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Abstract—This paper considers robust mean-variance 

portfolio selection problems including uncertainty sets and 
fuzzy factors. Since these problems are not well-defined 
problems due to fuzzy factors, it is hard to solve them directly. 
Therefore, introducing chance constraints, fuzzy goals and 
possibility measures, the proposed models are transformed into 
the deterministic equivalent problems. Furthermore, since it is 
difficult to solve them analytically and efficiently due to 
nonlinear programming problems, the solution method is 
constructed introducing a parameter and doing the equivalent 
transformations.  
 

Index Terms—Portfolio selection problem, Robust 
optimization, Fuzzy optimization, Nonlinear programming 
 

I. INTRODUCTION 
In recent investment markets, not only big companies and 

institutional investors but also individual investors called 
Day-Traders invest in stock, currency, property, etc.. 
Therefore, the role of investment theory becomes more and 
more important. Of course, it is easy to decide the most 
suitable financial assets allocation if decision makers can 
receive reliable information with respect to future returns a 
priori. However, there exist many cases that uncertainty from 
social conditions has a great influence on the future returns. 
In the real market, there are random factors derived from 
statistical analysis of historical data and ambiguous factors 
such as the psychological aspect of investors and lack of 
received efficient information. Under such uncertainty 
situations, they need to consider how to reduce a risk, and it 
becomes important whether they receive the greatest future 
profit. 

Such a finance assets selection problem is generally called 
a portfolio selection problem, and various studies have been 
done till now. As for the research history on mathematical 
approach, Markowitz [24] has proposed mean-variance 
model and it has been central to research activity in the real 
financial field and numerous researchers have contributed to 
the development of modern portfolio theory (for instance, 
Luenberger [23], Steinbach [28]). On the other hand, many 
researchers have proposed models of portfolio selection 
problems which extended Markowitz model; Capital Asset 
Pricing Model (CAPM) (Sharpe [27], Lintner [21], Mossin 
[25]), mean-absolute-deviation model (Konno [19], Konno, 

et al. [20]),  semi-variance model (Bawa [1]), safety-first 
model (Elton [6]), Value at Risk and conditional Value at 
Risk model (Rockfellar [26]), etc.. 
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In such previous researches, expected future return and 
variance of each asset are assumed to be known, and in this 
case, the mean-variance model is equivalent to a quadratic 
convex programming problem. Therefore, its optimal 
portfolio is analytically obtained. However, decision makers 
may receive a lot of information and data in current market. 
Then, it is almost impossible to estimate strict market 
parameters such as expected future return and variance, and 
to determine their random distribution. These distributions 
may be statistically determined as a confidence interval 
involving some error. Therefore, using these statistical 
distributions, it is more important to considering that decision 
makers optimize the problem in the worst case; i.e. robust 
optimization problem. 

Recently, the robust optimization problem becomes a more 
active area of research, and there exists various studies (For 
example, [2, 3, 7, 10, 13]). Particularly, with respect to 
portfolio selection problems, there are some studies of robust 
portfolio selection problems determining optimal investment 
strategy using the robust approach (For example, [8, 22]). 
The expected return and variance of each asset are mainly 
estimated from historical data and occur according to random 
distributions derived from the statistical analysis. However, 
considering efficient or inefficient received information, the 
institution of expert decision maker and the existence of other 
random distribution, we need to consider that statistical 
distribution considering these conditions includes some 
ambiguity and is involved some flexibility. In this paper, we 
propose extensional models of robust portfolio selection 
problems including fuzzy factors. 

Until now, there are some basic researches under various 
uncertainty conditions with respect to portfolio selection 
problems (Bilbao-Terol [4], Carlsson [5], Guo [9], Huang [11, 
12], Inuiguchi [14, 15], Katagiri [17, 18], Tanaka [29, 30], 
Watada [31]). However, there are few models considering 
both uncertainty sets and ambiguity, simultaneously. 
Furthermore, there are no researches which are analytically 
extended and solved these types of portfolio selection 
problems. Since our proposal models are not well-defined 
problems, in this paper, we transform main problems into the 
deterministic equivalent problems and construct the 
analytical solution method of fuzzy robust portfolio selection 
problem as well as propose formulation of this model. 

This paper is organized as follows. In Section 2, we 
introduce basic mean-variance portfolio selection problems 
minimizing the total variance and the total future return, 
respectively, and we formulate their robust models 

IAENG International Journal of Applied Mathematics, 38:3, IJAM_38_3_09
_______________________________________________________________________________

(Advance online publication: 21 August 2008)



 
 

 

introducing the uncertainty sets. In Section 3, introducing 
fuzzy numbers to uncertainty sets of expected return and 
variance, we propose fuzzy extension models of robust 
mean-variance portfolio selection problems and construct the 
analytical solution method. Finally, in Section 4, we 
conclude this paper and discuss future research problems. 
 

II. FORMULATION OF ROBUST MEAN VARIANCE 
OPTIMIZATION PROBLEMS 

In this section, we consider basic portfolio selection 
problems and their robust models. First of all, we set the 
parameters in portfolio selection problems. We set the 
expected return of total future profit  and the total 

variance  as follows: 

( )E r

( )Var r
( ) ( ),tE = =Var Vr r rφ φt φ  (1)

where each notation means as follows: 
r : Future return vector assumed to be a random variable 
r : Mean value vector of random variable  r
V : Variance-covariance matrix of random variable  r
φ :  Portfolio with respect to each asset ( ),  1,2,...,j j= n  

 
From these notations, a mean-variance model Markowitz has 
proposed is formulated as the following problem: 

Minimize
subject to ,
                   1

t

t

t

f≥
=

V

1

φ φ
φ
φ

r  (2)

where f  is a target value of total future return. In this 
problem, introducing a parameter ν , problem (2) is 
equivalently transformed into the following problem 
introducing the target value of total variance : ν

Minimize
subject to ,
                   ,
                   1

t

t

t

f

ν
ν≤

≥
=

V

1

φ φ
φ
φ

r
 

(3)

 
In the case that we obtain the strict value of parameters r  
and , problem (3) is equivalent to a quadratic 
programming problem and we find an optimal portfolio using 
standard convex programming approaches. Furthermore, 
while problem (3) considers minimizing the total variance, 
the case maximizing the total future return is formulated as 
the following form: 

V

Maximize
subject to ,
                  ,
                   1

t

t

t

f
f
ν

≥
≤
=

V
1

r φ
φ φ
φ

 
(4)

 
This problem is also a quadratic programming problem and 
so we obtain an optimal portfolio. 

However, in real world, it is hard to receive all information 
and data with respect to future returns and determine the 
distributions of their random variables. Therefore, in this 
paper, we consider that parameters r  and  have 
uncertainty and each parameter is included in an uncertainty 

set. In the case that we consider these uncertainty sets, 
problems (3) and (4) are not quadratic programming 
problems. Therefore, we need to construct the solution 
procedure to solve them. In this paper, we formulate the 
robust portfolio selection problem Men-tal and Nemirovski 
[2] have proposed. We formulate the robust portfolio 
selection problem minimizing the total variance as follows: 

V

{ }

{ }

Minimize
subject to max ,

                 min ,

                   1

t
S

t

t

fΜ

ν
ν∈

∈

≤

≥

=

V V

1

φ φ

φ

φ
r r

 
(5)

where nM R⊂  and  are uncertainty sets. In a way 
similar to problem (5), we formulate the robust portfolio 
selection problem maximizing the total future return as 
follows: 

n nS R ×⊂

{ }

{ }

Maximize
subject to min ,

                 max ,

                   1

t

t
S

t

f
fΜ

ν
∈

∈

≥

≤

=
V V

1

r r φ

φ φ

φ

 
(6)

 
In these problems, they are not well-defined problems 
without defining uncertainty sets. Therefore, we first assume 
the uncertainty set of mean value r  to be the following 
ellipsoidal set: 

( ) ( ){ }0 0 1tΜ = − −Gr r r r r ≤  (7)

where n nR ×∈G  is a symmetric positive definite matrix. In 
this case, the left part of constraint { }min t fΜ∈ ≥r r φ  is 

transformed into the following form by introducing 
parameters  and r̂ z : 

( ) 1
2

1
2

0 0 1
ˆ 1

ˆinf inf inftt t

M

−

∈ ≤
≤

= + = +
G

G
z

r

r r r r z
μ

φ φ φ t φ  
(8)

where 
1
2 ˆ ˆt=G Gr r r̂  and t=z z z . Therefore, by 

solving 
1
2

1
inf t −

≤
G

z
z φ  with respect to  z , we easily obtain 

the following optimal solution: 
1
2

1
2

−
∗

−
=− G

G
z φ

φ
 (9)

 
Using this optimal solution ∗z , the expression (8) is 
transformed into the following form: 

1
2

0inf t t

M

−

∈
= Gφ φ− φ

r
r r  (10)

 
In a way similar to mean value r , we consider the 

uncertainty set of variance  as follows: V
{ }0,  L US= ≤ ≤V V V V V  (11)

where LV  and  are symmetric positive definite 
matrixes. Note that, since V  is restricted to be symmetric, 
the inequalities V V  can be represented with 

 componentwise inequalities, say for the upper 

UV

L UV
)

≤ ≤
( 1n n+
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triangle portions of these symmetric matrices. In other words, 
 is a short-hand notation for , 

, and similar for . Therefore, the 
constraint  is transformed into 

L ≤V V
n

U ν

L
ij ijσ σ≤

1 i j≤ ≤ ≤ U≤V V

{ }max t
S ν∈ ≤V Vφ φ

{ }max t t
S ν∈ ≤ ⇔ ≤V V Vφ φ φ φ , 

and main problem is equivalently transformed into the 
following problem: 

1
2

0

Minimize
subject to ,

                   ,

                   1

t U

t

t

f

ν
ν

−

≤

≥

=

V

G

1

φ φ

φ− φ

φ

r

 
(12)

 
Then, the problem (12) is also equivalently transformed into 
the following problem: 

1
2

0

Maximize

subject to ,

                  ,
                   1

t

t U

t

f

f

ν

− ≥

≤
=

G

V
1

r φ− φ

φ φ
φ

 
(13)

 
These problems are convex programming problems, and so 
we obtain each optimal solution using the convex 
programming approach. 

III. FUZZY EXTENSION OF ROBUST MEAN VARIANCE 
OPTIMIZATION PROBLEMS 

In Section 2, we consider that each parameter in the 
ellipsoidal set is fixed value. However, in real world, there 
exist various types of efficient and inefficient information, 
and each investor has an institution with respect to the current 
market. These factors include ambiguity and so we need to 
consider a robust portfolio selection problem including 
ambiguity. In this paper, we assume the 0r  to include 
ambiguity and to be a fuzzy number. Therefore, uncertainty 
set (7) is redefined into the following form: 

( ) ( ){ }0 0: 1tΜ = − − ≤Gr r r r r  (14)
 
Then, in this paper, the fuzzy number  is assumed to be a 
following L-shape fuzzy number: 

0r

( )
( )

( )
0

0
0 0

0 00 ,  
j

j
j j j j

jr

j j j j

r
L r r

r r

ω
α ω α

αμ ω

ω α α

⎧ ⎛ ⎞⎪ − ⎟⎪ ⎜ ⎟⎪ ⎜ − ≤ ≤ +⎟⎜⎪ ⎟⎪ ⎟⎜⎜= ⎝ ⎠⎨⎪⎪⎪ ≤ − + ≤⎪⎪⎩ ω

 
(15)

 
In this paper, we assume the following inequality with 
respect to each asset: 

( )0 0j jL hμ α∗− ≥  (16)
 
The uncertainty set ( ) (0

tU = − −Gr r r r )0  includes fuzzy 

numbers vector  and so U  is a fuzzy numbers. Therefore, 

the membership function of U  is as follows: 
0r

( ) ( ) ( ) ( ){ }0
0

0 01
sup min

j
j

t
r jU j nγ

μ ω μ γ ω
≤ ≤

= = − −Gr rγ 0γ (17)

 

Then, the uncertainty set (14) is transformed into the 
following form in the case introducing the -cut: h

( ){ }h V hΜ = μ ω ≥r  (18)
 

Furthermore, taking account of the vagueness of human 
judgment and flexibility for the execution of a plan, we give a 
fuzzy goal to the target probability as the fuzzy set 
characterized by a membership function. In this subsection, 
we consider the fuzzy goal of probability ( )G fμ  which is 

represented by,  

( ) ( )
0

0 1

1

0
  

1
FG

f f
f g f f f f

f f
μ

⎧ ≤⎪⎪⎪⎪= ≤ ≤⎨⎪⎪ ≤⎪⎪⎩

 
(19)

where ( )Fg f  is a strictly increasing continuous function. 

Then, using a concept of possibility measure, we introduce 
the degree of possibility as follows: 

( ) ( ) ( ){ }sup min ,  U GF f
G fμ μ=∏ f  (20)

 
In this possibility measure, in the case that we consider 
( )U f hμ ≥ , we obtain the following transformation: 

( )

( ) ( ) ( ){ }
( )( )

( )( ) ( )( )
( )( )( ) ( )( )( )

0
0

0 0 01

0

0 0

0 0

 sup min 1

 2

     1

 1

j
j

U

t
r jj n

t t

t

t

h

L h

L h L h

L h L h

γ

μ ω

μ γ ω α
≤ ≤

∗

∗ ∗

∗ ∗

≥

⇔ = − − ≤

⇔ − −

+ − − ≤

⇔ − − − − ≤

G

G G

G

G

r r

r r r r

r r

r r r r

γ γ

α

α α

α α

≥

(21)

where ( )L x∗  is a pseudo inverse function of . Using 

this inequality, the expression (8) is transformed into the 
following expression: 

( )L ω

( )( )( )

( )( )

1
2

1
2

0
ˆ 1

0 1

ˆinf inf

            inf

tt

M

t t

z

L h

L h z

∗

∈
≤

−∗

≤

= − +

= − +

G

G

φ α

α φ φ

r
r

r r r

r

φ
 (22)

 
Then, 1

2

1
inf t

z
z −

≤
G φ  in expression (22) is equal to that in 

expression (8), and from the optimal value of (9), this 
expression is equal to the following form: 

( )( ) 1
2

0inf
tt

M
L h −∗

∈
= − G

r
r rφ α φ− φ

h

 (23)

 
Consequently, in the case that we consider the possibility 
measure constraint , this constraint is 

transformed into the following inequality: 
( )F
G ≥∏
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( )
( ) ( ){ }

( ) ( )

{ } ( )

( )( ) ( )

( )( ) ( )

1
2

1
2

1

1
0

1
0

sup min ,  

,  

sup min ,  

,  

F

F G
f

F G

t
FM

t

F

t

F

G h

f f h

f h f h

f h f g h

L h f f g h

L h g h

μ μ

μ μ
−

∈

−∗ −

−∗ −

≥

⇔ ≥

⇔ ≥ ≥

⇔ ≥ ≥ ≥

⇔ − ≥ ≥

⇔ − ≥

∏

G

G

μ
φ

α φ− φ

α φ− φ

r

r

r

(24)

 
In a way similar to mean value r , we consider the 

uncertainty set of variance  as follows: V
{ }0,  L US= ≤ ≤V V V V V  (25)

 
In this paper, we assume this uncertainty set as the following 
form introducing a L-shape fuzzy number with respect to the 
each component of . V

( ) ( ) ( ),  

,  

ij

ij
ij ij ij ij

ijij

ij ji ij ji

L
S σ

σ ω
μ ω σ β ω σ β

β= σ
σ σ β β

⎧ ⎫⎛ ⎞⎪ ⎪−⎪ ⎪⎟⎜ ⎟⎪ ⎪⎜= − ≤ ≤ +⎟⎪ ⎪⎜⎪ ⎪⎟⎟⎜⎜=⎨ ⎬⎝ ⎠⎪ ⎪⎪ ⎪⎪ ⎪= =⎪ ⎪⎪ ⎪⎩ ⎭

V

 

(26)

 
Then, we consider the fuzzy goal of total variance G

which is

Ug
ν ν

μ ν ν ν ν ν
ν ν

⎧ ≤⎪⎪⎪⎪= ≤ ≤⎨⎪⎪ ≤⎪

 (27)

 measure, we introduce 
the d

( )μ ν  

 represented by,  

( ) ( )
1

  
0

L

V LG

U⎪⎩
where ( )Vg ν  is a strictly decreasing continuous function. 

Then, using a concept of possibility
egree of possibility as follows: 

( ) ( ) ( ){ }sup min ,  V GV
G μ ν μ ν=∏  

ν
(28)

), 

 
With respect to this poss ure, in a way similar to 
the transformation (24

ibility meas
( )V
G h≥∏  is transformed into the 

1

1

1

sup min ,  

,  

Pos max ,  

,  

V

V G

V G

t
VS

t U
Vh

G h

h

h h

h g h

g h

ν
μ ν μ ν

μ ν μ ν

ν ν

ν ν

−
∈

−

−

≥

⇔ ≥

⇔ ≥ ≥

⇔ ≥ ≥ ≤

⇔ ≤ ≤

∏

V V

V

V

φ φ

φ φ

φ φ

 
(29)

following inequality: 

( )
( ) ( ){ }

( ) ( )

{ }{ } ( )

( ) ( )

( ) ( )Vh g h⇔ ≤

where 

t U

( )hV  is assumed to be a symmetric p

matrix whose each component becomes ( )ij ijL hσ β∗+ .  

Then, we propose the fuzzy robust portfolio selection 

( ) ( )
Maximize

subject to ,  ,

                   1
V F

t

h

G h G h≥ ≥

=
∏ ∏
1 φ

 (30)

 
This problem is equivalently transformed into the following 
problem using the transformations of possibility constraints 
(24) and (29): 

( )( ) ( )

( ) ( )

1
2 1

0

1

Maximize

subject to ,

                   ,

                    1

t

F

t U
Vh

t

h

L h g h

g h

−∗ −

−

− ≥

≤

=

G

V

1

r α φ− φ

φ φ

φ

 
(31)

 
It should be noted here that problem (31) is a nonconvex 
programming problem and it is not solved by the linear 
programming techniques or convex programming techniques. 
However, since a decision variable  is fixed, this problem 
is equivalent to the problem to find the feasible solution  
involving the following set: 

h
hφ

( )( ) ( )

( ) ( )

1
2 1

0

1

,

,

1

t

F

t U
h Vh

t

L h g h

S g h

−∗ −

−

⎧ ⎫⎪ ⎪− ≥⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪∈ = ≤⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪=⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

G

V

1

α φ− φ

φ φ φ φ

φ

r
 

(32)

 
Consequently, we construct the following solution method to 
a robust portfolio selection problem including fuzzy 
numbers. 
 
Solution method 1 
STEP1: Elicit the membership function of a fuzzy goal with 

respect to the total expected return and variance. 
STEP2: Set  and solve problem (33). If feasible 

solution  exists, then terminate. In this case, 
the obtained current solution is an optimal solution of 
main problem. 

1h←
h S∈φ

STEP3: Set  and solve problem (33). If feasible 
solution  does not exist, then terminate. In 
this case, there is no feasible solution and it is 
necessary to reset a fuzzy goal with respect to the total 
expected return and variance. 

0h←
h S∈φ

STEP4: Set  and . 1hU ← 0hL ←

STEP5: Set 
2

h hU Lh +←  

STEP6: Solve problem (32). If a feasible solution exists, then 
set  and return to Step 5. If not, then set 

 and return to Step 5. 
hU ← h
hhL ←

 
It may be surely possible that we find a feasible solution of 

problem (32) for each value of parameter , but it is no easy 
to find the feasible solution because this feasible region is 
convex. Therefore, in order to find feasible solution  and 

optimal solution  more efficiently and analytically, we 
transform problem (31) into the equivalent deterministic 

h

hφ
∗φ

U

problem as the following possibility maximization model: 

ositive definite 
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problem. 

( )

( )( ) ( )1
2 1

0

Minimize

subject to ,

                    1

t U
h

t

F

t

L h g h−∗− ≥

=

V

G

1

φ φ

α φ− φ

φ

r −  (33)

 
With respect to the relation between problems (31) and (33), 
we obtain the following theorem based on the studies [17, 
18]. 
 
Theorem 1 
Let the optimal value of problem (31) be . Furthermore let 
the optimal solution of problem (33) be 

h∗

hφ  and its optimal 

value be ( )
t U

hVφ φ . Then the following relationship holds. 

( ) ( )

( ) ( )

( ) ( )

1

1

1

t U
Vh

t U
Vh

t U
Vh

h h g h

h h g h

h h g h

∗

∗

∗

> ⇔ <

= ⇔ =

< ⇔ >

V

V

V

φ φ

φ φ

φ φ

−

−

−

 (34)

 
Subsequently, as an approximate function for 

1
2 1t− −=G Gφ φ φ  , we introduce the following mean 

absolute deviation: 

( )

( )

( ) ( )

1 1

( ) ( )

1 1

         

n n
g g

j j j j
j j

T n
g g

t tj j
t j

W E r r

p r r

φ φ

φ

= =

= =

= −

= −

∑ ∑

∑ ∑

φ

j

 (35)

where  is a 

discrete distribution to random variable r  based on the 
uncertainty set (7), and 

{ } ( )( ) ( ) ( ) ( )
1 2, ,..., ,  1, 2,...,g g g g

t t t tnr r r t T= =r

( )g
jr  is the arithmetic mean. Then, 

tp  is each occurrence probability of ( )g
tr . Subsequently, in 

the case that  is a variance-covariance matrix derived 
from a normal distribution, it was shown that 

1−G

( ){ 21

2
t Wπ− =Gφ φ φ }  by the previous study [19]. 

Therefore, absolute deviation ( )W φ  is considered to be an 

approximate function. 
Using this mean absolute deviation, problem (33) is 

approximately transformed into the following problem; 

( )

( )( ) ( ){ } ( )2 1
0

Minimize

subject to ,
2

                    1

t U
h

t

F

t

L h W gπ∗ −− − ≥

=

V

1

φ φ

α φ φ

φ

r h
 (36)

i.e., 

( )

( )( ) ( ) ( )1
0

Minimize

subject to ,
2

                    1

t U
h

t

F

t

L h W gπ∗ −− − ≥

=

V

1

φ φ

α φ φ

φ

r

 
Furthermore, by introducing the parameter , problem (37) 
is equivalently transformed into the following problem; 

tξ

( )

( )( ) ( )

( )

( ) ( )

1
0

1

( ) ( )

1

( ) ( )

1

Minimize

subject to ,
2

                   0,

                  0,  1, 2,...,

                    1

t U
h

Tt

t t F
t

n
g g

t tj j j
j

n
g g

t tj j j
j

t

L h p g

r r

r r t T

π ξ

ξ φ

ξ φ

∗ −

=

=

=

− − ≥

− − ≥

− − ≥ =

=

∑

∑

∑

V

1

φ φ

α φ

φ

r h
 

(38)

 
Problem (38) is also a basic quadratic programming problem. 
Therefore, we obtain an optimal portfolio more efficiently 
than problem (31). Consequently, using a bisection algorithm 
with respect to h , we construct the following solution 
method. 
 
Solution method 2 
STEP0: Set a discrete distribution  

to random variable r  and the occurrence probability 
( )( ) ,  1,2,...,g

t t T=r

tp . 
STEP1: Elicit the membership function of a fuzzy goal with 

respect to the total expected return and variance. 
STEP2: Set  and solve problem (38). If the optimal 

value 

1h←

( ) ( )1t U
Vh g h−<Vφ φ , then terminate. In this 

case, the obtained current solution is an optimal 
solution of main problem. 

STEP3: Set  and solve problem (38). If the optimal 

value  

0h←

( ) ( )1t U
Vh g h−>Vφ φ , then terminate. In this 

case, there is no feasible solution and it is necessary to 
reset a fuzzy goal with respect to the total expected 
return and variance. 

STEP4: Set  and . 1hU ← 0hL ←

STEP5: Set 
2

h hU Lh +←  

STEP6: Solve problem (38) and calculate the optimal 
objective value ( )

t U
k hVφ φk  of problem (38). If 

( ) ( )1t U
k k Vh g h−>Vφ φ , then set  and return 

to Step 5. If 

hU ← h

( ) ( )1t U
k k Vh g h−<Vφ φ , then set 

 and return to Step 5. If hL ← h

( ) ( )1t U
k k Vh g h−=Vφ φ , then terminate the algorithm. 

In this case,  is equal to an optimal solution of 
main problem. 

( )h∗φ

 

IV. NUMERICAL EXAMPLE 
In this section, in order to illustrate the applicability of our 

proposal models, we consider a numerical example. The 
example of Table 1 shows how results are brought for solving 

h
 (37)
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the proposed approach in robust mean-variance portfolio 
selection problems. In this numerical example, we assume 
nine financial assets, and each expected return is a normal 
distribution with fuzzy numbers in the mean value. A general 
normal distribution is included in ellipsoidal sets. In this 
numerical example, all fuzzy numbers are assumed to be 
symmetric triangle fuzzy numbers ,jr α  where jr  is a 

center value and α  is a spread. 
 

TABLE 1 SAMPLE DATA OF EXPETED RETURNS AND VARIANCES 
Asset Expected return Fuzzy number SD 

R1 N(r1, 0.03) <0.07,0.02> 0.238
R2 N(r2, 0.02) <0.06,0.03> 0.125
R3 N(r3, 0.03) <0.15,0.05> 0.301
R4 N(r4, 0.05) <0.17,0.08> 0.318
R5 N(r5, 0.08) <0.20,0.06> 0.368
R6 N(r6, 0.01) <0.05,0.01> 0.209
R7 N(r7, 0.07) <0.13,0.03> 0.175
R8 N(r8, 0.02) <0.12,0.05> 0.286
R9 N(r9, 0.05) <0.12,0.02> 0.290

 
Then, we consider the following three problems; problem P1 
is a basic mean-variance model based on Markowitz model, 
problem P2 is a robust portfolio selection problem introduced 
in Section 2 not including fuzzy numbers, and problem P3 is 
our proposed model including fuzzy numbers in the robust 
portfolio problem: 
(Problem P1) 

Minimize
subject to 0.06,
                   1

t

t

t

≥
=

V

1

φ φ
φ
φ

r  

 
(Problem P2) 

1
2

0

Minimize

subject to 0.06,

                   1

t U

t

t

− ≥

=

V

G

1

φ φ

φ− φ

φ

r
 

(Problem P3) 

( )( ) ( )

( ) ( )

1
2 1

0

1

Maximize

subject to ,

                   ,

                    1

t

F

t U
Vh

t

h

L h g h

g h

−∗

−

− ≥

≤

=

G

V

1

r α φ− φ

φ φ

φ

−
 

where each fuzzy goal is as follows; 

( )

0 0
0.5 0.5 0.7

0.2
1 0.7

G

f
ff f

.5

f

μ

⎧ ≤⎪⎪⎪⎪ −⎪⎪= ≤ ≤⎨⎪⎪⎪⎪ ≤⎪⎪⎩

 

( )

1 0.
0.03 0.01 0.03

0.02
0 0.03

G

ν
νμ ν ν

ν

⎧ ≤⎪⎪⎪⎪ −⎪⎪= ≤ ≤⎨⎪⎪⎪⎪ ≤⎪⎪⎩

01

 

For solving each problem, we obtain the following optimal 
solutions in Table 2. 
 

TABLE 2 OPTIMAL SOLUTIONS TO THREE PROBLEMS 

Return
s Problem P1 Problem P2 Problem P3

R1 0.093 0.063 0.039 
R2 0.338 0.080 0.021 
R3 0.058 0.179 0.235 
R4 0.052 0.142 0.177 
R5 0.039 0.113 0.141 
R6 0.121 0.064 -0.034 
R7 0.172 0.089 0.088 
R8 0.064 0.177 0.231 
R9 0.063 0.093 0.102 

 
From Table 2, we find that our proposed model tends to be 
selected financial assets with higher return such as R3, R4 
and R5 than the other models P1 and P2. Then, with respect 
to R8 and R9 which have much similar properties, R8 with 
the higher fuzzy spread α  tends to be selected than R9 with 
the higher variance. 

V. CONCLUSION 
In this paper, we have proposed extension models of 

robust portfolio selection problems considering uncertainty 
conditions. Since these problems are not well-defined 
problems due to fuzzy numbers, we have introduced the 
chance constraints and transformed them into the 
deterministic equivalent problems. Furthermore, to solve 
them analytically, we have constructed the efficient solution 
method by using the mean-absolute deviation. Our proposed 
models include the basic robust portfolio selection problems 
and so we may apply our models to the more flexible and 
complex portfolio selection problems in real investment 
markets than the previous models. 

As the future studies, we need to consider not only 
mean-variance portfolio selection problem but also other 
portfolio selection models. Then, we are now attacking the 
cases that optimal solutions are restricted to be integers and 
multi-period portfolio selection problem. 
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