(Advance online publication: 20 May 2008)



 
 

 

function of the observed indicator, the age of the system, and 
g , the long-run average cost of the system’s replacement. 
The decision criterion and the minimum long-run average cost 
of the system together give the optimum decision criterion for 
the introduced problem. 

To continue we adapt the following theorem proved by  [6]: 
Theorem: Assuming that assumptions 1 through 5 as stated 

in  [12] are satisfied, function V  introduced by equation (1), 

defined on S , where S  is the set of all possible variations of 

the pair ( )kk π, , with a constant 0≥g , is a bounded 
measurable non-decreasing function.  

From equation (2) we can write: 

( ) ( )
( ) ( )

( )( ) ( ) ( )

( )

0

1 0

1

, , 0,

1 , , , ,

1, Pr | , 0,

, ,

k

k k

M
k k

k

W k g C V

K R k g k

V k k C V

R k
θ

π π

π τ π

π θ θ π π

π

+

=

− − =

− ∆ − ∆

+ + − −

∆

  
  ×  
∑

(3) 

Considering that ( )11, kV k π ++  is the minimum expected 

replacement cycle cost at the k + 1st period, 

( ) ( )1 01, 0,kV k C Vπ π++ < + . Since ( )00,C V π+  is a 

constant term, by multiplying ( )Pr | , kkθ π  and summation 

on all possible observations, it can be shown that: 

( ) ( ) ( ) ( )1 0

1

1, Pr | , 0, , , 0
M

k k kV k k C V R k
θ

π θ π π π+

=

 + − − ∆ <  
∑  

 (4) 
From (3) and (4) it can be concluded that that if 

( ) ( )1 , , , ,k kK R k g kπ τ π− ∆ < ∆    then ( ), ,kW k gπ <  

( )00,C V π+  so that ( ), kV k π =  ( ), ,kW k gπ . In 

other words, the optimal action is “Do-Nothing”.  

In what follows, assuming that ( )1 , ,kK R k π− ∆ ≥    

( ), ,kg kτ π ∆  and at the same time, supposing that the 

optimal action is “Do-Nothing”, we will show that there is a 
contradiction. If the statement was true, then from equation 
(1): 

( ) ( ) ( )0, , , 0,k kV k W k g C Vπ π π= < +  (5) 

From (2) and (5) it can be concluded that: 

( ) ( )
( ) ( )

( ) ( ) ( )0

1 2

1, ,

1 , , , ,

1, 0, 1 , ,

k k

k k

k k

V k V k
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V k C V R k

π π

π τ π

π π π
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+ + − − − ∆

  
     14444244443 1442443
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M
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θ
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π

+

=

+ + − +

× ∆

     
∑
144444444424444444443

14243

 

 (6) 
Terms 1 and 3 are less than or equal to zero, because of the 

definition of ( )1, kV k π+  and considering that it is proved 

non-decreasing by the theorem. Terms 2 and 4 are bigger or 
equal to zero by definition. So: 

( ) ( )1, , 0k kV k V kπ π+ − <  (6’) 

On the other hand, since ( )kkV π,  is non-decreasing in 

( )kk π, , then ( ) ( )1, , 0k kV k V kπ π+ − ≥ , which is a 

contradiction to (6’), so equation (5) is not true and 

( ) ( )00, , ,kC V W k gπ π+ < . This means that the optimal 

action is “Preventive Replacement”. The whole replacement 
policy can be expressed by the optimal stopping time *g

T  as: 

( ) ( ){ }*
*.inf 0 : 1 , , , ,k k

g
T k K R k g kπ τ π= ∆ ≥ − ∆ ≥ ∆  
 (7) 

In other words, the optimal decision ( ), ka k π  at observation 

point k  with conditional probability distribution of 

degradation state kπ is: 

( )
( ) ( )
( ) ( )

*

*

1 , , , ,

1 , , , ,

if 
,

0 if 

k k

k k

k
K R k g k

K R k g k
a k

π τ π

π τ π
π

− ∆ < ∆

− ∆ ≥ ∆

∞
=

    


   
 (8) 

It can be noticed that the optimal policy is a function of *g , 
the optimum long-run average cost. Next section presents the 
formulation leading to the calculation of *g . 

C. Optimal long-run average cost 
Reference  [5] found the long-run average cost per unit of 

time: 

 
( )

( )min

Pr

,
g gT

g

C K T T

E T T
φ

+ >
=   (9) 

where gT  is stopping-time, T  is the time to failure, 

Pr( )gT T>  is the probability of a failure replacement, and 

min ( , )gE T T   is the expected length of a replacement cycle. 

Reference  [5] proved that the optimal stopping-time *gT , 
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where * min gT
g φ= , minimizes gTφ  and the value of *g  is 

the unique solution of gTg φ= .   

To calculate min ( , )gE T T , we define ( ), jW j π  as: 

( ), jW j π =  ( ) ( ){ }min , | , j
gE T T j j π− ∆   (10) 

 It indicates the residual time to replacement at period j  i.e. 

the average remaining life from ∆j  to failure, when the 
conditional probability distribution of the system’s 
degradation state is jπ , and a given g , that forces the 

system to have gT  that satisfies equation (7) (see Figure 3). 

Also consider : 

( )gt π =

( ) ( ){ } | 1 , , , ,  r R K R r g rπ τ π+  ∆ ∈ − ∆ = ∆   (11)  

which calculates the real-time of satisfaction of the cost 
condition in equation (7), for a given cost g , at a certain 
conditional probability distribution of the system’s 
degradation state, π . To calculate ( )jjW π, , we consider k  
“the hazardous period” as: 

( ) ( )1  j
gk t kπ− ∆ ≤ < ∆  

 
Figure 3-Real time of the satisfaction of the cost condition 

If kj ≥ , according to the replacement criterion of 
equation (7), the system has to be replaced immediately, then 

( ) 0, =jjW π . 

In the case where 1−= kj  : 

 ( ) ( )
0

, , ,j j

j
gt j

W j R j s ds
π

π π

  
 

− ∆

= ∫  (12) 

And finally, if 1−< kj , by conditioning the length of the 
replacement cycle on the failure time, we showed that: 

( ) ( )

( )( ) ( ) ( )
0

1

1

, , ,

1, , , Pr | ,

j j

M
j j j

W j R j s ds

W j R j j
θ

π π

π θ π θ π

∆

+

=

=

+ + ∆

∫

∑
 (13) 

The expected minimum replacement cycle time can then be 
calculated by: 

( ) ( ) ( ){ } ( )0 0
min , , 0, 0,min |g gT T T T WE E π π= = (14) 

( ), jW j π  is briefly shown in following equation: 

( ) ( )
0

0

, , , 1

1

j j

j
gt j

j k

W j R j s ds j k

A j k

π

π π

  
 

− ∆

≥

= = −

 < −


∫  (14) 

where 

( )

( )( ) ( ) ( )
0

1

1

, ,

1, , , Pr | ,

j

M
j j j

A R j s ds

W j R j j
θ

π

π θ π θ π

∆

+

=

=

+ + ∆

∫

∑

      (15) 

By defining ( ), jQ j π  ( )( )Pr | , j
gT T j π= ≥ , a 

similar calculation to that of ( ), jW j π , leads to the 

following equations: 
 

( )
0

( , ) 1 ( , , ) 1

1

j j j
g

j k

Q j R j t j j k

B j k

π π π

≥


= − − ∆ = −
 < −

 (16) 

where 

( )1

1

1 ( , , )

( 1, ) Pr( | , ) ( , , )

j

M
j j j

B R j

Q j j R j
θ

π

π θ θ π π+

=

= − ∆ +

+ ∆∑
      (17) 

The probability of a failure replacement is calculated by: 

( ) ( )( ) ( )0 0Pr Pr | 0, 0,g gT T T T Qπ π> = ≥ =  (18) 

By using (9), (14) and (16), *g , the average long run 
replacement cost, is calculated.  

The tools presented so far are used to determine the optimal 
replacement policy and long-run average cost of a system 
where no cost is considered for the observations and the 
observation's interval is prefixed at ∆ .  

V. OPTIMAL OBSERVATION INTERVAL WITH COSTLY 
OBSERVATIONS 

Under the assumption of negligible observation's cost, the 
selection of observation interval is usually performed based on 
the experts' opinion. Higher frequency of observations will 
provide more frequent information on hand, and consequently 
a better decision can be made. Shorter observation interval 
decreases the likelihood of unnecessary preventive 
replacements.  

When performing the observations is costly, an optimal 
observation interval that minimizes the total maintenance and 
observations' cost should be applied. In reality, in many cases, 
the collection of observations requires personnel and 
equipment, and sometimes it is necessary to stop or suspend 
the operations until the observations are taken  [9]. In this 
section, we assume that the observations are costly and we 

IAENG International Journal of Applied Mathematics, 38:2, IJAM_38_2_04
______________________________________________________________________________________

(Advance online publication: 20 May 2008)



 
 

 

find the optimal replacement policy and optimal observation 
interval for the system with previously mentioned 
assumptions. 

A. Dynamic Programming Formulation 

We assume that each observation costs IC  and restate the 

( ), kV k π  as follow: 

( ) ( ) ( ){ }0, min 0, , , , ,k k
I IV k kC C V W k g Cπ π π= + +  (19) 

where ( )00,IkC C V π+ +  is the renewal period's total 

cost (replacement and observations' cost) at -thk  observation 
point if the system is replaced preventively. 

 ( ), , ,k
IW k g Cπ  is the renewal period's total cost at k th 

observation point if no action takes place and is given as: 

( )
( ) ( )

( )( ) ( ) ( )

( )

0

1

1

, , ,

0, 1 , ,

1, Pr | , , ,

, ,

k
I

k
I

M
k k k

k

W k g C

kC K C V R k

V k k R k

g k
θ

π

π π

π θ θ π π

τ π

+

=

=

   + + + − ∆   
 + + ∆  

− ∆

∑

 (20)  

where ( )00,ikC K C V π + + +   represents the renewal 

period's total cost if the decision is "Do-nothing" and the 
system fails during the next observation period.  

( )( ) ( )1

1

1, Pr | ,
M

k kV k k
θ

π θ θ π+

=

+ 
  
∑  is the expected 

total future cost of the system at the 1k + st inspection point, 
provided that the failure has not happened during the -thk  

period. ( )1 , ,kR k π − ∆   and ( )∆,, kkR π  are the 

probability of the failure occurring during the -thk  period 
and  the probability that the system is still working at the 
beginning of the k + 1st period consecutively, while the 
conditional probability distribution of degradation state at 
period k  is kπ . Other terms are similar to that of the case 
discussed earlier in section  IV. 

B. Optimal Policy 
Considering  (20) one can write: 

( ) ( ) ( )
( )( ) ( ) ( )

( )( ) ( ) ( )

0

0

1

1

, , 0, , ,

0, , , 1 , ,
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W k g kC C V

K R k

kC C V R k

V k k R k

g k

θ

π π

π

π π

π θ θ π π

τ π

+

=

− + + =

− ∆

− + + ∆

+ + ∆

  
  − ∆ 

 
  
∑

 (22) 

( )1,1 ++ kkV π  is the minimum expected renewal period 

cost at the k + 1st period, then from  (19): 

( ) ( )1 01, 0,k
IV k kC C Vπ π++ ≤ + +  

which will result in following equation: 

( ) ( ) ( )

( )

1 0

1

1, Pr | , 0,

, , 0

M
k k

I

k

V k k kC C V

R k
θ

π θ π π

π

+

=

+ − − − ×

∆ ≤

 
  
∑

 (23) 

If ( ) ( )1 , , , ,k kK R k g kπ τ π− ∆ < ∆   , then the sum of 

all the terms on the right hand side of (22) will be negative or 

zero, i.e. ( ) ( )0, , 0,k
IW k g kC C Vπ π≤ + +   . This final 

equation means that the cost of leaving the system and doing 
no preventive action is less than the cost of the preventive 
maintenance, so the optimal decision at k -th inspection point, 
i.e. optimal decision, = ∞ .  

Similar to the non-costly problem, in the case that 

( ) ( )1 , , , ,k kK R k g kπ τ π− ∆ ≥ ∆   , we show that the best 

solution is to replace the system immediately, i.e. Decision = 
0. To continue, we assume the contrary, i.e. 

( ) ( )1 , , , ,k kK R k g kπ τ π− ∆ ≥ ∆   and at the same time 

the optimal action is “Do-Nothing”, from (19) based on this 
assumption: 

( ) ( ) ( )0, , , 0,k k

IV k W k g C V Cπ π π= < + +  (24) 

In addition, we can show that: 
( ) ( )

( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( )

0

1

1

1
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1, ,

1, 0, 1 , ,

1, 1, Pr | , , ,

, , 1 , ,

k k

k k
I

M
k k k k

k k

V k V k

V k C kC V R k

V k V k k R k

g k K R k

θ

π π

π π π

π π θ θ π π

τ π π

+

=

+ − =

 
   + − − − − ∆  
 

 
 

+ + − + ∆ 
 
 

 + ∆ − − ∆ 

∑

144444424444443

144444444424444444443

 

 (25) 

Considering that ( )1, kV k π+ is the minimum renewal 

period cost, therefore: 

 ( )1, kV k π+ ( )00,IC kC V π≤ + +  
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so term 1 is not positive. By a similar approach to that of  [6] 

we have be proved  that ( ), kV k π  is non-decreasing in 

( ), kk π . Then: 

( ) ( )( )11, 1,k kV k V kπ π θ++ ≤ +  

( ) ( ) ( )( )1

1

1, Pr | , 1,
M

k k kV k k V k
θ

π θ π π θ+

=

+ ≤ +∑ (26) 

where θ  is the indicator observed at k +1st inspection point. 

In this case, term 2 is not positive. Terms ( ), ,kR k π ∆  and 

( )1 , ,kR k π− ∆    are not negative by definition, so: 

( ) ( )
( ) ( )

1, ,

1 , , , ,

k k

k k

V k V k

K R k g k

π π

π τ π

+ − <

− − ∆ + ∆  
 (27) 

Based on our assumption that says ( )1 , ,kK R k π− ∆ ≥    

( ), ,kg kτ π ∆ , then ( ) ( )1, , 0k kV k V kπ π+ − < . This is 

in contradiction with the non-decreasing property of 

( ), kV k π  is in ( ), kk π , so that the optimal decision is to 

replace the system immediately (Decision=0). 
We have shown that stopping time and decision criterion in 

case of costly observations are similar to those of non-costly 
observations. Even when the observations are costly the 
system has to be replaced based on the decision criterion 
shown in (8). 

Nevertheless, if the observation interval can be altered, on 
one hand, there is a constant cost that is paid at every 
observation epoch, so more frequent observation costs more. 
On the other hand, more frequent observations provide more 
information that can lead to a more cost effective replacement 
policy. This means that the optimal observation interval can be 
selected between several possible (applicable) observation 
intervals. The measure that helps us to select the optimal 
observation interval is the minimum total long-run average cost 
which is the long-run average cost of replacement and 
observations. In next section we calculate this measure. 

VI. TOTAL LONG-RUN AVERAGE COST AND OPTIMAL 
OBSERVATION INTERVAL 

In this part we introduce a method to calculate the minimum 

total long-run average cost by letting 
*g

T
C  and 

*g
T

P  
represent the expected total cost and expected length of the 
renewal period associated with a replacement policy in which 
the optimal time to replacement is *gT  and *g  represents the 

minimum long-run average cost of replacement. The total 
long-run average cost per unit of time then is: 

 

( ) ( ) ( )
( )

*

*

* *

*

*

min

1 Pr Pr

,

g

g

I

I

T

T

g g

g

C CG
P

C T T C K T T C
E T T

= + =
∆

 − > + + >
  +

∆

 

( )
( )

*

*

*

min

Pr

,
Ig

g

C K T T C
G

E T T

+ >
= +

∆
 (22) 

where C , K  and IC  are the replacement cost, failure cost 

and observation cost respectively. ( )*Pr gT T>  and 

( )*min ,gE T T  are calculated by (14) and (18) and replacing 

g  with *g .  
To calculate the total long-run average cost per unit of time, 
one needs to use the tools provided earlier in this paper to find 
the optimal long-run average cost of the replacement *g , 
without taking into consideration the observation cost, then 
using *g , the optimal stopping time of the replacement 

system  *gT , is obtained. ( )*Pr gT T>  and ( )*min ,gE T T  

are calculated using *gT . Finally the amount of *G  is 

calculated. 

VII. THE APPLICATION OF THE OPTIMAL INSPECTION POLICY 
In this section, a summary of the algorithm used to find the 

optimal inspection interval and to apply corresponding 
replacement policy is shown. We assume that all the 
parameters of the model are known. The algorithm consists of 
the following steps: 

 
1. For all the possible inspection periods , 1, 2,...l l∆ = ,  

calculate *
lg  which is the unique solution of 

( )
( )min

Pr

,
g

g

C K T T
g

E T T

+ >
= . 

2. Calculate lG  for all possible inspection 

periods , 1, 2,...l l∆ =  by using 

( )
( )

*

*min

Pr

,
l

l

I
l

g

g

C K T T C
G

E T T

+ >
= +

∆
. The smallest value 

of , 1, 2,...lG l =  , say *
mG G= , identifies the 

optimal inspection interval, *
m∆ = ∆  and the optimal 

long-run average cost of the replacement, * *
mg g= . 
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3. At next inspection point, considering the specific 
observed value of the indicator θ , update the 
conditional probability distribution of the degradation 
state by using (1’). 

4. By considering equation (8) and by using *∆  and *g , 
decide whether to perform a “Predictive Replacement” 
or to “Do-Nothing”. 

 
5. At any time, if the failure occurred, replace the system, 

set 0k = , reset the conditional probability distribution 

of the degradation state to 0π and continue from step 
3. 

 
In the following section, we solve a replacement example 

without any considerable observation cost and a pre-fixed 
observation interval. Later we add a considerable cost for the 
observations and assume another possible observation 
interval, and we find the optimal observation interval, 
minimum long-run average cost and the corresponding 
optimal replacement criteria. 

VIII. NUMERICAL EXAMPLE  
We use the example presented by  [6] and adapt it to the 

case of costly observations. In this example, it is assumed that 
system has a two parameter Weibull like behaviour with 
baseline distribution hazard function having the following 

parameters: 
1

0 ( ) , 0th t t
β

β

β
α

−

= ≥ , 1.5, 3α β= =  

and ( ) ( )2 1
t

tXX eψ −= . The system has three possible 

degradation states{1,2,3}  with the transition probability 
matrix: 

1

0.9 0.1 0
0 0.9 0.1
0 0 1

P
 
 =  
  

 , 

when the observation interval is 1 1∆ = . The observed value 

of the system's indicator , θ , can take three possible values. 
The indicator value and the system's degradation state are 
related by the probability distribution matrix Q: 

0.7 0.3 0
0 0.7 0.3
0 0 1

Q
 
 =  
  

 

 3C =  and 2=K  represent the replacement cost and the 
failure cost of the system, respectively. The long-run average 
cost of replacement, based on the provided method, is found 

to be *
1 2.11g =  and the optimal stopping time of the system 

is: 

( ) ( ){ }*
1

inf 0; 2 1 , ,1 2.11 , ,1k k
gT k R k kπ τ π= ≥ − ≥    

Now we assume that the observation cost 1IC =  is applied 
for each inspection process  to obtain the system's indicator 
value. We also assume that the there is another possible 
observation interval 2 1.1∆ =  with corresponding 
degradation state transition matrix: 

2

0.8 0.2 0
0 0.8 0.2
0 0 1

P
 
 =  
  

 

We are interested in finding the optimal replacement 
interval and corresponding replacement criteria. The 
following table shows the final result of the algorithm when it 
is  applied with the two values of 1 1∆ =  and 2 1.1∆ = . 

TABLE 1: COSTLY OBSERVATION COMPARISON 

i  i∆  *
ig  iG  *G  

1 1 2.11 3.11  
2 1.1 2.14 3.05  

Whereas the long-run average cost of replacement *
1g , for 

the shorter observation interval, 1 1∆ =  is smaller, the total 

long-run average cost 2G , corresponding to 2 1.1∆ = , is  the 
optimal one. It means that we will pay less totally, if we 
observe the system by observation interval equal to 1.1, and if 
we apply the corresponding stopping-time: 

( ) ( ){ }*
1

inf 0; 2 1 , ,1.1 2.14 , ,1.1k k
gT k R k kπ τ π≥ − ≥ =    

IX. CONCLUSION 
For a system which is subjected to a CBM program, 

inspections are performed to obtain information about the 
degradation state of the system and to decide on an optimal 
replacement policy. In many practical cases, the observations 
do not reveal the exact system degradation state. In this work, 
we have presented an algorithm to find the optimal 
replacement policy and minimum long-run average cost of a 
system subjected to a random degradation process while the 
information obtained from the system is imperfect. Later we 
have relaxed the assumption of non-costly observation and 
found the optimal replacement policy and the total long-run 
average cost of the system replacement and observations. This 
procedure leads to the optimal observation interval. The 
solved example shows how observation cost can influence the 
total long-run average cost of the system and the optimal 
observation interval, which in turn will affect the optimal 
replacement policy.  

The introduced developments in CBM methodology help 
the practitioners to find the optimal observation interval of a 
system based on the total long-run average cost as well as the 
corresponding replacement policy that optimizes the total 
long-run average cost of the replacement and observations.  
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