
 
 

 

  
Abstract— The electrogravitational instability of a dielectric 

fluid cylinder surrounded by medium of negligible motion 
pervaded by varying transverse oscillating electric field has 
been investigated in the axisymmetric perturbation. The acting 
forces on the model are: self-gravitating, pressure gradient and 
electrodynamic forces. The model is governed by Mathieu 
second order integro-differential equation. Some limiting cases 
are recovering from the present general one. The electric field is 
only destabilizing in few states but it is strongly stabilizing in the 
remaining states. The self-gravitating force is destabilizing in 
the domain 0 1.0668x< ≤  while it is stabilizing in the rest. 
The oscillating time-dependent electric has strong destabilizing 
effect.   
 
Index Terms— Hydrodynamic stability, Self-gravitating, 

Stability of laminar flows, Time-dependent electric field. 
 

I. INTRODUCTION 
  The stability of self-gravitating fluid cylinder has been 

studied for first time by Chandrasekhar and Fermi (1953). 

Later on Chandrasekhar (1981) made several extensions as 

the fluid cylinder is acted by different forces. See also 

Reynolds (1965), Yih (1968) Nayyar & Murty (1960) and 

Baker (1983) as the cylinder subject to forces due to electric 

fields. The electrogravitational stability of a full fluid 

cylinder has developed by Radwan (1991). He (1991) 

considered that the fluids are penetrated by constant and 

uniform electric fields.  
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   Here we study the gravitational stability of a fluid cylinder 

under transverse time-dependent electric field for 

axisymmetric perturbations. We obtained second order 

differential equation of Mathieu, cf. Mclachlan (1964), 

Morse & Feshbach (1953) and Woodson & Melcher (1968). 

The details and characteristics of the in-stability domains 

have been obtained with using the normal mode analysis.  

 

II. FORMULATION OF THE PROBLEM  
  Consider a self-gravitating fluid cylinder surrounded by 

self-gravitating medium of negligible motion. The cylinder 

of (radius oR ) dielectric constant iε while the surrounding 

medium is being with dielectric constant eε .  We assume that 

the quase-static approximation, (see Baker 1983, Mohamed 

1986 and Radwan 1991), is valid and initially there is  no 

surface charges at the interfaces so that the surface charge 

density will be assumed to be zero during the perturbation. 

The fluid cylinder is pervaded by the longitudinal 

time-dependent electric field 

( )(0,0, ) cos 1i
o oE E tω=  

The surrounding medium is penetrated by the varying 

transverse time-dependent electric field 

( )(0, ,0) cos 2e o
o o

R
E E t

r
β

ω=

where oE is the amplitude of the electric field inside the fluid 

jet, t is the time and ω is the electric field frequency. The 

components of ,i e
oE are considered along the cylindrical 

polar coordinates ( ),0,r z with the z-axis coinciding with 

the axis of the cylinder. The fluid is acted by the pressure 

gradient, self-gravitating and electrodynamic forces while 
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the surrounding medium is acted by the electrodynamic and 

self-gravitating forces. 

  The basic equations for studying the problem under 

consideration are given as follows 

( ) ( )3
2

i i i

i
i i

u u P
t

E E V

ρ
ε ρ

∂⎛ ⎞+ ∇ = −∇⎜ ⎟∂⎝ ⎠
+ ∇ ⋅ + ∇

( ). 0 4iu∇ =

( ) ( )
( )

,

,

. 0 5

0 6

i e

i e

E

E

ε∇ =

∇ ∧ =

( )
( )

2

2

4 7

0 8

i

e

V G

V

πρ∇ = −

∇ =

where ,uρ and P are the fluid density, velocity vector and 

kinetic pressure, E  the electric field intensity, V  the 

gravitational potential and G is the gravitational constant. 

 

III. GROUND STATE 
  In this state, we have 

( )

( ) ( )

0 9
1 const . 10
2

i
o

ii i i i
o o oP V E Eρ ε

∇ ∏ =

∏ = − − ⋅ =

( )
( ) ( )
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0 11
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i
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i e
o
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ε

∇ ⋅ =

∇ =

∇ ∧ =

( )
( )

2

2

4 14

0 15

i
o

e
o

V G

V

πρ∇ = −

∇ =

where the subscript o here and henceforth indicates 

unperturbed quantities.  

   The equations (9)--(15) are simplified, ( with 0
z
∂

=
∂

) 

and solved and moreover the solutions are matched across the 

fluid cylinder interface at  or R= .  

  The non-singular solution in the unperturbed state is given 

by 

( )

( )

2

2 2

16

2 ln 17

i
o

e o
o o o

V G r

R
V G R G R

r

πρ

πρ πρ

= −

⎛ ⎞= −⎜ ⎟
⎝ ⎠

( ) ( )2 2 2 18i
o oP G R r Cπ ρ= − +

  

IV. LINEARIZATION 
  For a small wave disturbance on the boundary interface of 

the fluid, the surface deflection at time t  is assumed to be of 

the form 

( )1 19or R R= +
with 

( ) ( )( ) ( )1 exp 20R t i kzγ=
where ( )tγ is the amplitude of the perturbation while k (a 

real number) the longitudinal wave number. In equation (19), 

the second term 1R in the right side is the surface-wave 

elevation measured from the unperturbed position.  

   Here each physical quantity ( ),0, ,Q r z t may be 

expanded as 

( ) ( )1,0, , ( ) ( ) ( ,0, ) ..... 21oQ r z t Q r t Q r zγ= + +

where Q is pertaining to ,,, , and where thei ei eP u V E  

suffix 1  characterizes the perturbed quantities. Consequently 

the linearized equations in the fluid, see (2)---(8), are given 

by 

( )

( ) ( )

1
1

1
1 1

22

23
2

i
i

i i
i ii i

u
t

P
V E Eε

ρ ρ

∂
= −∇ ∏

∂
⎛ ⎞ ⎛ ⎞

∏ = − − ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

( ) ( )
( )

1

1

. 0 24

0 25

i

i

E

E

ε∇ =

∇ ∧ =

( )
( )

1

2
1

. 0 26

0 27

i

i

u

V

∇ =

∇ =
  In the surrounding medium of negligible motion 

( ) ( )

( )
1

1

. 0 28

0 29

ee

e

E

E

ε∇ =

∇ ∧ =

( )2
1 0 30eV∇ =

It may be noted, in the present state, that ( )1 1
i iVρ ∏ +  (in 

view of (23)) represents the total electrohydrodynamic 

pressure, which is the sum of the kinetic and electrodynamic 

pressures. 

  By combining (22) and (26) via vector analysis, we 

have

( )2
1 0 31i∇ ∏ =
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Equations (25) and (29) mean that ,
1
i eE can be derived from 

scalar (electrical potentials) functions ,
1
i eψ such that 

( ), ,
1 1 32i e i eE ψ= −∇

Combining (32) together with (24) and (28), we get 

( )2 ,
1 0 33i eψ∇ =

As we see the perturbed linearized variables could be 

obtained if Laplace’s equations (27), (30), (31) and (33) are 

solved for the given scalar functions. 

  By the use of the linear perturbation technique for 

cylindrically symmetric configurations and time-space 

dependence, each relevant perturbation quantity 

( )1 ,0, ,Q r z t may be expressed as 

( ) ( )( ) ( )*
1 1,0, , ( ) ( ) exp 34Q r z t t Q r i kzγ=

Consequently, Laplace’s equations (27), (30), (31) and (33) : 

( ) ( )1
1 1 1 ,0, , 0 35r Q r z t
r r r r z r z

⎡ ∂ ∂ ∂ ∂ ⎤⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
could be simplified and turned to ordinary total second order 

differential equation 

( ) ( ) ( )* 2 *
1 1

1 0 36d dr Q r k Q r
r dr dr

⎛ ⎞ − =⎜ ⎟
⎝ ⎠

Apart from the singular solutions as 0r → interior the fluid 

cylinder and as r → ∞  exterior the cylinder in the 

surrounding medium, the non-singular solutions are 

identified: 

( ) ( ) ( )1 0( ) ( ) exp 37i iV A t t I kr i kzγ= ⎡ ⎤⎣ ⎦

( ) ( ) ( )1 ( ) ( ) exp 38e e
oV A t t K kr i kzγ= ⎡ ⎤⎣ ⎦

( ) ( ) ( )1 ( ) ( ) exp 39i i
oB t t I kr i kzψ γ= ⎡ ⎤⎣ ⎦

( ) ( ) ( )1 ( ) ( ) exp 40e e
oB t t K kr i kzψ γ= ⎡ ⎤⎣ ⎦

( ) ( ) ( )1 ( ) ( ) exp 41i i
oC t t I kr i kzγ∏ = ⎡ ⎤⎣ ⎦

where ( ) ( ) ( ) ( ) ( ), , , andi e i e iA t A t B t B t C t are 

arbitrary functions of integrations to be determined, while 

( ) and ( )o oI kr K kr  are modified Bessel’s functions of 

the first and second kind. 

 

V. BOUNDARY CONDITIONS 
  The non-singular solutions of the linearized perturbation 

(22)--(30) of the basic (2)--(8) given by the system (37)--(41) 

must satisfy certain appropriate boundary conditions. 

A. Kinematic Condition 
  The normal component of the velocity vector must be 

compatible with the velocity of the boundary perturbed 

surface of the fluid at the initial level or R= . This 

condition yields 

( )1 42r o
ru at r R
t

∂
= =

∂
 By the use of (19), (22), (23) and (41) for the condition (42) 

we, after straight forward calculations, get 

( ) ( )
2

2 43
( ) ( )

i o

o

R dC t
x t I x dt

ρ γ
γ
−

=
′

where ( )ox kR= is the dimensionless longitudinal wave 

number. 

B. Self-gravitating Conditions 

   The gravitational potential ( )( )1oV V t Vγ= + and its 

derivative are continuous across the perturbed boundary fluid 

surface at or R= . By the use of these conditions which are 

given by 

( )1 1 1 44
e i

i e o oV V
V V R

r r
⎛ ⎞∂ ∂

− = −⎜ ⎟∂ ∂⎝ ⎠

( )
2 2

1 1
1 2 2 45

e ii e
o oV VV V

R
r r r r

⎛ ⎞∂ ∂∂ ∂
− = −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

and on utilizing (16), (17), (20), (37) and (38), we obtain 

( ) ( ) ( )1 4 ( ) exp[ ( )] 46i
o o oV G R K x t I kr i kzπ ρ γ=

( ) ( ) ( )1 4 ( ) exp[ ( )] 47e
o o oV G R I x t K kr i kzπ ρ γ=

where use has been made of the Wronskian relation 

(Abramowtiz and Stegun (1970)) 

( ) ( )( )
( ) ( ) ( ) ( ) ( )
,

1 48
o o o

o o o o

W I x K x
I x K x I x K x

x
′ ′= − = −

in obtaining (46) and (47). 

C. Electrodynamic Conditions 
i)   The normal component of the electric displacement 

current must be continuous across the perturbed boundary 

interface at or R= . This condition read 

( ) ( ). 0 49i ei en E Eε ε− =

with

( )11 50o
o

EE E R E
r

∂
= + +

∂
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while n is , the outward unit vector normal to the interface 

(19) at or R= , given by  

( ) ( ) ( )
( ) ( )1

, 0, , / , 0, , 51

, 0, , 52o

n F r z t F r z t

F r z t r R R

= ∇ ∇

= − −
so that  

( ) ( ) ( ) ( )11,0,0 , 0,0, ( ) exp[ ] 53on n ik t i kzγ= = −
Consequently, the condition (49) yields 

( ) ( )
( ) ( )cos 54

i i e e
o o

i
o

x I x B x B K x
ix E t

ε ε
β ε ω

′ ′−
= −

ii)    The electric potential ψ must be continuous across the 

perturbed boundary surface of the fluid cylinder at the initial 

level or R= , i.e. 

( ) ( ) ( )( ) ( ) 55i e
o oB t I x B t K x=

Solving (54) and (55), we finally obtain 

( ) ( )( ) ( )( ) ( ) 56i e
o oB t K x I x B t=

and 

( ) ( )
( ) ( ) ( ) ( )

( )( ) cos 57
i

o oe
i e

o o o o

ix E I x
B t t

x I x K x I x K x

β ε
ω

ε ε

⎛ ⎞−
⎜ ⎟=
⎜ ⎟′ ′⎡ ⎤−⎣ ⎦⎝ ⎠

D. The Dynamical Stresses Condition 

  The stresses across the cylindrical fluid interface are due to 

the fluid kinetic pressure, surface tension (neglected here), 

self-gravitating and electrical forces.  

For the problem under consideration the jump of the normal 

component, yields 

( ) ( ) ( )1 1 58
2 2

i i e ei i i i eE E V E Eε ρ ε∏ − + =

which is applicable across the displaced interface 

( )( )( ) expor R t i kzγ= + . 

Substituting for , ,
11 1, , , andi e i e

ooP P E E R , after some 

algebraic calculations, we finally obtaine 

( )
( )

( ) ( ) ( )
( )

( ) ( )( )
( ) ( ) ( ) ( )

( )

2

2

2

2

2

2 2

4

( )1 ( )
2

cos 0 59

o

o

oo
o o

oo
i

o o

i e
o o o o

e

xI xd G
I xdt

xI xE t
I x K x t

I xR

xI x K x

I x K x I x K x

t

γ π ρ

γ
γ

ρ

ε

ε ε

ε β ω

′⎛ ⎞
− ⎜ ⎟⎜ ⎟

⎝ ⎠
′⎛ ⎞⎛ ⎞− + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎡ ′
⎢
⎢ ′ ′ ′⎡ ⎤−⎣ ⎦⎣

⎤− =⎦
 

Equation (59) is an integro-differential equation governing 

the surface displacement ( )tγ . By means of this relation we 

may identify the (in-) stability states and also the 

self-gravitating and electrodynamic forces influences on the 

stability of the present model. However in order to do so, it is 

found more convenient to express this relation in the simple 

form 

( ) ( )
2

2 2
2 cos ( ) 0 , 60d b h t t

d
η γ η ω

η
⎡ ⎤

+ − = =⎢ ⎥
⎣ ⎦
where 

( )
( ) ( ) ( ) ( )2

4 1 61
2

o
o o

o

xI xGb I x K x
I x

π ρ
ω

′⎛ ⎞− ⎛ ⎞= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
( )

( )
( ) ( ) ( )
( ) ( ) ( ) ( )

( )

2
2

2 2

2

2 62

oo

oo
i

o o e
i e

o o o o

xI xE
h

I xR
x I x K x

x I x K x I x K x

ρ ω
ε

ε β
ε ε

′⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
⎡ ⎤′
⎢ ⎥−
⎢ ⎥′ ′ ′⎡ ⎤−⎣ ⎦⎣ ⎦

Equation (60) has the canonical form 

( ) ( )
2

2 2 cos 2 ( ) 0 63d a q t
d

η γ
η

⎡ ⎤
+ − =⎢ ⎥

⎣ ⎦
where 

( )
2 2

, 64
4 2

h hq a b
⎛ ⎞

= = − ⎜ ⎟
⎝ ⎠

Equation (63) is Mathieu differential equation. The 

properties of the Mathieu functions are explained and 

investigated by Mclachlan (1964). The solutions of (63), 

under appropriate restrictions, could be periodic and 

consequently the considered model will be stable and vice 

versa.  The conditions required for periodicity of Mathieu 

functions is mainly dependent on the correlation between the 

parameters anda q . However it is well known, see 

Mclachlan (1964), that ( ), planea q −  is divided 

essentially into two stable and unstable domains separated by 

the characterstic curves of Mathieu functions. Thence we can 

state generally that a solution of Mathieu integro-differential 

equation is unstable if the point ( ),a q  say, in the 

( ), planea q −  lies interior an unstable domain, otherwise 

it is stable. 
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VI. DISCUSSIONS AND LIMITING CASES 
  The appropriate solutions of (63) are given in terms of what 

called ordinary Mathieu functions which, indeed, are 

periodic in time t with period and 2π π . 

 Corresponding to extremely small values of q , the first 

region of instability is bounded by the curves 

( )1 65a q= ± +
  The conditions for oscillation lead to the problem of the 

boundary regions of Mathieu functions where Mclachian 

(1964) gives the condition of stability as 

( ) ( ) ( )
1

2 20 sin 2 1 66aπΔ ≤

where ( )0Δ is the Hill’s determinant. 

  An approximation criterion for the stability near the 

neighbourhood of the first stable domains of the Mathieu 

stability domains given by Morse and Feshbach (1953) 

which is valid only for small values of 2 orh q  i.e. the 

frequency ω of the electric field is very large. 

This criterion, under the present circumstances, states that the 

model is ordinary stable if the restriction 

( ) ( ) ( )4 216 1 32 1 0 67h b h b b− − + − ≥
is satisfied where the equality is corresponding to the 

marginal stability state. The inequality (67) is a quadratic 

relation in 2h and could be written in the form 

( )( ) ( )2 2
1 2 0 68h hα α− − ≥

where 1 2andα α  are, the two roots of the equality of the 

relation (67), being 

( ) ( )1 8 1 69bα = − − Δ

( ) ( )2 8 1 70bα = − + Δ

( )( ) ( )2 32 1 2 3 71b bΔ = − −
The magnetogravitational stability and instability 

investigation analysis should be carried out in the following 

two cases         i) 0 2 3b< <                ii) 2 3 1b< <  

A. The case 0 2 3b< <  

   In this case 2Δ is positive and therefore the two roots 

1 2andα α of the equality (67) are real. Now we will show 

that both 1 2andα α  are positive. If 1 veα ≠ + then 

1α must be negative and this means that 

( ) ( )8 1 72b b− ≤
or alternatively  

( ) ( )( )264 1 32 1 2 3b b b− ≤ − −  

From which we get 

( )2 3 73b b≥

and this is contradiction, so 1α must be positive and 

consequently 2 0α ≥  as well (noting that 2 1α α> ). This 

means that both the quantities ( ) ( )2 2
1 2andh hα α− −  

are negative and that in turn shows that the inequality (67) is 

identically satisfied in the axisymmetric disturbance mode. 

B. The case 2 3 1b< <  

  In this case in which 1b <  and simultaneously 3 2b > , it 

is found that 2Δ  is negative i.e. Δ  is imaginary, therefore 

the two roots 1 2andα α  are complex. We may prove that 

the inequality (67) is satisfied as follows. 

Let 2h c= −    and   1,2 1 2c icα = −   where 

1 2, andc c c   are real, so  

( )( ) ( ) ( )2 2
1 2 1 2 1 2h h c c ic c c icα α− − = − − + − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 

        2 2 2
2 1 22c cc c c= + + +  

( ) ( )2 2
1 2 74c c c ve= + + = +

which is positive definite. 

  By an appeal to the cases (i) and (ii), we deduce that the 

model is stable under the restrictions 

( )0 1 75b< <
This means that the model is stable if there exists a critical 

value oω  of the electric field frequency ω  such that 

oω ω>  where oω  is given by 

( ) ( )( ) ( ) ( )( ) ( )2 4 0.5 0 76o o o o oG xI x I x I x K xω π ρ ′> − >  

   One has to mention here that if 

0, 0, and 0oEω β= = =  and we suppose that  

( ) ( ) ( ) ( )const exp , 77t tγ σ=
 the second order integro-differential equation of Mathieu 

equation (59), yield 
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( ) ( )( ) ( ) ( )( ) ( )2 4 0.5 78o o o oG xI x I x I x K xσ π ρ ′= −
where σ  is the temporal amplification and note by the way 

that ( )
1
24 Gπ ρ −

 has a unit of time. The relation (78) is 

identical to the gravitational dispersion relation derived for 

the first time by Chandrasekhar and Fermi (1953). In fact 

they (1953) have used a totally different technique rather than 

that used here. They have used the method of representing the 

solenoidal vectors in terms of poloidal and toroidal vector 

fields, which is valid only for the axisymmetric perturbation. 

To determine the effect of ω  it is found more convenient to 

investigate the eigenvalue relation (78) since the right side of 

it is the same the middle side of (76). 

  Taking into account the recurrence relation (cf. Abramowitz 

and Stegun 1970) of the modified Bessel’s functions and 

their derivatives, we see, for 0x ≠ , that 

( ) ( )( ) ( )0 79o oxI x I x′ >  

and 

( ) ( )( ) ( )0 80o oI x K x >  

Now, returning to the relation (78), we deduce that the 

determining of the sign ( )( )2 4 Gσ π ρ  is identified if the 

sign of the quantity 

( ) ( ) ( )( ) ( )0.5 81o o oQ x I x K x= −  

is identified. 

Here it is found that the quantity ( )oQ x  may be positive or 

negative depending on 0x ≠  values. Numerical 

investigations and analysis of the relation (78) reveal that 
2σ  is positive for small values of x  while it is negative in 

all other values of x . In more details it is unstable in the 

domain 0 1.0668x< <  while it is stable in the domains 

1.0668 x≤ < ∞  where the equality is corresponding to 

the marginal stability state. 

  From the foregoing discussions, investigations and analysis, 

we conclude (on using (81) for (78)) that the quantity 

( ) ( )( ) ( ) ( )( )
( ) ( )

2

1
2

0.5 ,
4 82

o o o oM xI x I x I x K x
M Gσ π ρ

′= −

=
has the following properties 

( )
2

2

0 in the ranges 1.0668
83

0 in the range 0 1.0668
M x
M x

⎫≤ ≤ < ∞ ⎪
⎬

> < < ⎪⎭
  Now returning to the relation (76) concerning the frequency 

oω  of the periodic electric field 

( )
( )

( ) ( ) ( ) ( )
2 1 0. 84

4 2
o

o o
o

xI x
I x K x

G I x
ω
π ρ

⎡ ⎤′⎛ ⎞⎛ ⎞> − >⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
Therefore, we deduce that the electrodynamic force (with a 

periodic time electric field) has stabilizing influence and 

could predominate and overcoming the self-gravitating 

destabilizing influence of the dielectric fluid cylinder 

dispersed in a dielectric medium of negligible motion. 

However, the self-gravitating destabilizing influence could 

not be suppressed whatever is the greatest value of the 

magnitude and frequency of the periodic electric field 

because the gravitational destabilizing influence will persist. 

 

VII. NUMERICAL DISCUSSIONS 

   If we assume that 0ω = and consider the condition (77), 

then the second order integro-differential equation of 

Mathieu equation (59), yield 

( )
( ) ( ) ( )

( )
( )

( ) ( )
( ) ( ) ( ) ( )

( )

22

2

1
4 2

0 85

o o
o o

o s

o o o e

o o o o o

xI x E
I x K x

G I x E
xI x xI x K x
I x I x K x I x K x

σ
π ρ

ε β
ε

′⎛ ⎞ ⎛ ⎞⎛ ⎞= − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎡ ⎤′ ′⎛ ⎞

− =⎢ ⎥⎜ ⎟⎜ ⎟ ′ ′ ′−⎡ ⎤⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

where  ( )2 2 24 i
s oE G Rπ ρ ε=  and ( )e iε ε ε= .        

  In order to verify and confirm the foregoing analytical 

results, the relation (85) has been inserted in the computer 

and computed. This has been done for several values of 

β as 1, 1 and 1β β β< = >  in the wide 

domain 0 0.5x≤ ≤ . The numerical data of instability 

corresponding ( )
1
24 Gσ π ρ  are collected and tabulated 

and presented graphically (see figs. (1) and (2)) 
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Fig. (1) 

Electrogravitational stable and unstable domains for β =0.5 

      

 
*σ  

      
x  

Fig. (2) 

Electrogravitational stable and unstable domains for β =1.0 

    
   
   The numerical data of stability corresponding to 

( )
1
24 Gζ π ρ  are collected and tabulated and presented 

graphically (see figs. (3) and (4)).  
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Fig.  (3) 

Electrogravitational stable domains for β =2.5 
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Fig.  (4) 

Electrogravitational stable domains for β =3.0  

   
     From the analytical and numerical (see figs. (1)-- (4)) 
discussions of the relation (85) it is found that the electric 
field e

oE has strong stabilizing effect on the model.  In reality 
this can be realized from the fact that the unstable domains 
are fastly decreasing with increasing β  values. This strong 
stabilizing effect could be predominant over the destabilizing 
effect of the self-gravitating force, so it can suppress the 
stability character of the model and stability arises. 
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VIII. CONCLUSION 
  From the foregoing numerical results we may deduce the 
following.   
For the same value of ( )0 2.0 ,β β< <  it is found that the 

unstable domains are increasing with increasing M  values. 
This means that the capillary force has a strong destabilizing 
influence on the self-gravitating instability of the model.  
For the same value of M  it is found that the unstable 
domains are increasing with increasing of β  values. This 
means that the electric field has a strong destabilizing 
influence on the self-gravitating instability of the model.  In 
fact, this confirms the analytical discussions of the general 
eigenvalue relation (85). 
 Moreover, as ( )2.0β β≤ < ∞ , it is found that the 

self-gravitating instability character is disappeared and has 
been dispersed and the model becomes completely stable.  
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