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Abstract—We consider a random design model

based on independent and identically distributed

pairs of observations (Xi, Yi), where the regression

function m(x) is given by m(x) = E(Yi|Xi = x) with

one independent variable. In a nonparametric setting

the aim is to produce a reasonable approximation to

the unknown function m(x) when we have no precise

information about the form of the true density, f(x)
of X. We describe an estimation procedure of non-

parametric regression model at a given point by some

appropriately constructed fixed-width (2d) confidence

interval with the confidence coefficient of at least 1−α.

Here, d(> 0) and α ∈ (0, 1) are two preassigned values.

Fixed-width confidence intervals are developed using

both Nadaraya-Watson and local linear kernel esti-

mators of nonparametric regression with data-driven

bandwidths. The sample size was optimized using the

purely and two-stage sequential procedures together

with asymptotic properties of the Nadaraya-Watson

and local linear estimators. A large scale simulation

study was performed to compare their coverage accu-

racy. The numerical results indicate that the confi-

dence bands based on the local linear estimator have

the better performance than those constructed by us-

ing Nadaraya-Watson estimator. However both esti-

mators are shown to have asymptotically correct cov-

erage properties.

Index Term —Nonparametric regression, random de-

sign, Nadaraya-Watson estimator, Local linear esti-

mator, fixed-width confidence interval, purely sequen-

tial procedure, two-stage sequential procedure

1 Introduction

Suppose that (X1, Y1), ..., (Xn, Yn) is a sequence of in-
dependent and identically distributed (i.i.d.) bivariate
random variables having an unknown continuous proba-
bility density function fXY (x, y) and without loss of gen-
erality we assume that Xi ∈ (0, 1) with a probability
distribution function fX(x). Consider the nonparametric
regression model
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Yi = m(Xi) + εi, i = 1, ..., n (1)

where εi is a sequence of iid random variables with
E[εi] = 0, E[ε2

i ] = σ2 and m(·) is an unknown function.

The present article attempts to estimate fixed-width
confidence bands for the unknown function m(x) at a
given point x = x0. Estimation is based on kernel type es-
timators and consider two most popular kernel estimators
namely, Nadaraya-Watson estimator m̂NW,hn(x0) and lo-
cal linear estimator m̂LL,hn(x0) (Wand and Jones (1995))
which are defined respectively by

m̂NW,hn(x0) =

∑n
i=1 yiK(x0−xi

hn
)

∑n
j=1 K(

x0−xj

hn
)

(2)

and

m̂LL,hn(x0) =

∑n
i=1 wiYi
∑n

i=1 wi
(3)

where

wi = K

(

x0 − xi

hn

)

(sn,2 − (x0 − xi)sn,1) (4)

with

sn,l =

n
∑

i=1

K

(

x0 − xi

hn

)

(x0 − xi)
l, l = 1, 2 (5)

here K(·) is the kernel function and hn is the bandwidth.
In this paper, as in Isogai (1987), we take hn = n−r for
a < r < b; a, b ∈ R. As shown above both estimators
are weighted averages of the response variable Y . Let
K(·) satisfy

∫

uK(u)du = 0,
∫

u2K(u)du ≤ ∞, K(u) and
|uK(u)| are bounded. Commonly used kernel functions
are listed in Table 1.

In general, local polynomial estimator (Fan and Gij-
bels, 1996) are superior to Nadaraya-Watson estimator
in some respects (Fan, 1993), but recent contributions by
Boularan et al. (1995), Einmahl and Mason (2000) as well
as Quian and Mammitzsch (2000), among others, have
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Table 1: Selected Kernel Functions

Kernel K(u)

Epanechnikov 3

4
(1 − 1

5
u2)/

√
5 for |u| <

√
5

0 otherwise

Biweight 15

16
(1 − u2)2 for | u |< 1

0 otherwise

Double Exponential 1

2
exp(−|u|) for | u |< 1

0 otherwise

Gaussian 1√
2π

exp(−(1/2)u2) |u| < ∞

Uniform 1

2
for | u |< 1

0 otherwise

given evidence of continuing interest in the Nadaraya-
Watson estimator. One of the strengths of this estima-
tor certainly consists in its automatic adaptation to de-
signs where the local polynomial estimator may not be
performing reliably over all. Also, the Nadaraya-Watson
estimator retains some optimality properties as demon-
strated in Hardle and Marron (1985).

Methods for obtaining confidence bands for m(x) can
be found in Hall and Titterington (1988), Eubank and
Speckman (1993) and Diebolt (1995). The most widely
used confidence band for m(x) is based on the theorem
of Bickel and Rosenblatt (1973) for kernel estimation
of a density function. Bias-corrected confidence bands
for general nonparametric regression models are consid-
ered by Xia (1998). In principle, confidence intervals can
be obtained from asymptotic normality results for m̂(x).
However, the limiting bias and variance depend on un-
known quantities which have to be estimated consistently
in order to construct asymptotic confidence intervals.

Sequential analysis, in general, comes in handy when
the experimenter’s objective is to control the error of es-
timation at some preassigned level. Whether one wants
to estimate m(x) at one single point x0 or for all x ∈ R,
depending on the specific goal and error criterion, one
would like to determine the sample size n in an optimal
fashion. That is, in order to have the error controlled at
a preassigned level, sample size has to be adaptively esti-
mated in the process by a positive integer valued random
variable N where the event [N = n] will depend only on
(X1, Y1), ..., (Xn, Yn) for all n ≥ 1. Finally m(x) is esti-
mated by m̂LL,hN (x) and m̂NW,hN (x) constructed from
(X1, Y1), ..., (XN , YN ).

2 Nonparametric Kernel Regression

Throughout the present work, we will consider the fol-
lowing regression model with a random design. Let

m(x) = E[Y |X = x] (6)

be the unknown regression function which describes the
dependance of the so-called response variable Y on the
value of X . The following assumptions are used in this
study (Wand and Jones (1995)):

(i) m′′(x) is continuous for all x ∈ [0, 1].
(ii) K(x) is symmetric about x = 0 and supported on
[−1, 1].
(iii) hn → 0 and nhn → ∞ as n → ∞.
(iv) The given point x = x0 must satisfy hn < x0 < 1−hn

for all n ≥ n0 where n0 is a fixed number.

The obvious problem that occurs when using (2) and
(3) is the choice of bandwidth, hn. According to the
assumption (iii) listed above, bandwidth hn is a sequence
satisfying hn → 0 and nhn → ∞ as n → ∞. Since
we take hn = n−r; a < r < b a, b ∈ R, n−r → 0 and
n1−r → ∞ as n → ∞ which result in 0 < r < 1. And
the assumption (iv) ensures the given point x0 which the
estimation is taking place is selected in such a way x0 is
more than a bandwidth hn away from the boundary to
avoid boundary effects that is hn < x0 and x0 < 1 − hn.
Combining these assumptions a range of values which r
takes will be decided as shown below:

hn < x0 and hn < 1 − x0 ⇔ hn < min{x0, 1 − x0}
which implies

r >

{− ln [min (x0, 1 − x0)]

ln n

}

= r0. (7)

Since 0 < r < 1, the above must imply r ∈
(max{0, r0}, 1) = (rmin, 1) where we let rmin =
max(0, r0).

A natural way of constructing a confidence band for
m(x) is follows. Suppose that m̂q,hn(x) is an estimator
of m(x) where q = NW for (2) estimator, q = LL for (3)
estimator then a 100(1 − α)% confidence band is of the
form

Pr {|m̂q,hn(x) − m(x)| ≤ d} ≥ 1 − α ∀ x ∈ [0, 1] (8)

There are many difficulties with finding a good solu-
tion to (8). Firstly, we must derive the asymptotic distri-
bution of m̂q,hn(x)−m(x); secondly we must estimate the
residual variance and distribution function of X . Also, a
good estimator of bandwidth hn is needed.

The kernel estimators are asymptotically normal, as
was first shown in Schuster (1972).

Theorem 1. Let K(·) satisfy
∫

uK(u)du = 0,
∫

u2K(u)du ≤ ∞, K(u) and |uK(u)| are bounded, hn

is such that limnh3
n = ∞ and limnh5

n = 0. Sup-
pose x1, ..., xk are distinct points and g(xi) > 0 for
i = 1, 2, ..., k. If E[Y 3] is finite and if g′, w′, v′, g′′

and w′′ exist and bounded where g(x) =
∫

f(x, y)dy,
w(x) =

∫

yf(x, y)dy and v(x) =
∫

y2f(x, y)dy respec-
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tively, then

√

nhn (mhn(x1) − m(x1), ..., mhn(xk) − m(xk))
d→ Z∗

(9)
where Z∗ is multivariate normal with mean vector 0

and diagonal covariance matrix C = [Cii] where Cii =
Var[Y |X = xi]

∫

K2(u)du/g(xi) (i = 1, ..., k).

In general the asymptotic bias of the m̂LL,hn(x) esti-
mator is smaller than m̂NW,hn(x) estimator (11):

Biasq = E[m̂q,hn(x0)] − m(x0) (10)

where

Biasq =

{

A +
h2

nµ2(K)m′(x)f ′(x)
f(x) + o(h2

n) if q=NW

A + o(h2
n) if q=LL

(11)

as n → ∞ where A =
h2

n

2 m′′(x)µ2(K) and

µ2(K) =
∫ −∞
∞ u2K(u)du.

However, both estimators have the same asymptotic
variance which is

Var[m̂q,hn(x0)] =
Bσ2

nhnf(x)
+ o

{

(nhn)−1
}

as n → ∞ where B =
∫ −∞
∞ K2(u)du.

Hence in the univariate case of Theorem 1 we have

√

nhn [m̂q,hn(x) − m(x)] ∼ N

(

0,
Bσ2

f(x)

)

which leads to

m̂q,hn(x) − m(x)

σ
√

B
f(x)nhn

∼ N(0, 1) as n → ∞. (12)

3 Sequential Fixed-Width Confidence

Interval

Given d (> 0) and α ∈ (0, 1) with hn = n−r for r ∈
(rmin, 1), suppose we wish to cliam

P {m(x) ∈ In = [m̂q,hn(x) ± d]} ≈ 1 − α (13)

which we can rewrite as

P
(∣

∣

∣

∣

∣

m̂q,hn(x) − m(x)
√

Var [m̂q,hn,n(x)]

∣

∣

∣

∣

∣

<
d

√

Var [m̂q,hn(x)]

)

≥ 1 − α

(14)
for large n where x is fixed.

Using (14) one can see that the probability require-
ment (13) leads to the implicit solution-equation

n ≥ nopt =

{

BZ2
α/2σ

2

d2f(x)

}
1

1−r

(15)

where Zα is the 100%α upper percentile of the standard
normal distribution.

3.1 Purely Sequential Procedure

In general σ2 in (15) is unknown and purely se-
quential procedure suggest to substitute the variance
parameter σ2 by a estimator σ̂2

n0
based on a sample

(X1, Y1), ..., (Xn0 , Yn0) of size n0 < nopt. Here we use
the residual variance estimate of σ2 proposed by Ursula
et.al. (2003) based on covariate matched U-statistics:

σ̂2 =

∑∑

i6=j
1
2 (Yi − Yj)

2 1
2

(

1
ĝi−ĝj

)

K
(

Xi−Xj

hn

)

n(n − 1)

where

ĝi =
1

n − 1

∑

i6=j

K

(

Xi − Xj

hn

)

(16)

and

σ̂2 =
1

n

n
∑

i=1

ε2
i + op(n

− 1
2 ) (17)

Hence from the optimal sample size nopt given in (15)
we continue sampling until

n ≥
{

Z2
α/2Bσ̂2

n

d2f(x)

}
1

1−r

(18)

where σ̂2
n is residual variance estimator σ̂2 based on sam-

ple size n. By taking n = n0 we propose the following
stopping rule for purely sequential procedure which is
given by

N = max







n,









{

Z2
α/2Bσ̂2

n

d2f(x)

}
1

1−r







+ 1







(19)

where ⌊n⌋ refers to the floor function.

In purely sequential procedure we take one observation
at a time until the condition given in (18) is satisfied and
steps involved in this procedure are as follows:
Step 1 : Take an initial sample of size n0, that is select
{(X1, Y1), ..., (Xn0 , Yn0)} where Yi is the observed value
of m(Xi) at Xi for i = 1, ..., n0.
Step 2 : Now let n = n0 and calculate

{

Z2
α/2Bσ̂2

n

d2f(x)

}
1

1−r

.
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Step 3 : Compare n with

{

Z2
α/2Bσ̂2

n

d2f(x)

}
1

1−r

. If

n ≥
{

Z2
α/2Bσ̂2

n

d2f(x)

}
1

1−r

then final sample size N equals to n i.e. N = n and no
further observations are required and hence the process
terminates. Go to step 5. Otherwise go to step 4.
Step 4 : If (18) is not satisfied increase sample size by one
that is new sample size is n0 + 1 and let n = n0 + 1. Go
to step 3.
Step 5 : Use the sample {(X1, Y1), ..., (XN , YN )} to com-
pute m̂NW,hN (x0) and m̂LL,hN (x0) estimates for m(x0)
and hence construct the confidence band given by (8).

3.2 Two-stage Sequential Procedure

The above purely sequential procedure involves a lot of
computational effort. Stein (1945) introduced a sampling
procedure which requires only two sampling operations.
However, it turned out that this two-stage procedure is
less efficient than the purely sequential procedure. Using
the asymptotic normality results in the Theorem 1 for
univariate random design case we can write

√
nhn {m̂q,hn(x) − m(x)}

σ
√

B(f(x))−1
→ N(0, 1) (20)

From (17) for a random sample of normally distributed
residuals {εi}n

i=1 with mean 0 and variance σ2

nσ̂2

σ2
∼ χ2

n (21)

where χ2
n is the chi-squared distribution with n degrees of

freedom. Hence we combine (20) and (21) to claim that
√

nhn{m̂q,hn (x)−m(x)}
σ
√

B(f(x))−1

√

σ̂2

σ2

∼ tn. (22)

The following statement (23) is obviously equivalent to
(13)

Pr {m(x) ∈ In} ≈ t

( √
nhnd

√

B(f(x))−1σ̂

)

− t

(

−
√

nhnd
√

B(f(x))−1σ̂

)

= 2t

( √
nhnd

√

B(f(x))

)

− 1 (23)

where t(·) is the cumulative student-t distribution and
an approximate solution to the problem is provided by
taking the smallest integer n ≥ 1 such that

2t

( √
nhnd

√

B(f(x))−1σ̂

)

− 1 ≥ 1 − α (24)

and since hn = n−r

n ≥
(

t2n,α/2Bσ̂2

d2f(x)

)
1

1−r

(25)

where tn,α/2 = t−1(1 − α/2) the (1 − α/2)th quantile of
the student-t distribution function t(·).

Two-stage sampling procedure is initiated by taking a
pilot bi-variate sample of size n0 i.e. {Xi, Yi}n0

i=1 and then
estimate the required final sample size N . Now using (25)
we propose the following stopping rule for a two-stage
procedure

N ≡ N(d) = max







n0,









(

t2n0,α/2Bσ̂2
n0

d2f(x)

)
1

1−r1







+ 1







(26)
where r1 ∈ (rmin, 1) and from (7) rmin =
max(0,− ln[min(x0, 1 − x0)]/ ln[n0])

If N = n0 then we need no more observations
in the second stage. However, if N > n0 then we
take additional bivariate sample {Xi, Yi}N

i=n0+1 of size
N − n0 in the second stage. Finally we use the
sample {(X1, Y1), ..., (XN , YN )} to compute Nadaraya-
Watson (2) and local linear (3) estimates for m(x0) and
construct the confidence band given in (13). In an appli-
cation of the stopping rule (26), it is important to select
the best available values for the design constants r1 and
n0 for fixed predesigned values of d and α.

4 Simulation Results

We use the following two models to assess the perfor-
mance of the confidence bands developed in Section 3:
Model I : Y =

√
4x + 3 + ǫ

Model II: Y = 2 exp{−x2

0.18} + 3 exp{− (x−1)2

0.98 } + ǫ
where ǫ ∼ N(0, σ2) .
Widths of the interval d = 0.05, 0.07, 0.09, 0.11, 0.13 were
used. The initial sample size n0 and σ were chosen to be
25 and 0.5 respectively. The confidence bands were inves-
tigated for α = 0.05. For all the data analysed, we used
standard normal kernel K(u) = (2π)−1/2 exp(−u2/2) and
hence

B =

∫ ∞

−∞
K2(u)du =

∫ ∞

−∞

1

2π
e−u2

du = (2
√

π)−1.

In both models 15000 replicate samples for each experi-
mental setting were carried out to obtain the final sample
sizes required to estimate m(x) at x0 = 0.306 given fixed-
width, 2d.

We obtained 15000 random samples of {Xi}25
i=1 from

uniform distribution and then calculate corresponding yi

for each stated relation (Models I and II). Random errors
ǫ were generated from N(0, .52) distribution and added
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to the above yi to obtained Yi. First we consider two-
stage sequential procedure for α = 0.05 and then purely
sequential procedure. The average final sample size n̄, av-

erage residual variance estimate σ̂2 , average local linear
m̂LL,hN , average Nadaraya-Watson m̂NW,hN estimates
and coverage probability p̃ which is the proportion of the
confidence intervals that contains the theoretical value,
m(x0) estimated at the point x0 = 0.306 are reported in
Tables 2 and 3 for α = 0.05. In Tables 2 and 3, figures
enclosed in brackets under estimated values refer to their
standard errors of the corresponding estimated value.

The following are further definitions of the statistics
which head some of the columns in the tables:

• n̄ =
∑nsim

j=1 (N)j

nsim

where (N)j is final sample size given in either (26) or
(19) depending on the sequential procedure being used,
calculated from jth simulated sample and nsim (= 15000)
is number of simulated samples.

• SEn̄ =

√

∑nsim
j=1 ((N)j−n̄)2

(nsim−1)nsim

• %Over = ((n̄ − nopt)/nopt) 100%

• m̂LL,hN (x0) = 1
nsim

∑nsim

j=1 (m̂LL,hN (x0))j

• SEm̂LL,hN
(x0)

=

√

∑nsim
j=1 (m̂LL,hN

(x0))j−m̂LL,hN
(x0))

2

nsim(nsim−1)

where (m̂LL,hN (x0))j is the estimated value of local
linear estimator for jth simulated sample.

• m̂NW,hN (x0) = 1
nsim

∑nsim

j=1 (m̂NW,hN (x0))j

• SEm̂NW,hN
(x0)

=

√

∑nsim
j=1 (m̂NW,hN

(x0))j−m̂NW,hN
(x0))

2

nsim(nsim−1)

where (m̂NW,hN (x0))j is the estimated value of Nadaraya-
Watson estimator for jth simulated sample.

• σ̂2 = 1
nsim

∑nsim

j=1 (σ̂2)j

• SEσ̂2 =

{

1
nsim−1

∑nsim

j=1

(

(σ̂2)j − σ̂2
)2
}1/2

where (σ̂2)j is the estimated value of local linear estima-
tor for jth simulated sample.

• p̃LL =
nm̂LL(x0)

nsim

where nm̂LL(x0) is the number of local linear fixed with
confidence intervals that contain m(x0) among nsim

confidence intervals in other words number of confidence
intervals which satisfied |m̂LL,Nj(x0)−m(x0)| < d where
j = 1, ..., nsim

• SEp̃LL =
√

p̃LL(1−p̃LL)
nsim

• p̃NW =
nm̂NW (x0)

nsim

where nm̂NW (x0) is the number of local linear fixed with
confidence intervals that contain m(x0) among nsim

confidence intervals in other words number of confidence
intervals which satisfied |m̂NW,Nj (x0) − m(x0)| < d
where j = 1, ..., nsim

• SEp̃NW =
√

p̃NW (1−p̃NW )
nsim

Coverage probabilities of both Nadaraya-Watson
(p̃NW ) and local linear estimators (p̃LL) have achieved
preset confidence coefficient 95% at x0 = .306 in Model II
except when d = .13. But the coverage probabilities for
Model I shows a different picture as Nadaraya-Watson
estimator fails to achieve required coverage probabilities
except when d = .05 where as local linear method does.
This noticeable difference is mainly due to structural dif-
ferences in the selected models and to the bias terms
which heavily depend on derivatives of the unknown func-
tion m(·) associated with each estimator. p̃NW of Model
I is increasing with decreasing d due to large sample sizes
resulted in increase in sample sizes. This is consistent
with both sequential procedures i.e. two-stage and purely
sequential. The performance of Nadaraya-Watson esti-
mator worsens as x increases as its bias highly depends on
derivatives of m(·). For the interior point x0 = .306, the
Nadaraya-Watson estimator assigns symmetric weights to
both sides of x0 = .306. For a random design this will
overweigh the points on right hand side and hence create
large bias. In other words Nadaraya-Watson estimator
is not design-adaptive. However local linear method as-
signs asymmetrical weighting scheme while maintaining
the same type of smooth weighting scheme as Nadaraya-
Watson estimator. Hence local linear method adapts au-
tomatically to this random design.

This simulation analysis clearly shows that the average
sample sizes in two-stage procedure is much larger than
corresponding values in the purely sequential procedure
for both models. This evidence clearly implies that the
two-stage sequential procedure is less efficient compared
to purely sequential procedure but at the same time one
should note that it is also associated with the highest cov-
erage probability which exceeds the target confidence co-
efficient 95%. Further note that advantage of using a two-
stage sequential procedure is reflected in computational
time. The purely sequential procedure needs substan-
tially more computations and hence during simulations
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Table 2: Empirical coverage of LL and NW for Model I
α = .05; m(x0) = 2.055

d nopt n̄ p̃LL p̃NW m̂LL m̂NW σ̂2

Two − stage Procedure

.13 81.8 109.3 .947 .902 2.046 2.108 .265
(.40) (.00) (.00) (.001) (.001) (.001)

.11 139.0 185.9 .965 .912 2.048 2.105 .262
(.69) (.00) (.00) (.000) (.000) (.001)

.09 262.8 340.0 .978 .921 2.048 2.099 .260
(1.28) (.00) (.00) (.000) (.000) (.000)

.07 583.6 776.7 .989 .932 2.047 2.091 .265
(2.83) (.00) (.00) (.000) (.000) (.000)

.05 1698.2 2259.7 .996 .958 2.048 2.076 .265
(8.34) (.00) (.00) (.000) (.000) (.000)

Purely Sequential Procedure

.13 81.8 80.1 .918 .869 2.046 2.219 .242
(.00) (.00) (.00) (.001) (.001) (.001)

.11 139.0 137.6 .954 .901 2.046 2.189 .246
(.00) (.00) (.00) (.001) (.001) (.001)

.09 262.8 261.1 .980 .914 2.047 2.109 .248
(.00) (.00) (.00) (.000) (.000) (.000)

.07 583.6 581.7 .991 .926 2.047 2.097 .249
(.00) (.00) (.00) (.000) (.000) (.000)

.05 1698.2 1695.6 .998 .947 2.051 2.081 .250
(.00) (.00) (.00) (.000) (.000) (.000)

it needs significantly more computational times than the
two-stage procedure, particularly for small d. However
purely sequential procedure at times fall somewhat short
of the optimal sample size. Hence the coverage proba-
bility falls short of the target, especially when the half
width of the interval d becomes larger as this result in
smaller sample sizes.

Figure 4.0 reflects the amount of over/under sam-
pling (%Over) of average sample sizes n̄ from correspond-
ing optimal sample sizes nopt based on confidence in-
tervals constructed using two-stage sequential procedure
and purely sequential procedure for each half with of the
interval d. Average sample size n̄ from two-stage sam-
pling method is over sampling whereas n̄ computed from
purely sequential procedure is slightly undersampling. In
practice, the focus is on final sample size, n̄ to be as close
as possible to optimal sample size, nopt with a reasonable
coverage probability. Therefore, we can conclude that
confidence intervals based on purely sequential procedure
has fulfilled the required goal of this study.

Table 3: Empirical coverage of LL and NW for Model II
α = .05; m(x0) = 3.024

d nopt n̄ p̃LL p̃NW m̂LL m̂NW σ̂2

Two − stage Procedure

.13 81.8 105.1 .946 .956 3.038 3.011 .258
(.40) (.00) (.00) (.001) (.001) (.001)

.11 139.0 180.5 .959 .967 3.037 3.004 .260
(.68) (.00) (.00) (.000) (.000) (.001)

.09 262.8 337.0 .973 .954 3.031 2.993 .258
(1.27) (.00) (.00) (.000) (.000) (.000)

.07 583.6 759.8 .989 .976 3.032 3.003 .261
(2.91) (.00) (.00) (.000) (.000) (.000)

.05 1698.2 2149.4 .994 .954 3.027 3.001 .256
(8.25) (.00) (.00) (.000) (.000) (.000)

Purely Sequential Procedure

.13 81.8 79.6 .916 .901 3.021 2.983 .241
(.40) (.00) (.00) (.001) (.001) (.000)

.11 139.0 137.9 .959 .946 3.031 2.995 .246
(.68) (.00) (.00) (.001) (.001) (.001)

.09 262.8 261.7 .977 .964 3.033 2.999 .248
(1.27) (.00) (.00) (.000) (.001) (.000)

.07 583.6 581.5 .992 .956 3.029 2.997 .249
(2.91) (.00) (.00) (.000) (.000) (.000)

.05 1698.2 1695.6 .998 .974 3.025 3.004 .250
(8.25) (.00) (.00) (.000) (.000) (.000)
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(Legend : ‘+’ = Two-stage, ‘o’ = Purely Sequential)
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5 Conclusions

In this paper we have studied data-driven fixed-width
confidence bands for nonparametric regression curve esti-
mation using local linear and Nadaraya-Watson estima-
tors. Both procedures have been produced the correct
asymptotic coverage probabilities. The coverage proba-
bility of Nadaraya-Watson method was found to be gen-
erally below the preset confidence coefficients. On the
other hand local linear method had near-nominal cover-
age probabilities in most of the cases. The performance
of the purely sequential procedure is better than that
of the two-stage procedure. However operationally, two-
stage procedure reduces computational costs associated
with the corresponding purely sequential schemes by a
substantial margin. The estimated residual variance es-
timator also appears to be very close to it’s actual value
even for small sample size cases.
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[1] Boularan, J. and Ferré, L. and Vieu P., “Location of
particular points in nonparametric regression analy-
sis,” Australian Journal of Statistics, V37, pp. 161-
168, 1995.

[2] Bickel, P. L. and Rosenblatt, M., “On some global
measures of the deviations of density function es-
timates.,” Annals of Statistics, V1, pp. 1071-1095,
1973.

[3] Diebolt, J., “A nonparametric test for the regression
function: asymptotic theory,” Journal of Statistical

Planning Inference, V44, pp. 1-17, 1995.

[4] Einmahl, U. and Mason, D. M., “An emperical pro-
cess approach to the uniform consistency of kernel-
type function estimators,” Journal of Theoretical

Probability, V13, pp. 1-37, 2000.

[5] Eubank, R. L. and Speckman, P. L., “Confidence
bands in nonparametric regression,” Journal of the

American Statistical Association, V88, N424, pp.
1287-1301, 1993.

[6] Fan, J., “Local linear regression smoothers and their
minimax efficiency,” Annals of Statistics, V21, pp.
196-216, 1993.

[7] Fan, J. and Gijbels, I., Local polynomial modelling

and its applications, Chapman and Hall, London,
1996.

[8] Ghosh, M., Mukhopadhyay, N. and Sen, P.K., Se-

quential Estimation, Wiley, New York, 1997.

[9] Hall, P. and Marron, J. S., “On variance estimation
in nonparametric regression,” Biometrika, V77, N2,
pp. 415-419, 1990.

[10] Hall, P. and Titterington, D. M., “On confidence
bands in nonparametric density estimation and re-
gression,” Journal of Multivariate Analysis, V27, pp.
228-254, 1988.
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