
 
 

 

  
Abstract—A numerical method to study the boundary value 

problem in which the governing equations are the steady Euler 
equations and the vorticity is given on the inflow parts of the 
domain boundary is developed.  The Euler equations are 
implemented in terms of the stream function and vorticity. The 
convergence of the finite-difference equations to the exact 
solution is shown experimentally for the test problem by 
comparing the computational results with the exact solution on 
the sequence of grids.  The numerical algorithm is illustrated 
with several examples of steady flow through a 2 D−  channel 
with two inflow and outflow parts of boundary. The analysis of 
calculations shows strong dependence of the flow structure on 
the vorticity given at the inflow parts of the boundary. 
 

Index Terms— numerical method, Euler equations, 
flowing-through problem, incompressible fluid 
 

I. INTRODUCTION 
  A vortical flow of an ideal incompressible fluid in a 

given domain which boundary do not only consist of 
impermeable parts but also include the inflow and outflow 
parts rather interesting for its applications and for a long time 
remained not studied completely. We will call such kind of a 
problem as the “flowing-through” problem (sketch of the 
domain see in Figure 1 [1]). Kazhikhov and Ragulin [2] 
studied the existence and uniqueness of the boundary value 
problem where on the inflow parts of the boundary either 
three components of velocity or normal component of 
velocity and two tangent component of vorticity were 
prescribed, and on the outflow parts of the boundary either 
the normal component of velocity or pressure were imposed. 
A sufficiently full survey of works on the connection in a 
flowing-through problem has been provided by Antontsev et 
al. [3] 

 In this article we represent the well-posed formulation of 
flowing-through boundary-value problem for the Euler 
equation of an ideal incompressible fluid flow through a 
bounded 2 D−  domain. We assume that on inflow parts of 
the domain boundary the normal component of the velocity 
vector and the vorticity are known and on outflow parts of 
the domain boundary the values of normal component of 
velocity vector are known as well. For such type of the 
flowing through problem we developed numerical 
algorithm which is based on property of conservation of 
vorticity along stream line in steady 2 D−  flow. 
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II. METHODOLOGY 

Let Ω  be a bounded domain in  2R  whose boundary 
consists of the three kinds of parts. The inflow parts of 
domain boundary are denoted by 1, 1,..., ,i i LΓ =  and the 
outflow parts of the boundary are denoted by 

1 , 1,...,j j KΓ = . The impermeable parts of boundary are 

denoted by 0 , 1,...,m m MΓ = . The steady motion of a 
homogeneous ideal incompressible fluid is described by the 
Euler equations  
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where ( , )x y denoted the Cartesian coordinates of points on 
Ω , ( , )u u v=

r
 denoted the components of velocity vector  

on the x  and y directions respectively, p  is the pressure.  
We reformulate the flowing-through boundary value 

problem in terms of the stream function and vorticity  
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  in Ω  

 
where ψ  is the stream function and ω  is the vorticity (see  
in Figure 2). 

The approximate solution of problem will be found by an 
iterative method. Algorithm to find solution of boundary 
value problem is as follows the Figure 3. 

To solve Poisson equation for the stream function with 
Direchlet boundary conditions we used height order 
compact finite difference scheme, see for example [4]. The 
corresponding finite difference equation was solved by 
SOR method. The convergence of the numerical algorithm 
is confirmed by a test problem with known analytical 
solution.  
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        Figure 1 
 
 
 

 

            Figure 2 
 
 

Table 1: Norm of errors for stream function and vorticity. 
Rate of convergence for test problem 

 
 

 
 

Grid ψ ψ
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exact

err
 

 
Rate ψ ψ

∞
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−h
exact

err
 

 
Rate 

6 x 6 
11 x 11 
21 x 21 
41 x 41 

0.173E-05 
0.979E-07 
0.579E-08 
0.413E-09 

- 
4.14 
4.08 
3.81 

0.345E05 
0.196E-06 
0.116E-07 
0.862E-09 

- 
4.13 
4.08 
3.81 

 

 

Figure 3 
 

III. NUMERICAL RESULTS 

Table1 shows the infinity norm of the absolute errors 
which are obtained from the grid systems having 
N N× nodes. The rate of convergence is defined by 
equation 

 

1 2

1 2

ln( ) ln( )
,

ln( ) ln( )
−

=
−

N Nerr err
m

N N
 

 
where m is rate of convergence. This confirms that the finite 
difference scheme is of fourth-order accuracy 
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Figures 4-7 illustrate the effect of varying the boundary 
values of vorticity on both inflow parts of boundary. 
Figures 4 and 5 show streamlines and pressure contours for 
case where the values of vorticity prescribed on inflow parts 
have different sign. There are negative vorticity 

1
1( 10, 1)A Kω = − =  on 1

1Γ  and positive vorticity 
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2
2( 10, 1)A Kω = = on 1

2Γ  for Figure 4. On the contrary, 

there are positive vorticity 1
1( 10, 1)A Kω = = on 1

1Γ  and 

negative vorticity 2
2( 10, 1)A Kω = − = on 1

2Γ  for Figure 
5. 

Figure 6 plots streamlines and pressure contours for 
1 2

1 210, 1A A K Kω ω= = = = . In these cases the pattern of 
flow are not more symmetric. However, it is possible to get 
flow pattern in Figure 6 by rotation with respect diagonal 
between vortexes ( 0, 1)x y= = and ( 1, 0)x y= = . In 
these cases the patterns of flow remain symmetric about 
diagonals of square similar to the potential flow (see in 
Figure 7). 

 
 
 
 
 

 
 

Streamlines 
Figure 4.1   

 
 
 

 
 

Pressure Contours 
Figure 4.2   

 
 

 
Streamlines 
Figure 5.1 

 
 
 

 
 

Pressure Contours 
Figure 5.2   

 
 
 

 
 

Streamlines 
Figure 6.1   
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Pressure Contours 
Figure 6.2   

 
 

 
 

Streamlines 
                                   Figure 7.1 
 
 

 
 
 

Pressure Contours 
Figure 7.2   

 

IV. CONCLUSION 
In this paper we introduce a new method for the 

approximate solution to the Euler equation of steady 
2 D−  inviscid flow.  

• Method is based on law of vorticity conservation 
along streamline.  

• We have studied flowing through boundary value 
problem where on inflow parts of boundary 
domain the values of vorticity are given.  

• The convergence of the finite difference method is 
confirmed by a test problem with known analytical 
solution. 

• Numerical calculations are performed for 2-D 
inviscid flow through unite square domain with 
two inflow and two outflow parts of boundary.  

• Dependence of flow pattern on the boundary 
values of vorticity at inflow parts is demonstrated.  

• The basic idea of developed here method may be 
easily utilizes with finite element, finite volume 
method and etc.   
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