
  
Abstract— High precision multi region FDM calculations 
require the use of accurate algorithms not only for general mesh 
points of the net but also for points one unit from a metal 
surface.  This paper corrects and extends a theory previously 
presented by including the possibility of a non constant 
tangential flux near the surface.  Comparison of these results 
with the general meshpoint algorithm for the two tube lens 
shows that the two have similar precisions. 
 

Index Terms—high precision, FDM, algorithms, electrostatic 
potential. 

I. INTRODUCTION 

  The finite difference method is one of the standard methods 
[1]-[4] for solving an electrostatic boundary value problem 
having Direclet boundary conditions (potential known on a 
closed boundary).  In this method a typically square net is 
placed over the geometry and then relaxed.  The relaxation 
process consists of stepping through the points of the net and 
at each point finding its potential value using the surrounding 
meshpoints. The use of multiregions in the FDM calculations 
has allowed high precision to be obtained for the relaxation 
process.  The algorithms used in these calculations are 
typically of order 8 or larger and require the use of potentials 
from the outer ring of mesh points surrounding the central 
point when evaluating the potential at the central point.  Fig 1 
shows the 24 mesh points surrounding b0, the central point.  
In this figure the darkened points represent the meshpoints 
required for the order 10 algorithm.  
 
  For mesh points one unit from a metal surface the use of 
points in the outer ring requires determining the potential at 
points within the metal.  Although it may seem obvious that 
the potential of those points would be the potential of the 
metal itself, this replacement simply doesn’t work. This due 
is to the requirement [5] that there be a power series 
representation of the potential in the neighborhood of the 
central mesh point which in turn requires that the potential be 
analytic in a neighborhood of the central mesh point which 
contains all of the requisite meshpoints.  Since the 
neighborhood of a point one unit from a metal surface 
containing all required mesh points also contains the surface 
and at the surface the potential has a singularity in its normal 
derivative, a power series representation of the potential is 
not valid at points within the metal element. 
 
   In view of above, calculations prior to ~2007 [5], [6] 
developed algorithms for points one unit from a metal surface 
which did not require points within the metal itself.  As 
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suggested in [7], a departure from a compact set of mesh 
points can lead to a significant degradation of the algorithmic 
precision. (A compact set of meshpoints would be the set for 
which the sum of the distances of the mesh points from the 
central point is minimal)  
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Fig. 1. Seen are the 24 mesh points surrounding the central point.  For a point 
b0 one unit below a metal surface the points b13, b14, and b15 are virtual 
points(see text).  The filled circles represent the points used in the order 10 
general mesh point algorithm. 
     
  In 2007 [7] a theory was developed which reportedly 
overcame the above difficulty and allowed the potentials 
from points within the metal to be determined by a type of 
reflection of the value of the symmetric physical point. In this 
theory, the physical potential (it can be considered as the 
potential one would measure with a voltmeter) was replaced 
by a function called the analytic continuation of the physical 
potential.  This function is analytic everywhere and matches 
the physical potential on and within the geometry. The points 
of the analytic continuation function located within the metal 
elements are called virtual points. In the above reference 
algorithms for computing the values for the virtual points 
from the adjacent physical points were derived.  The theory 
was tested in two test geometries of that reference and 
showed that algorithmic precisions of points one unit below a 
metal surface were equivalent to those of general mesh points 
in the mesh (those points having the two surrounding rings 
entirely within the geometry and not within any element). 
 
  As [7] was the first work in the area of high precision 
multiregion FDM, the theory along with the high precision 
reference nets were simultaneously developed.  The test 
geometries mentioned above were used to test all of the 
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algorithms and considered to have sufficient field 
configurations for adequate testing. 
 
  In a continuation of the development of high precision 
reference nets for other geometries, a high precision net for 
the two tube geometry was developed and is shown in Fig.2. 
The algorithmic calculations for this geometry behaved in a 
manner similar to the test geometries of [7] for all algorithms 
with the exception of algorithms for points one unit from a 
metal surface. For these points there was in fact a 
considerable degradation of the algorithmic precision from 
the precisions of general mesh point algorithms.  
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Fig. 2.  The two tube lens with gap/dia of .1 is shown (not to scale) together 
the coordinate values of various lines of the geometry.  The r=19 line is one 
unit below the cylinder inner surface element and r=18 is one unit below it. 
 
 
 
   Fig.3 gives plots of  the results for the two algorithms for 
this geometry.  It is noted that points with r coordinate 19 are 
in a row one unit below the cylinder and with an r coordinate 
18 the row lies one unit below this row for which the general 
mesh point algorithm is applicable (no required point for the 
algorithm lies within the metal).  Seen in this figure is the loss 
in precision of about 3 orders of magnitude for algorithms 
one unit below the metal surface for grad6 ~10-8  as compared 
with the general mesh point algorithm for the adjacent mesh 
points in the row below.  Thus the simple theory presented in 
[7] was clearly inadequate for this problem.   
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Fig. 3.  A comparison of the simple reflection algorithm of [7] with the 
general mesh point algorithm for the two tube lens of fig.2.  Seen is that for a 
grad6 value of 10-8 the simple reflection algorithm looses about 3 orders of 
magnitude of precision. 
 
  The essential assumption of the theory developed in [7] was 
that in a small pillbox surrounding the mesh point below the 
metal surface, the  horizontal flux through the walls of the 
pillbox normal to the cylinder axis would be zero (or 
constant).  The test geometries used in [7] likely satisfied this 
criterion resulting in the equivalence of the results with the 
general mesh point algorithm.  A qualitative evaluation of the 
current high precision two tube potential data revealed that 
the horizontal flux immediately below the metal surface is 
actually not constant.  Thus the assumption of the theory 
developed in [7] is not valid for this geometry. 
 
  The present paper will extend the theory of [7] in the 
vicinity of a metal surface by appropriately treating a non 
constant horizontal flux and show that the extended theory 
results in the ability to use the general mesh point algorithm 
for mesh points one unit below a surface with similar 
accuracies as the general mesh point algorithm for 
neighboring points. 
 

II. VIRTUAL POTENTIALS FOR POINTS ONE UNIT FROM A 
METAL SURFACE 

  Since it is known that at any point strictly within the 
boundaries of the geometry the potential at that point satisfies 
Laplace’s equation and hence is an analytic function of the 
coordinates r and z.  It is noted that Laplace’s equation is not 
satisfied for points on the boundary since there is a 
discontinuity in the derivative of the radial potential at the 
boundary (strictly 0 inside the metal and nonzero outside.)  
However one can construct an analytic function over the 
space which equals the physical potential within and on the 
boundaries of the geometry.  This extended function is called 
the analytic continuation of the previous function and has 
continuous derivatives everywhere and in particular at the 
boundary.  By construction it matches the physical potential 
in the physical space within the boundaries of the geometry 
having the value of the physical potential on the boundary. 
This analytically continued function could have the same 
algorithm for points one unit from the boundary as for a 
general mesh point since all points within the two rings of fig 
1 are valid.  For the algorithm for points one unit below the 
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boundary the virtual points do not correspond to physical 
points and hence must be calculated from the physical points. 
It is the calculation of the values of the virtual points which 
will be presented below.  The order 10 general mesh point 
algorithm has been derived in [7] and uses the darkened 
points of fig.1 in its evaluation of the central potential b0. 
 
  Without loss of generality we will assume that the virtual 
point whose potential needs to be found in terms of the 
potential at the physical points is at radius a+1 from the axis 
of the cylinder and is one unit above a metal element whose  
radius is a. The point radius a-1 is within the geometry and is 
a physical point. The other situations are determined in an 
analogous manner. As the calculation is reasonably involved 
a brief sketch of the method would be perhaps useful.  
 
  The potential of the virtual point at r = a+1 will be found by 
integrating the radial electric field between the surface at r=a 
and the virtual point at a+1.  The radial electric field will be 
determined from both the radial electric field evaluated at the 
surface and a selection of potential expansion coefficients. 
The radial electric field at the surface will in turn be found in 
terms of the potential at a-1 which is a physical point, along 
with another selection of coefficients of the power series.  It 
is noted that for a constant tangential electric field, the values 
of all coefficients in the above selection are zero.  Thus a 
solution will be constructed which is a perturbation of the 
constant horizontal field solution.  This procedure has the 
advantage over simply integrating the electric field found 
from the power series expansion of the potential at a point at 
the surface in that the latter gives only an approximate 
solution in the case of a constant horizontal field whereas the 
former will give the exact solution when the horizontal field 
is constant, i.e. it will have the correct logarithmic 
dependence on a.  
 
  The radial electric field at a point (u, z) is in general defined 
by:  Er(u,z) = - ∂V(r,z)/∂r evaluated at r = u, from which the 
following is immediately obtained: 
 V(r2.z) – V(r1,z) = - ∫r2r1Er(u)du 
Letting the potential of the surface be 0, we find: 

 V(a-1,z)   =    ∫
a
a-1Eu<a

r(u,z)du ,                                    (1) 

 V(a+1,z) =   - ∫
a+1

aEu>a
r(u,z)du            (2) 

 
Er(r, z) must be determined for u<a and for u>a and needs to 
be found in terms of the radial field at the surface (Er(u=a, z)).  
This will be done by conserving fluxes through the 4 sides of 
a suitably constructed pillbox shown in fig.4. (It is noted that 
the azimuthal flux which is normal to the surface (into the 
paper in fig.4a) is constant due to the assumption of axial 
symmetry of the geometry and is not explicitly included in 
the flux conservation equations.)    
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Fig. 4.  A small pie shaped pillbox at and below the surface of radius a shows 
the fluxes into and out of the pillbox.  Seen in (b) is a view of the wedge 
along the axis along with a small ring segment used in the determination of 
the integral formulation of the fluxes F1, F2 normal to the hatched area.  
 
  The pillbox shown in fig.4 consists of a small wedge of 
length h units and having an angular spread of ∆Θ degrees. 
(Flux in the discussion we will always mean the normal flux.) 
The flux labels through the relevant surfaces are shown in 
this figure.  
 
  It is noted that in general the flux through a surface is given 
by: 
 
 F = ∫SEn(r,z)dA, where En is the electric field normal to the 
surface S. 
 
  The calculation of the radial fluxes F4 and F3 is immediate 
since the area over which the integral is evaluated is 
arbitrarily small (of the order of h*∆Θ ) and hence the normal 
field can be taken to be constant over this area.  The result is 
easily found to be: 
 
 F4-F3 = (Er(a)*a-Er(u)*u)* h*∆Θ 
 
  The calculation of F1 and F2 is more complex since as seen 
in fig.4b the area over which the fluxes must be evaluated is 
in general large since the r dimension varies from a-1 to a and 
the electric field can vary appreciably over this range of 
values. The appropriate integral equation may be developed 
by breaking the cross hatched area of fig.4b into N segments 
of width ∆sj, and length sj∆Θ, having an area of  sj∆Θ∆sj. 
Since the electric field is constant over this segment the flux 
F1 through this segment is Ez(sj,z-h/2) sj∆Θ∆sj.  The flux 
through the cross hatched area in fig.4b can then be found by 
summing all of the segment fluxes.  After turning the sum to 
an integral in the usual manner expressions for F1 and F2 can 
be found. 
 

 F1 =    ∫
a
uEz(s,z-h/2)s ds ∆Θ 

And 

 F2 =    ∫
a
uEz(s,z+h/2)s ds ∆Θ  
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Thus the difference between the fluxes is: 
 

 F2-F1 = ∫
a
u { Ez(s,z+h/2)-

 
Ez(s,z-h/2)}/h * s ds ∆Θ h 

 
which in the limit of small h can be written: 

         ∫
a
u ∂Ez(s,z)/ ∂z * s ds ∆Θ h  for u<a 

 F2-F1 =        

        ∫
u

a ∂Ez(s,z)/ ∂z * s ds ∆Θ h  for u>a 
(It is noted that in the equation (F4-F3) + (F2-F1) = 0  
both F2-F1 and F4-F3 contain the factor ∆Θ h  which is small 
and non zero and hence cancels in the conservation 
equation.) 
 
  After conserving the fluxes through the walls of the pillbox 
and a small amount of algebra it is found for both u>a and 
u<a that: 

     Er(u,z=0) = Er(a)a + ∫
a
u∂Ez(s,z)/ ∂z * s ds        (3) 

 
The integral is to be performed in the following sequence of 
operations:  first Ez is found at a point s,z . This function is 
differentiated wrt z and evaluated at z=0.  The resultant 
function is then multiplied by s and integrated over s. 
 
  The potential near the point on the surface may be expanded 
in a power series as: 
 
 V(v,z) = c0+c1z+c2v+c3z2 +c4zr+c5r2 + .. 
 
and Ez, ∂Ez(v,z)/∂z  found: 
  
 Ez = - ( c1 +2c3z+2c7zv +2c12zv^2+..) + terms in z^2 
 ∂Ez(v,z)/ ∂z = -(2c3+2c7v+2c12v^2+..) + terms in z 
 
  After evaluating the above at z=0 the surviving terms are 
those of the original potential expansion which had z^2 as a 
factor, the constant terms and those containing z disappearing 
after the two z derivatives and the terms z3 and higher in the 
original potential expression disappearing due to final 
evaluation of ∂Ez(v,z)/ ∂z at z=0. In this manner we obtain: 
 
 ∂Ez(v,z=0)/ ∂z = -(2c3+2c7v+2c12v2+..) 
 
It is noted that c3 = 0 since on the boundary the potential is 
constant implying that V(0,z) is independent of z. (Note that 
this requirement also requires other coefficients to be zero 
but these coefficients do not enter in the expression for 
∂Ez(v,z=0)/ ∂z) and hence are not considered. 
 
  Including all terms in a 12th order expansion of the potential 
(order 13 terms neglected) the following gives the complete 
set of the 10 included coefficients, { c7, c12, c18, c25, c33, c42, 
c52, c63, c75, c88}: 
 
 ∂Ez(v,z=0)/ ∂z = -(2c7v 
+2c12v2+2c18v3+2c25v4+2c33v5+2c42v6+2c52v7 
   +2c63v8+2c75v9+2c88v10)              (4) 
 

  Let us define the following symbols which will help in the 
description of our results: 
 

  Gu
a (vn) =  ∫

a
uvns ds   

 H(vj)     =  ∫
a
a-1 Gu

a (vj)/u du                (5) 

  J(vj)      =  ∫
a+1

a Gu
a (vj)/u du 

 
 
  Using equations 1,2,3,and 4 we find after performing all of 
the elementary integrations that: 
 
V(a-1) = Er(a)*a*ln(a/(a-1)) – 2c7H(v)-..-2c88H(v10) 
 
V(a+1) = Er(a)*a*ln((a+1)/a) + 2c7J(v)+..+2c88J(v10) 
 
Letting  
 
 f1 = ln(a/(a-1)) and f2 = ln((a+1)/a)   
 
we can solve for the virtual potential in terms of the potential 
at the physical point and the expansion coefficients c7, .. c88.  
The results are summarized below: 
 
 case 1:  physical pt one unit below surface, virtual pt at a+1 
 V(a+1) = -V(a-1)f2/f1+corr 
                              (6) 
 
 case 2:  physical pt one unit above surface, virtual pt at a-1 
 V(a-1) = -V(a+1) f1/f2+f1/f2corr 
where: 
 corr = 2c7( J(v)-f2/f1H(v) ) + .. + 2c88( J(vn)-f2/f1H(vn) ) 
 
Evaluation of H and J. 
 
  H and J may be directly evaluated by elementary 
integrations of the equations (5) with the result: 
 
 H(vn) =     (-1)nan+2ln( a/(a-1) )/{(n+1)(n+2)} 
    +  (-1)n+1( an+1 + an/2 + .. + a/(n+1) ) /{(n+1)(n+2)} 
   +  (-1)n /(n+2)2 
 
 J(vn) =     (-1)nan+2ln( (a+1)/a )/{(n+1)(n+2)} 
    +  (-1)n+1( an+1 - an/2 + ..alternating signs +- a/(n+1) ) 
    /{(n+1)(n+2)}   -   (-1)n /(n+2)2 

  
  It is noted that there is an apparent an divergence in both H 
and J.  Since in multiregion FDM “a” can reach values of 240 
~ 1012 the effect of this divergence in the above equations is 
immediate, obvious and limiting.  It was thought that since 
the ln function has known expansions, a large “a” expansion 
of the above equations might remove the terms an and this is 
in fact what happened.  Upon expanding the ln functions in 
the above equations and combining similar powers of “a”  all 
terms of an for n>0 exactly cancel, and  a series in 1/a results.  
The large “a” approximations are: 
 
 H(vn)  =  (-1)n  / {(n+1)(n+2)}* {1 + 1/( (n+3)a ) + 1/( (n+4)a2 ) + ..                 
               + 1/( (n+j)an+j-6 )} 
                      (7) 
 
 J(vn)  =  1/{(n+1)(n+2)}* {1 - 1/( (n+3)a ) + 1/( (n+4)a2 )+ .. 
        alternating signs +.. + 1/( (n+j)an+j-6 )} 
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  Thus corr can be determined and the virtual potentials can 
be found in terms of the respective physical potentials. 

III. CALCULATING VIRTUAL POTENTIALS FOR POINTS ONE 
UNIT RIGHT OR LEFT OF A METAL SURFACE 

  In this case the vertical surface at z may be either to the left 
or right of the virtual point.  In either case the virtual potential 
can be found following procedures sketched in the above 
section.  The result is in fact much simpler than that obtained 
for the horizontal surface and is given below for both cases. 
 
 V(z0+1) +V(z0-1) =  corr              (8) 
 corr = 4c12/(3*4) + 4c23/(5*6) +4c38/(7*8) +4c57/(9*10)  + 4c80/(11*12) 
 
  For corr = 0, one has the simple reflection with sign reversal 
of the physical potential to virtual potential. 
  It is noted that as mentioned in the introduction for a 
constant field parallel to the metal surface all of the 
coefficients in the selection are zero and the results of [7] are 
obtained as required. 

IV. COEFFICIENT EVALUATION 
  Without loss of generality we restrict our example to the 
situation were the physical boundary is one unit above the 
physical point and the virtual point is one unit above the 
boundary.  As mentioned previously the order 10 algorithm 
uses the darkened points of figure 1 in which the surface 
boundary passes through b11,b2,b3,b4,b17, and points 
b13,b14,and b15 are the virtual points which must be 
determined. The precision of the potential for these points 
clearly depends on the precision of the evaluation of the 
coefficients c7,..,c88,  It should be emphasized that the 
coefficients are those of the power series expansion around a 
point on the surface itself. The coefficients can be found in an 
identical manner to the way that the central potential was 
found which was discussed in [7].   
 
  Only the physical points should be used in the coefficient 
evaluation.  If the coefficient cj would be found by the 
expansion about a point on the surface then only points in and 
below the surface could be used.  This would be a significant 
departure from the closest set of mesh points which as 
discussed in [7] has the highest precision and would result in 
large errors in the determination of cj’s.  In view of this 
remark, it was decided to find the coefficients around a point 
immediately below the surface and then translate these 
coefficients into the coefficients at the surface.  In this 
manner a set of mesh points nearer to the “closest set” can be 
used in the evaluation of the cj’s.  To compensate for the 
precision degradation resulting from the departure from the 
closest set, order 12 algorithms were used in the coefficient 
determination. The transformation of coefficients one unit 
below the surface into the set of coefficients at the surface is 
straightforward and briefly described below. 
  Let V(r,z) be the potential with origin one unit below the 
surface and W(r,z) be the potential with origin at the surface. 
Then for any r and z W(r-1,z) = V(r,z). 
 
  Writing the potential expansion of W and V in terms of cj 
and dj respectively 
 

W(r,z)  =  c0 + c1z +  c2r + c3z2 + c4zr + c5r2 +..  
V(r,z) =    d0 + d1z + d2r  +d3z2 + d4zr + d5r2+.. 
  Note:  the d’s are determined from algorithms and the c’s 
inferred from them. 
  Equating W(r-1,z) with V(r,z) and setting the coefficients of 
rjzk  to zero in the resultant equation the following equations 
are found relating the set of c’s to the set of d's and are 
enumerated for the coefficients {c3, .. , c88}. 
 
c3  = d3+d7   +d12     +d18    +d25      +d33      +d42    +d52         +d63        +d75       +d88 
c7  =       d7+2d12+ 3d18+ 4d25   +5d33   +6d42  +7d52      +8d63     +9d75   + 10d88 
c12 =              d12 +3d18+ 6d25+10d33+15d42+21d52   +28d63  +36d75    +45d88 
c18 =             d18+ 4d25+10d33+20d42+35d52   +56d63   +84d75+120d88 
c25 =                  d25   +5d33+15d42+35d52   +70d63+126d75+210d88 
c33 =                 d33    +6d42+21d52   +56d63+126d75+252d88 
c42 =                d42    +7d52   +28d63   +84d75+210d88 
c52 =                   d52      + 8d63   +36d75 +120d88   
c63 =                        d63     +9d75     +45d88   
c75 =                            d75      +10d88   
c88 =                           d88 
 
It is interesting to note that the coefficients of dj‘s in the 
vertical columns are in fact binomial expansion coefficients. 
 
  As a numerical example, using the data set of the two tube 
lens shown in fig.2, the coefficients cj for a point on the 
cylinder at r=20,z=120 are listed below:  
 c3       6.4995152835614e-017 
 c7   -3.0129418017510e-005 
 c12  7.5323539627044e-007 
 c18  5.0879925211473e-008 
 c25 -9.5833188927774e-010 
 c33 -3.9421070631936e-011 
 c42  5.6850525669851e-013 
 c52 -8.6372591936586e-015 
 c63 -1.0429530261237e-014 
 c75 -1.5166017528942e-015 
 c88 -9.7442400560016e-017 
 
  Several features are apparent from this listing.  The first is 
that c3 itself is very close to 0 as would be required for a point 
on the metal surface and is remarkable as the surface was not 
assumed to be an equipotential. This provides an additional 
validity check on both the transformation equations and the 
coefficient evaluations d3... d88. It should be noted that 
coefficients other than c3 need not be zero on the boundary 
since on the boundary the complete term containing these 
coefficients vanishes since they have rj  as a factor.  The 
second feature is that the coefficients c7 through c63 are 
reasonably large wrt the overall calculational precision 
(10-16) and since the order of magnitude of the correction 
term is of the order of these coefficients neglecting them can 
and evidently does result in the large precisional errors as 
seen in fig.3. 
 

V. TEST OF ALGORITHM FOR ONE UNIT BELOW ELEMENT 
  The algorithm for a mesh point one unit below an element 
has been tested using the two tube lens net of fig.2 
(gap/diameter = .1) as well as the zero gap lens for which 
there is an exact solution[8].  As mentioned above, points 
with r=19 are one unit below an element and require the 
determination of the virtual points b13,b14, and b15, while 
points with r=18 are two units below an element and all of its 
required points are physical points.  In fig.5 the algorithmic 
errors for points with r=19 and r=18 for z on the half line z=0 
to 160 are plotted vs the grad6 function.  It may be 
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worthwhile to emphasize that both points use the identical 
order 10 general mesh point algorithm, the difference being 
the virtual point determination for the r=19 line.  Seen is that 
the error for the algorithm using the calculated virtual points 
is very similar to that of the general mesh point algorithm and 
offers 3 orders of magnitude improvement in the precision 
over the simple reflection code of [7]. 
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Fig 5.  The errors for the various algorithms are compared showing the 
remarkable similarity in precisions of the general mesh point algorithm and 
the “new code” algorithm one unit below element described above.  
 
It is noted that similar results to those of fig.5 were obtained 
using the Grivet net [8] mentioned above the exception that 
“new code” error line continued to ~10-18 rather than 
saturating at 10-16 seen the above figure for grad6 values less 
than 10-8, the improvement being due the extended precision 
of the exact calculation over the data from the relaxed net. 

VI. CONCLUSION 
  Using the above theory, the precision of the algorithm for 
points one unit below an element is similar to the precision of 
the general mesh point algorithm. Hence these points may no 
longer be a significant source of contributing error to the 
relaxation process. In addition the rather remarkable 
agreement seen in the above graph is actually a confirmation 
of the validity of virtual potential method itself initially 
proposed in [7]. Although in [7] the importance of the non 
constant horizontal flux was not appreciated, this paper has 
provided the necessary framework (analytic continuation and 
virtual potential determination) for the correct solution to the 
problem. 
 

VII. NOTES OF CAUTION 
1. The theory presented above is for points one unit from a 
vertical or horizontal element.  Every part of the calculation 
has been checked at least once.  However the only 
comparison with lens data is for the algorithm one unit below 
an element presented in this work.  The other cases are 
expected have similar comparisons when the appropriate 
reference nets are constructed.  
 
2.  For every virtual point, ten 12th order coefficients must be 
evaluated {c7 .. c88}.  Since for every calculation of the 
algorithm for points one unit below an element, 3 virtual 

points must be individually calculated 30 algorithm 
calculations are made per point.  This multiplication of 
computations considerably influences the time involved in 
the relaxation process.  However it is noted that the influence 
of the potential of the virtual points on calculating the central 
potential, b0, is only ~ 1/500. Thus the virtual points need not 
be evaluated on every relaxation pass. Only a slight influence 
on the total relax time has in fact been found using a 10% 
update frequency of the virtual potential values with no 
change in the relaxation data. 
 
3.  If the values of the virtual points are updated on every pass 
through the net, the relaxation process is itself unstable.  
Stability is brought back to the process if the new values for 
the virtual points are incremented by only a fraction of the 
change in value which has been found to be equivalent to a 
small update frequency as discussed above.   
 
4.  The present theory is not useful to single region FDM 
calculations since no gain in the after relax precisions are 
obtained by using algorithms much larger than 2 – 4 and 
these do not require points in the second ring of fig. 1. 
 
Newark, Vermont, july 21 2008 
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