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Abstract−In a rendezvous problem on a discrete line two

players are placed at points on the line. At each mo-

ment of time each player can move to an adjacent point

or remain at the point at which it stands. The goal is

for both players to reach the same point in the least

expected time time. This paper contains results that

refer to both general and specific situations. First we

show how this problem relates to the continuous prob-

lem. Next we prove there are optimal strategy pairs for

which both players tend toward the center. Third, we

derive matrix equations that apply to movement along

the line. Using these previous result we employ a sym-

bolic program (Maxima) to determine all possible so-

lutions to searches on lines having four or five points,

the cases of 1, 2, or 3 points being trivial. Finally we

consider the special problem in which one player begins

with certainty at a specified point of the line.

Index Term: cooperative games,rendezvous, search,tactics

Introduction

We consider the problem in which two teams called Player I

and Player II are placed at locations i and j respectively with

probability pi,j on a discrete line. Thereafter the two players

move to adjacent locations until they finally meet by arriving

at the same location. The goal is for the players to meet in

the shortest time. Thus if Player I starting at i chooses a path

fi and Player II starting at j chooses a path gj the goal is to

minimize the quantity

E ({fi} , {gj}) =
∑

i,j

pi,j [fi, gj ] (1)

where [fi, gj ] denotes the time before the two paths are at the

same location.

The problem described above is known as the rendezvous

problem on the discrete line. A description of results for this

problem on the line and other lattices is described in [1], and

some results for lines of arbitrary length appear in [2] and [3].

First we show how the continuous problem can help to handle

the continuous problem. Next we prove the Restriction Theorem

that asserts there are optimal strategy pairs for which both play-

ers tend toward the center. Third, we derive matrix equations

that apply to movement along the line. Using these previous re-

sult we employ a symbolic program (Maxima) to determine all
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possible solutions to searches on lines having four or five points,

the cases of 1, 2, or 3 points being trivial. The result for five

points indicates that the solution for the discrete rendezvous

problem in its most general setting must be relatively compli-

cated. Finally we consider the special problem, that we call the

one sided problem, in which one player begins with certainty at

a specified point of the line.

Relation between Continuous and

Discrete Search

If both players can adequately measure space and time and

have a prior knowledge of the region in which they operate then

they can reduce continuous search to discrete search. Although

we are focusing on linear problems most of what we say in this

section applies to any dimension. To transform a continuous

problem into a discrete problem the players should previously

agree upon an array of points, i. e. bases in the search region.

They should also agree on a common time interval that is ade-

quate to travel between any pair of adjacent bases. At the end

of an interval each player should be at some base, either because

it arrived there from an adjacent base or because it remained

there during the previous interval. When the players are at the

same base at the end of an interval then they will have met and

the total time required will be the total of all intervals elapsed.

In this way we can use the discrete problem to approximate the

solution of the continuous problem.

On the line this approximation is quite efficient, but in higher

dimensions we run into problems. For example, if we divide a

two dimensional region into a rectangular lattice we encounter

the question of whether the interval chosen will be long enough

to travel between bases that are diagonal to one another. If the

answer is “yes” then it will be necessary for a team to wait at

an interval if it came there along a side. If the answer is “no”

then motion along a diagonal line will take a greater total time.

The Restriction Theorem

The main result in this section is that in every rendezvous

game on the line there is always a pair of optimal strategies that

are within increasingly shorter lines as the search proceeds. A

more general theorem of this type is found in [4], but the present

result is not a special case since there we defined a meeting to be

in the same or adjacent locations at the same time. As a matter
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of fact, the result given in this section does not generalize to

arbitrary rectangular lattices unless we allow diagonals to be

adjacent as we did in [4].

In this section it is convenient to represent the set L of loca-

tions on a line by

L = {−n,− (n − 1) , ...,−1, 0, 1, ..., n} (2)

if the line has an odd number (2n + 1) of locations and by

L = {−n,− (n − 1) , ...,−1, 1, ..., n} , (3)

omitting 0, if the line has an even number (2n) of locations.

A path fi beginning at location i is a function from the

set of positive integers into L such that (1) fi (1) = i and (2)

fi (t + 1) ∈ {fi (t) − 1, fi (t) , fi (t) + 1} for each positive integer

k. We express this briefly by saying that fi (t + 1) is adjacent

to fi (t). If fi and gj are two paths then [fi, gj ] is the smallest

integer k for which fi (k) = gj (k) or ∞ if the paths never meet.

A path fi is said to be k restricted where 0 ≤ k ≤ n after time

T if −k ≤ fi (t) ≤ k for t > T . If fi is a k restricted path after

time T we define Pk−1 (fi) to be the function g from the positive

integers into L defined by

g (k) =















fi (t) if t ≤ T + 1

fi (t) if t > T + 1 and − (k − 1) ≤ fi (t) ≤ k − 1

k − 1 if t > T + 1 and fi (t) = k

− (k − 1) if t > T + 1 and fi (t) = −k

(4)

Thus g coincides with fi until time T +1 coincides with fi except

it stays at − (k − 1) when fi goes to −k or at (k − 1) when fi

goes to k.

Proposition 1 If fi is a k restricted path after time T then

g = Pk−1 (fi) is a path that begins at i and is (k − 1) restricted

after time T + 1 as well as k restricted after time T .

Proof. Since 1 ≤ T + 1 it follows that g (1) = fi (1) = i. If

t ≤ T + 1 or − (k − 1) < fi (t) < k − 1 then g (t + 1) is adjacent

to g (t) because it coincides with fi. If t > T + 1 and fi (t) = k

then g (t) can be k (if t = T + 1) or k − 1 and fi (t + 1) can

be k or k − 1 so g (t + 1) has to be k − 1 which is adjacent to

g (t). If t > T + 1 and fi (t) = k − 1 then g (t) is k − 1 and

fi (t + 1) can be k or k − 1 so g (t + 1) has to be k − 1 which is

adjacent to g (t). We omit the similar argument for fi (t) equal

−k or − (k − 1). That g is k restricted after time T follows since

g (T + 1) = fi (T + 1) . 2

Proposition 2 If fi and gj are both k restricted paths after

time T then

[Pk−1fi, Pk−1gj ] ≤ [fi, gj ] . (5)

Proof. Denote Pk−1fi by f∗
i and Pk−1gj by g∗

j , and let [fi, gj ] =

t0. If t0 ≤ T + 1 or fi (t0) /∈ {k,−k} then f∗
i (t0) = fi (t0) =

gj (t0) = g∗
j (t0). If t0 > T + 1 and fi (t0) = k then f∗

i (t0) and

g∗
i (t0) are both k−1. If t0 > T +1 and fi (t0) = −k then f∗

i (t0)

and g∗
i (t0) are both − (k − 1). Thus f∗

i and g∗
i both meet at

time t0 and possibly before. 2

Definition 3 A path fi on L is called restricted if it is n−T

restricted after time T for T = 0, 1, 2, .., n − 1 and fi (n) = 0

when L has an odd number (2n+1) locations or fi (n) = 1 when

L has an even number (2n) locations.

Proposition 4 If fi and gj is any pair of paths on L, there are

restricted paths f∗
i and g∗

j such that
[

f∗
i , g∗

j

]

≤ [fi, gj ].

Proof. Since fi and gi are paths on L, they are n restricted so

by Proposition Pn−1fi and Pn−1gj are n restricted after time 0

and n−1 restricted after time 1 with [Pn−1fi, Pn−1gj ] ≤ [fi, gj ].

We can iterate this process n− 1 times to obtain the desired f∗
i

and g∗
i . 2

Proposition 5 Suppose Players I and II begin at locations i

and j respectively with probability pi,j . If {fi : i ∈ L} is any set

of paths for Player I and {gj : j ∈ L} is any set of paths for

Player II then there are sets of restricted paths If {f∗
i : i ∈ L}

and
{

g∗
j : j ∈ L

}

such that
∑

i,j

pi,j

[

f∗
i , g∗

j

]

≤
∑

i,j

pi,j [fi, gj ] . (6)

Proof. For each i, j let f∗
i , g∗

j satisfy the conclusion of Propo-

sition 4. 2

Theorem 6 Suppose Players I and II begin at locations i and

j respectively with probability pi,j . There are restricted paths

{f∗
i : i ∈ L} and

{

g∗
j : j ∈ L

}

such that
∑

i,j

pi,j

[

f∗
i , g∗

j

]

≤
∑

i,j

pi,j [fi, gj ] (7)

for any pair of sets of paths {fi : i ∈ L} and {gj : j ∈ L}.

Proof. Since the set of restricted paths is finite so is the set of

pairs of restricted paths. Thus there is a pair {f∗
i : i ∈ L} and

{

g∗
j : j ∈ L

}

of restricted paths for which
∑

i,j

pi,j

[

f∗
i , g∗

j

]

(8)

is a minimum. If {fi : i ∈ L} and {gj : j ∈ L} is any pair

of paths, by Proposition 5 there is a pair of restricted paths
{

fˆ
i : i ∈ L

}

and
{

gˆ
j : j ∈ L

}

such that
∑

i,j

pi,j

[

fˆ
i , gˆ

j

]

≤
∑

i,j

pi,j [fi, gj ] (9)

but we also have
∑

i,j

pi,j

[

f∗
i , g∗

j

]

≤
∑

i,j

pi,j

[

fˆ
i , gˆ

j

]

(10)

because
∑

i,j
pi,j

[

f∗
i , g∗

j

]

is minimal over restricted paths. 2
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Matrix Representation

In this section it is convenient to represent the locations on the

line L by {1, 2, ..., n} where n can be odd or even. A collection

of n motions to other locations can be represented by an n × n

matrix D where the jth column (dij) has dkj = 1 to represent

a motion from j to k and 0’s elsewhere. The transpose D> of

such a matrix also represents such a motion.

Proposition 7 If Q = (qi,j) is a matrix for which qi,j denotes

the probability that Player I is at i and Player II is at j then

DQE> = (ri,j) is a matrix in which ri,j is the probability that

Player I is at i and Player II is at j given that Player I performs

the motions represented by D and Player II performs the motions

represented by E>.

Proof. If DQ = (si,j) then for each i we have

si,j =
∑

h∈A

ph,j (11)

where A is the set of all h that Player I moved to i from h. Thus

si,j represents the probability that Player I is at i and Player II

is at j after the move. A similar argument applies for DQE>.

2

In the situation we are studying moves are restricted to adja-

cent locations so we shall take dkj to be 1 for k ∈ {j − 1, j, j + 1}

and 0 elsewhere. We denote by ei the column matrix that has

1 in the ith row and 0’s elsewhere. A path for Player I is repre-

sented by a sequence of matrices Dt : t = 1, 2, ....

Proposition 8 For n = 2m, or n = 2m + 1 a sequence of

matrices (Dt) represents a restricted path for Player I if and

only if for each h = 1, 2, ...,m − 1 (1) the hth column of Dh is

eh+1, (2) the h + 1th column of Dh is eh+1 or eh+2, (3) the

n− hth column of Dh is en−(h+1), (4) the n− (h + 1)th column

of Dh is en−(h+1) or en−(h+2), and (5) For n even, the mth

and (m + 1)th columns of Dm are both em+1, and for n odd the

mth, (m + 1)th and (m + 2)th are all em+1.

Proof. Conditions (1) and (2) hold if and only if on the hth turn

Player I moves toward the center from location h. Conditions

(3) and (4) hold if and only if on the hth turn Player I moves

toward the center from location n − h. If these conditions are

satisfied by matrices Dt for t < h the probability that Player I

is outside of the interval {h, h + 1, ..., n − h} on turn h is zero.

That is the first and last h rows of the matrix

D1D2...DhP (12)

are zero. The last condition holds if and only if Player I moves

to m + 1 on move m. 2

For a matrix A = [ai,j ] we denote by ∆(A) the matrix D = [di,j ]

for which di,i = ai,i and di,j = 0 for i 6= j; we denote by Tr (A)

the sum
∑

i
ai,i.

Proposition 9 Suppose P = [pi,j ] is the matrix for which pi,j

is the probability that Player I begins at location i and Player

II begins at location j. Suppose the number of locations is ei-

ther n = 2m or n = 2m + 1 and Player I uses the restricted

paths {fi} described by the matrices {Dt : t = 1, ...,m} while

Player II uses the restricted paths {gj} described by the matrices
{

E>
t : t = 1, ...,m

}

. Let

P1 = D1 (P − ∆(P ))E>
1 (13)

and for t = 2, ..., m let

Pt = Dt (Pt−1 − ∆ (Pt−1)) E>
1 (14)

Then the probability that Player I and II meet immediately after

turn t is Tr (Pt).

Proof. Each element pi,j of P − ∆ (P ) is the probability that

I is at i and II is at j and they did not meet at the start.

Thus the diagonal elements of P1 are the probabilities that I

and II meet immediately after the first move ( Proposition 7 ).

If Pt−1 = [si,j ] then si,j is the probability that after turn t − 1

I is at i and II is at j and they have not previously met. Thus

Tr (Pt−1) is the probability that they meet immediately after

turn t − 1, Pt−1 − ∆(Pt−1) is the matrix of probabilities that

they have not yet met and are at different locations after turn

t− 1 and Dt (Pt−1 − ∆(Pt−1))E>
1 is the matrix of probabilities

that they are at their various locations after I and II make their

moves. 2

If we write b0 = Tr (P ) and bt = Tr (Pt) then assuming

Player I uses the restricted paths {fi} described by the matrices

{Dt : t = 1, ...,m} while Player II uses the restricted paths {gj}

described by the matrices
{

E>
t : t = 1, ...,m

}

we have

E ({fi} , {gj}) =

m
∑

t=1

tbt (15)

since the players will certainly meet at the end of turn m it

follows that
∑m

t=0
bt =

∑

i,j
pi,j = 1 so that

E ({fi} , {gj}) =

m−1
∑

t=1

tbt + m

(

1 −

m−1
∑

t=0

bt

)

(16)

= m (1− b0) −

m−1
∑

t=1

(m − t) bt (17)

The quantity m (1− b0) is fixed so minimizing E ({fi} , {gj}) is

equivalent to maximizing

m−1
∑

t=1

(m − t) bt. (18)

Solutions for Four and Five Loca-

tions

We have used the matrix method described in the previous

section to completely solve the rendezvous problem for a line of
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four or five locations. To do this we have employed the sym-

bolic computational program MAXIMA, which is a descendent

of the Macsyma program maintained at the U. S. Department

of Energy, and now available without charge on the internet.

First observe that the solutions for the one, two or three point

line are obvious. In the case of one point the players meet at

time 0. For two points the players decide before on a point to

end at if they do not meet at time 0 and both go (or remain)

there. For three points both players go to the center if they do

not meet at time 0.

When there are four or five locations the players can meet

after no more than two moves using restricted strategies. The

terminal point in the four point case on the line [1, 2, 3, 4] being

2 or 3 (chosen beforehand by the players or their controller) and

the terminal point in the five point case on the line [1, 2, 3, 4, 5]

being 3. If the players have not met after the first move they

both move to the terminal point on the second.

Four Locations

When there are four locations each player has only two possi-

ble tactics on the first move. They are described by the vectors

e2 = [0, 1, 0, 0] and e3 = [0, 0, 1, 0] (19)

The strategy described by e2 in row i is to move to 2 from i and

the strategy described by e3 in row i is to move to 3 from i. The

first column must be e2 (if the strategy is restricted) and the

fourth column must be e3 while the two middle columns can be

either. Thus on the first move there are four strategy matrices

for each player resulting in a total of sixteen strategy pairs for

the two teams. In formula the sum that has to be maximized

is simply b1. We have calculated the quantities b1 for all sixteen

strategy pairs and have found that each pair can be optimal in

the appropriate situation.

Example 10 The pair of matrices

A =









0 0 0 0

1 0 1 0

0 1 0 1

0 0 0 0









, B =









0 1 0 0

0 1 0 0

0 1 0 0

0 0 1 0









(20)

describes the pair of strategies for which Player I moves to 2 if

it begins at 1, to 3 if it begins at 2, to 2 if it begins at 3 and to

3 if it begins at 4 while Player II moves to 2 if it begins at 1 to

remains at 2 if it begins at 2 moves to 2 if it begins at 3 and to

3 if it begins at 4. Since

A









0 p1,2 p1,3 p1,4

p2,1 0 p2,3 p2,4

p3,1 p3,2 0 p3,4

p4,1 p4,2 p4,3 0









B (21)

has trace equal to

b1 = p3,2 + p3,1 + p1,3 + p1,2 + p2,4 (22)

it follows that if the players use this strategy the expected time

will be

b1 + 2

(

1 − b1 −

4
∑

j=1

pj,j

)

. (23)

Since no other strategy results in all of these terms in b1 it fol-

lows that if p3,2 = p3,1 = p1,3 = p1,2 = p2,4 = 1
5

then the expected

time will be 1 and this strategy and no other will be optimal.

The results of the calculations are displayed in the following

table. The first four columns are interpreted as follows: first

column - Player I strategy at location 2, 0 means stay, 1 means

move to 3; second column - Player I strategy at location 3, 0

means stay, -1 means move to location 2; third column - Player

II strategy at location 2 , 0 means stay, 1 means move to 3;

fourth column - Player II strategy at location 3, 0 means stay,

-1 means move to 2. Since we are dealing with restricted paths

if a player is at an end point it will move to the adjacent point.

The last column denotes quantity b1. If each of the quantities

appearing in the last column are equal and have sum 1 then

no strategy will do as well as that described in the previous

row. For example if p4,3 = p4,2 = p3,4 = p3,2 = p2,1 = 1
5

then

no strategy will do as well as that depicted in row 2: Player I

remains in place at location 2 or 3 while player moves to 3 if at

location 2 and remains in place if at location 3.

0 0 0 0 p4,3 + p3,4 + p2,1 + p1,2

0 0 1 0 p4,3 + p4,2 + p3,4 + p3,2 + p2,1

0 0 0 −1 p3,4 + p2,3 + p2,1 + p1,3 + p1,2

0 0 1 −1 p4,2 + p3,4 + p3,2 + p2,3 + p2,1 + p1,3

1 0 0 0 p4,3 + p3,4 + p2,4 + p2,3 + p1,2

1 0 1 0 p4,3 + p4,2 + p3,4 + p3,2 + p2,4 + p2,3

1 0 0 −1 p3,4 + p2,4 + p1,3 + p1,2

1 0 1 −1 p4,2 + p3,4 + p3,2 + p2,4 + p1,3

0 −1 0 0 p4,3 + p3,2 + p3,1 + p2,1 + p1,2

0 −1 1 0 p4,3 + p4,2 + p3,1 + p2,1

0 −1 0 −1 p3,2 + p3,1 + p2,3 + p2,1 + p1,3 + p1,2

0 −1 1 −1 p4,2 + p3,1 + p2,3 + p2,1 + p1,3

1 −1 0 0 p4,3 + p3,2 + p3,1 + p2,4 + p2,3 + p1,2

1 −1 1 0 p4,3 + p4,2 + p3,1 + p2,4 + p2,3

1 −1 0 −1 p3,2 + p3,1 + p2,4 + p1,3 + p1,2

1 −1 1 −1 p4,2 + p3,1 + p2,4 + p1,3

(24)

Five Locations

When there are five locations, there are 12 matrices describ-

ing restricted strategies resulting in 144 strategy pairs. The

following matrix describes these strategies. The first column is

a number used to name the strategy. The action of the strategy

at location 2,3,4 are given in the columns marked 2,3,4 respec-

tively. For example, Strategy 6 is that of staying in place at

location 2 moving to 4 from location 3 and staying in place at
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location 4.

2 3 4

1 0 −1 −1

2 0 −1 0

3 0 0 −1

4 0 0 0

5 0 1 −1

6 0 1 0

7 1 −1 −1

8 1 −1 0

9 1 0 −1

10 1 0 0

11 1 1 −1

12 1 1 0

(25)

Of the 144 possible values of bi 97 result in values that are dom-

inated by other values so there are 47 non dominated strategy

pairs. We have listed below the 47 non dominated strategy pairs

using the designations described in the matrix. The first number

is the strategy used by I, the second by II and the third column

is the resulting value of b1.

1 8 p5,4 + p4,2 + p3,1 + p2,3 + p2,1 + p1,3

1 10 p5,4 + p4,3 + p4,2 + p3,1 + p2,1

1 12 p5,4 + p5,3 + p4,2 + p3,1 + p2,1

2 2 p5,4 + p4,5 + p3,2 + p3,1 + p2,3 + p2,1 + p1,3 + p1,2

2 6 p5,4 + p5,3 + p4,5 + p4,3 + p3,2 + p3,1 + p2,1 + p1,2

3 7 p4,2 + p3,4 + p3,2 + p2,3 + p2,1 + p1,3

3 8 p5,4 + p4,2 + p3,2 + p2,3 + p2,1 + p1,3

3 9 p4,3 + p4,2 + p3,4 + p3,2 + p2,1

3 10 p5,4 + p4,3 + p4,2 + p3,2 + p2,1

3 11 p5,3 + p4,2 + p3,4 + p3,2 + p2,1

3 12 p5,4 + p5,3 + p4,2 + p3,2 + p2,1

4 7 p4,5 + p3,4 + p3,2 + p2,3 + p2,1 + p1,3

4 11 p5,3 + p4,5 + p4,3 + p3,4 + p3,2 + p2,1

5 8 p5,4 + p4,2 + p3,5 + p3,4 + p2,3 + p2,1 + p1,3

5 10 p5,4 + p4,3 + p4,2 + p3,5 + p3,4 + p2,1

5 12 p5,4 + p5,3 + p4,2 + p3,5 + p3,4 + p2,1

6 2 p5,4 + p4,5 + p3,5 + p3,4 + p2,3 + p2,1 + p1,3 + p1,2

6 6 p5,4 + p5,3 + p4,5 + p4,3 + p3,5 + p3,4 + p2,1 + p1,2

7 3 p4,3 + p3,2 + p3,1 + p2,4 + p2,3 + p1,2

7 4 p5,4 + p4,3 + p3,2 + p3,1 + p2,3 + p1,2

7 7 p4,2 + p3,1 + p2,4 + p1,3

7 9 p4,3 + p4,2 + p3,1 + p2,4 + p2,3

7 10 p5,4 + p4,3 + p4,2 + p3,1 + p2,3

7 11 p5,3 + p4,2 + p3,1 + p2,4

8 1 p4,5 + p3,2 + p3,1 + p2,4 + p1,3 + p1,2

8 3 p4,5 + p3,2 + p3,1 + p2,4 + p2,3 + p1,2

8 5 p5,3 + p4,5 + p4,3 + p3,2 + p3,1 + p2,4 + p1,2

9 3 p4,3 + p3,4 + p2,4 + p2,3 + p1,2

9 7 p4,2 + p3,4 + p3,2 + p2,4 + p1,3

9 9 p4,3 + p4,2 + p3,4 + p3,2 + p2,4 + p2,3

9 10 p5,4 + p4,3 + p4,2 + p3,2 + p2,3

9 11 p5,3 + p4,2 + p3,4 + p3,2 + p2,4

10 1 p4,5 + p3,4 + p2,4 + p1,3 + p1,2

10 3 p4,5 + p3,4 + p2,4 + p2,3 + p1,2

10 5 p5,3 + p4,5 + p4,3 + p3,4 + p2,4 + p1,2

10 7 p4,5 + p3,4 + p3,2 + p2,4 + p1,3

10 9 p4,5 + p3,4 + p3,2 + p2,4 + p2,3

10 11 p5,3 + p4,5 + p4,3 + p3,4 + p3,2 + p2,4

11 3 p4,3 + p3,5 + p2,4 + p2,3 + p1,2

11 4 p5,4 + p4,3 + p3,5 + p3,4 + p2,3 + p1,2

11 7 p4,2 + p3,5 + p2,4 + p1,3

11 9 p4,3 + p4,2 + p3,5 + p2,4 + p2,3

11 10 p5,4 + p4,3 + p4,2 + p3,5 + p3,4 + p2,3

11 11 p5,3 + p4,2 + p3,5 + p2,4

12 1 p4,5 + p3,5 + p2,4 + p1,3 + p1,2

12 3 p4,5 + p3,5 + p2,4 + p2,3 + p1,2

12 5 p5,3 + p4,5 + p4,3 + p3,5 + p2,4 + p1,2

Example 11 The most obvious situation occurs when both

players begin at a location with equal and independent proba-

bilities so that for each i, j, pi,j = 1
25

. Any strategy in which

there is a maximal number of terms in the third column will

then be optimal. These are (2, 2) , (2, 6) , (6, 2) , (6, 6), having 8

terms. Each of these strategies will give an expected time of
8
25 + 2

(

1 − 8
25 − 5

25

)

= 32
25 . A similar situation is when both

players are placed with equal probability at pairs of different lo-

cations. The same strategy pairs are optimal and the expected

time is then 8
20

+ 2
(

1 − 8
20

)

= 8
5
.
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You may wonder why the number of non-dominated strategy

pairs is odd rather than even in view of the observation that

every strategy has a reflection due to symmetry. The answer to

this conundrum is that the strategy number 9 is its own reflec-

tion and the pair (9, 9) is a non-dominated pair that is its own

partner.

One Sided Rendezvous

In this section we shall consider the special case when one

player whom we designate Player 1 begins on the line with cer-

tainty at a given location that we designate d and the other

player (Player 2) begins at location i with probability pi. We

continue to denote the points on the line with integers from 1

to n. The problem is to design a path f for Player 1 to follow

and paths {gi : i 6= d} for Player 2 for which the quantity

E (f,{gi}) =
∑

i6=d

pi [f, gi] (26)

where as in Section 3, [f, gi] denotes the number of turns until

f (j) = gi (j). It is unnecessary to determine gd because if Player

2 begins at d it will meet Player 1 at time 0.

The following result is an immediate consequence of the Re-

striction Theorem.

Proposition 12 If d = 1 then there is an optimal strategy pair

of the form (f,{gi}) where the path for Player 1 is f (i) = i, i =

1, 2, ..., n. If d = n there is such a pair for which f (i) = i + 1 −

n, i = 1, 2, ..., n.

If d = 1 and Player 1 uses the path described in the Proposi-

tion then if Player 2 starts at location 2 it should wait for Player

1 rather than moving to location 1 (and missing Player 1). If

Player 2 starts at location 3 it will meet Player 1 upon entering

location 2. If we think of the probability of Player 2 starting at

location i as a potential player then we can envision Player 1

encountering two potential players at each location visited be-

fore turn [n/2] provided both players travelled without stopping

in the direction of Player 1 before that time. At turn i < [n/2]

these are the potential player that started from 2i and is waiting

for Player 1 to arrive from location i−1 and the potential player

that started from 2i + 1 and will meet Player 1 when the two

of them arrive. Since each potential player will meet Player 1

in the minimum possible number of turns we have proved the

following result.

Proposition 13 When d = 1 an optimal strategy pair is

(f, {gi : i = 2, ..., n}) where f (j) = j for j = 1, 2, ..., [n/2] and

for each i, gi is described inductively by gi (1) = i

gi (j + 1) =

{

gi (j) − 1 if gi (j) > [i/2]

[i/2] otherwise
(27)

The minimal time thus obtained is

m =

{

(p2 + p3) + ... +
(

n
2
− 1
)

(pn−2 + pn−1) +
(

n
2

)

(pn) n even

(p2 + p3) + ... +
(

n−1
2

)

(pn−1 + pn) n odd.

(28)

Consideration of the case d = 1 shows the appropriate strat-

egy for Player 2 in all cases given that it is aware of the path

to be taken by Player 1. If the distance from Player 2 is more

than one from that of the path then Player 2 should move in the

direction of that path. If the distance is 1 then Player 2 should

move in that direction if it knows Player 1 intends to remain in

place or to move in the opposite direction; otherwise, Player 2

should remain in place and meet Player 1 on the next turn.

The path for Player 1 can be determined by an iterative pro-

cess often called “dynamic programming” if we assume the play-

ers use restricted strategies. For with such strategies the line in

which the movement occurs is reduced by the two end points at

each stage and the resulting situation is still a one sided ren-

dezvous in which Player 1 may or may not be relocated by 1.

In fact, all such rendezvous problems on the line are subject to

dynamic programming, but only with the one sided situation is

the growth of the number of subcases sufficiently restricted to

make it feasible. At each turn Player 1 being at location d can

remain in place and receive potential players from the d− 1 and

d + 1, can move right (except at a right end point) and receive

the potential players from d+1 which has waited for it and from

d + 2 which has moved to meet it, or move left and receive po-

tential players from d−1 and d−2. A path for Player 1 consists

of a sequence of such choices.

A central tool in the study of one sided rendezvous is the

following exercise in algebra

Proposition 14 Suppose A and B are two sets of N positive

real numbers. The minimum of the set






∑

(a.b)∈A×B

ab







(29)

occurs for the sum of the form
N
∑

i=1

aibj (30)

where A = {a1 ≤ a2 ≤ ... ≤ aN} and B = {b1 ≥ b2 ≥ ... ≥ bN},

that is to say, where the sequence of one set of multiplicands is

non-decreasing and the set of the other set of multiplicands is

non-increasing.

Definition 15 Player 1 will be said to be following the oppor-

tunistic strategy if at each turn it chooses the action for which

the sum of the two potential players is the largest. That is it

compares the quantities

x−1 = pd−1 + pd−2, x0 = pd−1 + pd+1, x1 = pd+1 + pd+2 (31)

and moves left if x−1 is maximal, remains in place if x0 is max-

imal and moves right if x1 is maximal. In case a subscript i

IAENG International Journal of Applied Mathematics, 38:3, IJAM_38_3_07
_______________________________________________________________________________

(Advance online publication: 21 August 2008)



is beyond an end point we let pi = 0. We shall write X (k) to

denote the maximum of {x−1, x0, x1} for turn k.

The opportunistic strategy for Player 1 is not necessarily unique

since the maximum may be assumed for two or even three values

of xi. That the opportunistic strategy need not be optimal is

easily shown by the following example.

Example 16 Let p1 = 3/4, p2 = p3 = 0, p4 = 1/4, and let

Player 1 start from 3. If Player 1 uses the opportunistic strategy

it waits at 3 and the expected number of turns is 1 · (1/4) + 2 ·

(3/4) = 7/4 whereas if it meets the potential player from 1 by

moving to 2 on the first turn the expected number of turns is

1 · (3/4) + 2 · (1/4) = 5/4.

A situation in which the opportunistic strategy is optimal is

described in the following proposition.

Proposition 17 Suppose Player 1 begins at location d with 1 <

d < n, and suppose p1 ≤ p2 ≤ ... ≤ pd−1 while pd+1 ≥ pd+2 ≥

... ≥ pn. Then the opportunistic strategy will obtain the smallest

expected search time.

Proof. We carry out the proof assuming n is even; the proof

when n is odd follows the same plan. Let T = (n − 2) /2, let A

be the set {pi : i 6= d} and let B = {1, 1, ..., T, T, T + 1}. Then

A and B are sets of positive numbers having the same cardi-

nality so the minimum of sums of their products occurs when

one sequence of multiplicands is non-decreasing and the other is

non-increasing. A number in set B represents the time at which

Player 1 meets a potential player from set A. Because of the

ordering of the members of Set A, Player 1 can select an order-

ing of the pi that is non-increasing by using the opportunistic

strategy. 2

When d is different from n− d− 1 Proposition 17 still applies

but Player 1 exhausts the locations on one side it commences a

sequential search on the remaining locations. A special case of

the Proposition occurs when d = n − d + i the probabilities are

symmetric that is when pd−i+1 = pd+i for i = 1, 2, .., d − 1. If

pi = pi+1 for some values of i then the Opportunistic strategy

allows more than one possible move, but if pi+1 < pi for all i < d

the only Opportunistic strategy is for Player 1 to remain at d

and let the potential players come to it.

In the situation when pi = 1/n for each i = 1, 2, ..., n, i. e.

the case of the uniform distribution the Opportunistic strategy

allows many solutions. Player 1 will encounter two potential

players if it remains in place, and will encounter one or two

potential players if it moves to the right or the left. It will

encounter one potential player if it moves right from n − 1 or

left from 1. Thus the expected meeting time will be

E = x + (1 − x)
(

E′ (h) + 1
)

(32)

where x is 1/n or 2/n and E′ (h) is the expected meeting time

in the problem with n − 2 location and with Player 1 beginning

at h = d−1, d, or d+1. If n−2 is 1 then E = 0 and if n−2 = 2

then E = 1
2

because in both of these situations Player 1 starts

at an end point. We can then apply induction to solve one sided

problems with uniform distribution of any length. The following

Proposition shows that in this case the opportunistic strategy is

only one of many possible strategies.

Proposition 18 In the one sided problem with uniform with

a uniform distribution for player 2 with n = 3, and d 6= 1, n,

Player 1 should not move to an end point and the resulting min-

imal value is the same as when d = 1 namely

m =

{

n2+2n+2
4n

n even
n2−1
4n

n odd.
(33)

If n = 3 then d = 2. If Player 1 remains in place

then the remaining two potential players move to it at time 1

so E = 2/3. Player 1 moves to 1 or 3 then the potential player

awaits it there and the other moves to 2 and is met by Player

1 at time 2 so that E = 1/3 + 2 (1/3) = 1. Thus the minimal

expected time will occur when Player 1 remains in the middle.

If n = 4 and d = 2 then if Player 1 remains in place the

expected meeting time is 1
2

+ 1
2

(

1
2

+ 1
)

= 5
4

while if it moves to

1 then the expected meeting time is 1
4

+ 3
4

(

1
2

+ 1
)

= 11
8

which

is larger.

This establishes the proposition for n = 3 and 4. Assume the

proposition is true for 3 ≤ k < n. If n is even then n − 2 is also

even so if Player 1 remains in place the expected meeting time

will be

E =
2

n
+
(

1−
2

n

)

(

(n − 2)2 + 2(n − 2) + 2

4 (n − 2)

)

=
n2 + 2n + 2

4n

(34)

If Player 1 moves to an end point the expected meeting time

will be 1/n (1 + (n − 1) (E′ + 1)) ≥ 1/n (2 + (n − 2) (E′ + 1))

because E′ the expected meeting time in the n−2 point problem

is greater than 1. 2
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