
    

Abstract

 

Control charts are widely implemented in firms to 
establish and maintain statistical control of a process which 
leads to the improved quality and productivity. Design of 
control charts requires that the engineer selects a sample size, a 
sampling frequency and the control limits for the chart. In this 
paper, a possible combination of design parameters is 
considered as a decision making unit which is identified by 
three attributes: hourly expected cost, detection power of the 
chart and in-control average run length. Optimal design of 
control charts can be formulated as multiple objective decision 
making (MODM). The cost function is extended from single to 
multiple assignable causes because there exist multiple 
assignable causes in real practice. An algorithm using DEA is 
applied to solve the MODM model. A numerical example is 
used to illustrate the algorithm procedure. Finally, sensitivity 
analysis has been carried out to investigate the robustness of 
the model  
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I. INTRODUCTION 

  If a product is to meet or exceed customer expectations, it 
should be produced by a process that is stable or repeatable. 
Statistical process control is a powerful collection of 
problem solving tools useful in achieving process stability 
and improving capabilities through the reduction of 
variability. The main tool of statistical process control is the 
statistical control chart. The engineering and technical 
implementation of control charts entails selecting sample 
sizes, sampling frequencies and the control limits for the 
chart. Selection of these three parameters is called the 
design of control chart. Traditionally, control charts have 
been designed with respect to statistical criteria only, but the 
design of a control chart has economic aspects too.  
The first model in this case was proposed by Duncan [1]. 
Since that time, the economic approach has received 
considerable attention and various models have been 
suggested in this area. But as declared by Woodall [2], 
control charts based on optimal economic design, have poor  
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statistical properties. To solve this problem, Saniga [3] 
noted that some of the criticism of economic design can be 
overcome by introducing statistical constraints in the 
problem and solving the model using nonlinear optimization 
techniques. Del Castillo, Montgomery and Mackin [4] 
proposed an interactive multi objective algorithm based on 
this procedure. In addition, Chen and Liao [5] formulated 
optimal design of control charts as a multiple criteria 
decision making with respect to the constraints proposed by 
Saniga. 
In the mentioned articles, a single assignable cause cost 
function was used. However in 1971, Duncan [6] developed 
his previous model and presented a new model in the 
presence of multiple assignable causes. Since then, many 
tried to optimize this cost function. Chung [7] carried out 
subsequent work on Duncan s model [6]. Chen and Yang 
[8] considered weibull in-control times with multiple 
assignable causes. Yu and Hou [9] optimized the control 
chart parameters with multiple assignable causes and 
variable sampling intervals. Also, Yu, Tsou and Huang [10] 
used Duncan's model and the proposed constraints by saniga 
[3] to investigate economic-statistical design of X

 

control 
chart. Table 1 shows the comparison of different models, 
mentioned above. 
However, multiple objective design of X control charts 
with multiple assignable causes has not been addressed in 
the literature. Therefore, the purpose of this paper is to find 
the optimum design parameters of X control charts using 
DEA, in presence of multiple assignable causes which 
satisfy all economic and statistical objectives. A numerical 
example is given to illustrate the model's working. 
Sensitivity analysis has been done to ensure the aptness of 
the model. 

II.   ECONOMIC COST FUNCTION WITH MULTIPLE 

ASSIGNABLE CAUSES 

Duncan [6] generalized his single assignable cause model to 
multiple one. In this model, there is an in-control state , an 
assignable cause of magnitude ( 1 2 )j j , ...,s

 

which 

occurs at random, results in a shift in the mean to either 

j or j and so changes the state until the 

cause is detected. Meanwhile, during the search for the 
assignable cause, the process is allowed to continue in 
operation. The cycle consists of four periods:  

1) In-control period 
It is assumed that assignable causes occur according to 
Poisson process with j occurrences per hour. So, assuming 
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that process begins in the in-control state, the time interval 
that the process remains in control is an exponential random 

variable with mean 
1

 hour: 

1

1 1
s

j
i

                                                                        (1)   

2) Out of control period 
When the process goes to out of control state, the 
probability that it will be detected on any subsequent sample 
is related to the assignable cause occurred. If the jth 
assignable cause happens, then the detection power will be: 

( ) + ( )
k nj

j

k nj

P z dz z dz                                    (2) 

 

where ( )z , is the probability density function of 

standardized normal distribution. Therefore, the average 

samples taken after the jth assignable cause happens, is
1

jP
. 

In addition, given the occurrence of the jth assignable cause 
between the uth and u+1st sample, the expected time of 
occurrence within this interval is : 
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Where h is the sampling frequency.  

Table 1. Comparison of the models 

Output Assumptions Model/year 

Multi-objective 
design 

(economic-statistical) 

Single assignable 
cause 

Exponential 
in-control times 

Del Castillo, 
Montgomery 

and 
Mackin(1996) 

Multi-objective 
design 

(economic-statistical) 

Single assignable 
cause 

Exponential 
in-control times 

Chen and Liao 
(2004) 

Economic design 

Multiple assignable 
causes 

Exponential 
in-control times 

Chung (1994) 

Economic design 

Multiple assignable 
causes 

Weibull in-control 
times 

Chen and Yang 
(2002) 

Economic design 

Multiple assignable 
causes 

variable sampling 
intervals 

Yu and Hou 
(2006) 

Economic-statistical 
design (economic 

objective with 
statistical constraints) 

Multiple assignable 
causes 

Exponential 
in-control times 

Yu, Tsou and 
Huang (2007) 

Therefore, the time required to observe an out of control 
alarm when the jth assignable cause occurs, will be: 

j

j

h

P
                                                                           (4)        

3) The time to take sample and interpret the results is a 
constant g proportional to the sample size n, so that gn is the 
length of this part of the cycle.  

4) The time required to find the assignable cause. If this 
time is jD

 
for the jth assignable cause, then the expected 

time in a cycle for detecting assignable cause is: 

1

s

j j
j

D
                                                                         (5)                    

Therefore, the expected length of a cycle is:  
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If the fixed component of sampling cost is 1a

 

and the 

variable one is 2a , then the cost of taking a sample of size n 

will be 1 2a a n . The cost of finding an assignable cause j, 

is 3 ja

 

and the cost of investigating a false alarm is 4a . The 

expected number of false alarm generated during a cycle 
is , times the expected number of samples taken before the 
shift or: 

e

1 e

h

h
                                                                           (7)                                                            

In which  is calculated through the below equation: 
1

2 ( )
k
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                                                   (8)                                     

Subsequently, if one defines 5 ja

 

, as the hourly penalty cost 

associated with production in out of control state, then the 
expected cost per cycle will be: 

5 3
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And the expected cost per hour can be indicated as: 
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Therefore, economic design of X

 
control chart involves 

determination of optimal parameters n, h and k which 
minimize HCE . 

III.   MULTIPLE OBJECTIVE OPTIMAL DESIGN OF X

 
CONTROL CHART 

To establish the multiple objective decision making model, 
we should first determine a set of conflicting objectives that 
define the problem for the quality control manager. Due to 
the nature of the DEA method used in algorithm, various 
combinations of design parameters n, h and k should also be 
set in advance. Taking into account the Saniga s constraints 
[3], the multi-objective model is:  

Max ( )ARL D

 

Max ( )P D

 

Min ( )HCE D

  

s.t.                                                                                (11)  
( 1 2 )j ljP P j , ,...,s

 

u

 

( 1 2 )j ujATS ATS j , ,...,s

 

ARL is the in-control average run length (reciprocal of false 
alarm rate ( )), P is the detection power of the control 
chart and HCE is the expected cost per hour. jP

 

and jATS

 

are respectively the detection power and the average time to 
signal when the jth assignable cause occurs and D is a 
possible combination of design parameters that has been 
shown in bracket for the entire three objectives for 
emphasizing on the fact that it does have an impact on the 
values of objectives. 
The aims of MODM models are to find solutions that can 
satisfy and set a balance among all objectives. To solve 
MODM problems, the DEA method is one of the most 
powerful and popular method to optimize the feasible 
combinations of design parameters specifically when 
measuring the efficiencies of similar units is under 
consideration.  

IV. DATA ENVELOPMENT ANALYSIS (DEA) 

DEA is the optimization method of linear programming to 
generalize the Farrell [11] single input, single output 
technical efficiency measure to the multiple-input, multiple-
output case by constructing a relative efficiency score of a 
group of competing decision making units (DMU). 
Applications and implementations of DEA in modeling 
performance measurement have gained a lot of attention in 
recent years [12]. In this paper we have used the CCR 
model (Charnes, Cooper and Rhodes [13]). The objective in 
CRR model is to maximize the relative efficiency value of 
each of DMUs from among a reference set of design D, by 
selecting the optimal weights associated with the inputs and 
outputs. The algebraic model is as follows: 

1

1

( )
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( )

z

r ri
r
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s.t.                                                                                (12) 
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Where 
Ur : the weights given to output r 
Yri : amount of output r from unit i 
Vj : weight given to input j 
Xji : amount of input j from unit i  

To solve the model, it is necessary to convert it into linear 
form so that methods of linear programming can be applied. 
This nonlinear programming is equivalent to two linear 
programming: 1) setting its denominator to one and 
maximizing its numerator (output maximization) 2) setting 
its numerator to one and minimizing denominator (input 
minimization). Because CCR model considers constant 
retunes to scale, there exists no difference which one to 
choose and CCR yields the same efficiency score. 
Therefore, the linear programming will be: 

1

Max ( )= ( )
z

i r ri
r

E D U Y D

 

s.t.                                                                                 (13)       
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If * 1iE , that means no other design is more efficient than 

design i under its own weights. If * 1iE , then there is at 

least one other design that is more efficient under optimal 
set of weights determined. Calculation should be done for 
each DMU to find the relative efficiency of each one. 

V. SOLUTION ALGORITHM 

Unlike many multiple-objective models that the DM has an 
implicit unknown value function, here the values of 

( )HCE D , ( )P D

 

and ( )ARL D must be calculated for each 

potential combination D according to formula 1 to 10 in 
advance. Due to the complicated multi-assignable cause cost 
function, all calculations have been facilitated by Excel 
software. In addition, to evaluate and compare the 
efficiencies of DMUs, Microsoft Excel with XlDEA has 
been implemented. Chen and Liao [5] proposed a solution 
procedure for their multi-criteria decision making model. In 
this paper, we have employed their 4-step algorithm to solve 
our multi-objective model. They applied this procedure for 
their model with one assignable cause cost function. The 
procedure is approximately the same except steps 1 and 2 
which have been modified to suit our proposed MODM 
model.  
The four-step procedure will be as follows:  

1) Determining all possible solutions by putting bounds on 
each parameter. In this paper the scope of sample size (n) is 
set from 1 to 35, increased by 1. Scope of sampling 
frequency (h) is confined from 0.1 to 4 increased by 0.1h 
and finally the scope of control limit width (k) is considered 
from 0.1 to 3 in terms of standard deviation increased by 
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0.1. Contemplating all possible combinations the number of 
potential solutions will be 35*40*30=42000   

2) In this step we have added another constraint too, in 
order to take into account the value of parameter h, because 
in the two previous constraints Chen and Liao [5] used, 
there was no sign of parameter h. subsequently, we 
eliminate infeasible solutions by the following constraints: 

u                  j ljP P             j ujATS ATS

  

3) Partial optimization. Remain the elements with Pareto 
optimality for each subset nQ

 

. A solution "s" with Pareto 

optimization in a set nQ

 

means that there is no other 

solution in the same set such that "s" is dominated in terms 
of statistical properties and cost.   

4) Global optimization. Merge all the remainders into a set 
W and select the elements with highest relative efficiency 
among W. The selected elements will afford to DM to make 
final decision.  

VI. NUMERICAL EXAMPLE  

In this section, Duncan s [6] data were employed to 
illustrate the use of the proposed model and algorithm. 
The numbers of assignable causes are assumed to be 12. 
When an assignable cause j with the average occurrence of 

j

 

occurs, it produces a shift of size j

 

in the mean. The 

cost of taking a sample that is independent of sampling is $1 
and the variable cost per item of sampling, testing and 
plotting is $0.1. An average time of 0.05h is needed to test 
and analyze a sample item and the cost of looking for 
trouble when none exists, is estimated $25. Values of other 
parameters have been tabulated in table 2.  

Table 2. Input values of parameters 

5 ja3 jajD

 

jj

7.22 19.68 4.17 0.001098 0.75 

27.6 14.57 3.08 0.000855 1.25 

76.14 11.81 2.50 0.000666 1.75 

165.69 9.84 2.08 0.000519 2.25 

302.36 9.06 1.92 0.000404 2.75 

433.64 8.66 1.84 0.000314 3.25 

570.32 8.37 1.77 0.000245 3.75 

659.86 8.17 1.72 0.000191 4.25 

708.4 8.05 1.70 0.000148 4.75 

728.97 7.93 1.68 0.000115 5.25 

735.78 7.83 1.66 0.000090 5.75 

737.56 7.73 1.64 0.000070 6.25 

 

Moreover, our statistical constraints in false alarm rate , 
detection power jP and average time to signal jATS

 

are: 

0 1.                  0 9jP .             4jATS

 

The optimization procedure can be carried out as described 
in previous section. Table3 illustrates the results.   

As indicated by , two design parameters combinations 
have received score 1 and therefore offered to the DM for 
final selection. Then the DM may choose the first 

combination if low cost is of paramount importance for 
him/her. Similarly if he/she is much more interested in the 
outgoing quality, then the second combination with large 
average run length and detection power may be the final 
choice.  

Table 3. Non-dominated solutions with largest efficiencies 

(n,h,k) Cost P ARL  

(27,2.9,2.6) 5.9662 0.9773 107.5269 * 

(28,2.9,2.6) 6.0481 0.9801 107.5269  

(29,2.9,2.6) 6.1301 0.9825 107.5269  

(29,2.9,2.7) 6.1103 0.9789 144.9275  

(30,3,2.6) 6.2109 0.9846 107.5269  

(30,3,2.7) 6.1918 0.9814 144.9275  

(30,2.9,2.8) 6.1771 0.9777 196.0784  

(31,3,2.6) 6.2917 0.9866 107.5269  

(31,3,2.7) 6.2725 0.9837 144.9275  

(31,3,2.8) 6.2601 0.9803 196.0784  

(32,3.1,2.6) 6.3723 0.9883 107.5269  

(32,3,2.7) 6.3533 0.9856 144.9275  

(32,3,2.8) 6.3387 0.9826 196.0784  

(32,3,2.9) 6.3291 0.9791 270.2703  

(33,3.1,2.6) 6.4519 0.9898 107.5269  

(33,3.1,2.7) 6.4334 0.9874 144.9275  

(33,3.1,2.8) 6.4193 0.9846 196.0784  

(33,3,2.9) 6.4084 0.9814 270.2703  

(33,3,3) 6.4003 0.9777 370.3704 * 

(34,3.1,2.6) 6.5316 0.9911 107.5269  

(34,3.1,2.7) 6.5131 0.989 144.9275  

(34,3.1,2.8) 6.4989 0.9865 196.0784  

(34,3.1,2.9) 6.4883 0.9836 270.2703  

(34,3.1,3) 6.4804 0.9802 370.3704  

(35,3.2,2.6) 6.6109 0.9922 107.5269  

(35,3.1,2.7) 6.5926 0.9904 144.9275  

(35,3.1,2.8) 6.5785 0.9881 196.0784  

(35,3.1,2.9) 6.5679 0.9855 270.2703  

(35,3.1,3) 6.5599 0.9824 370.3704  

 

VII. SENSITIVITY ANALYSIS 

Sensitivity analysis has been done to study the effect of 
model parameters on the solution and to discuss the 
robustness of the proposed model. Fixed parameters effects 
such as constant sampling cost, variable sampling cost, cost 
of investigating the false alarm rate and finally the time for 
sampling and analyzing, have been studied. Table 4 
illustrates the effect of these parameters on optimum 
solutions. 
Some critical observations achieved from sensitivity 
analysis are as follows. 
1) Decreasing fixed and variable sampling cost result in 
reduction in sampling interval (h) and hourly expected cost.  
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2) The cost of searching for trouble when none exists ( 4a ), 

is relatively robust to the optimal solutions and expected 
cost. 
3) The time to test and analyze a sample item (g) has 
negligible effect on optimum solution but increasing it, may 
lead to considerable increase in hourly expected cost.   

Table 4. Effect of parameters on optimum solutions   

(n, h, k) Cost P ARL 

1a

 

0.1 (27,2.5,2.6) 5.6321 0.9773 107.5269 

  

(33,2.7,3) 6.0861 0.9777 370.3704  

1 (27,2.9,2.6) 5.9662 0.9773 107.5269   

(33,3,3) 6.4003 0.9777 370.3704  

5 (27,3.6,2.6) 7.1468 0.9773 107.5269   

(33,3.6,3) 7.5533 0.9777 370.3704 

2a

 

0.01 (27,1.8,2.6) 4.9186 0.9773 107.5269   

(33,1.7,3) 5.1469 0.9777 370.3704  

0.1 (27,2.9,2.6) 5.9662 0.9773 107.5269   

(33,3,3) 6.4003 0.9777 370.3704  

0.5 (27,3.6,2.6) 9.0357 0.9773 107.5269   

(33,3.6,3) 10.108 0.9777 370.3704 

4a

 

10 (27,2.8,2.6) 5.9185 0.9773 107.5269   

(33,3,3) 6.3872 0.9777 370.3704  

25 (27,2.9,2.6) 5.9662 0.9773 107.5269   

(33,3,3) 6.4003 0.9777 370.3704  

50 (27,3,2.6) 6.0438 0.9773 107.5269   

(33,3.1,3) 6.4218 0.9777 370.3704 

g 0.01 (27,2.9,2.6) 4.9332 0.9773 107.5269   

(33,3,3) 5.1401 0.9777 370.3704  

0.05 (27,2.9,2.6) 5.9662 0.9773 107.5269   

(33,3,3) 6.4003 0.9777 370.3704  

0.25 (27,2.9,2.6) 10.980 0.9773 107.5269   

(33,3.1,3) 12.476 0.9777 370.3704 

  

VIII. CONCLUSION 

A multi-objective model for designing X control chart in 
presence of multiple assignable causes is proposed. For this 
model, various combinations of n, h and k are contemplated 
as decision making units (DMUs). DEA method is 
employed to assess the efficiency of DMUs and to select the 
optimum designs with large average run length, high 
detection power and low expected cost. Numerical example 
is given based on the Duncan s [6] data to illustrate the 
solution procedures. Sensitivity analysis is carried out which 
indicates that optimal design of sampling frequency 
parameter is affected by fixed and variable sampling cost. 
Cost of searching for false alarm has approximately 
insignificant effect on design parameters and hourly 
expected cost and finally, increasing the time of test and 
analysis of a sample may lead to high expected cost. Other 
interesting research areas for future research involve multi-

objective design of X

 
control chart under weibull shock 

and multi-objective design of adaptive X  control chart.   
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