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Abstract—We provide here a complete integrability
of the system of six coupled ODEs arising as reduc-
tions of the stratified Boussinesq equations by using
WTC analysis. In this paper we have shown that
among the several possible cases of dominant balance
the system holds a strong Painlevé property in a sin-
gle case. The system admits the singular solution in a
complex domain with movable pole type singularity.
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1 Introduction:

In fluid dynamics, the flow of fluid in the atmosphere
and in the ocean is governed by the Boussinesq equa-
tions. The authors Majda and Shefter [8] have analyzed
certain ODE reductions of the Boussinesq equations in
their study of onset of instabilities in the stratified fluids
at large Richardson number. The Boussinesq approxima-
tion in the literature is also referred to as the Oberbeck-
Boussinesq approximation for which, one may consent an
interesting article of Rajagopal et al [11] provided the rig-
orous mathematical justification as perturbances of the
Navier-Stokes equations.

In the two papers [5] and [6] S. Kovalevsky has demon-
strated the complete integrability of the system of ODEs
governing the motion of a spinning top moving under the
influence of gravity by seeking analytic solutions whose
singularities are movable poles. This was done through
substituting a Frobenius series into the system ODEs of
spinning top. In the general case, the problem reduces
to the integration of the system of differential equations
akin to the equations of a spinning top; indeed our sys-
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tem shares many features in common with the latter.
Hence, we test our system for complete integrability us-
ing Painlevé algorithm. Paul Painlevé [9, 10] classified
algebraic differential equations of the first and second or-
der whose solutions in the complex domain are devoid of
movable essential singularities or movable branch points.
ODEs possessing this property are said to be Painlevé
type. Painlevé test in a view of partial differential equa-
tions is generally known as WTC (Weiss-Tabor-Carnevale
[16]) test which is further modified by S. Kichenassamy
and Gopala Srinivasan [4].

In this paper we test the complete integrability of the
system of stratified Boussinesq equations in the light of
the ARS conjecture. In short, we discuss the algorithm
to Painlevé test in the following section and consequently
we employ it to our system in section-4 given below.

2 The Painlevé-WTC algorithm:

For the nth order ODEs, the details of the algorithm are
described by Ablowitz et al [1]. The analysis seeks a
meromorphic series solution to a system of ODEs blow-
ing up at a prescribed time t0 admitting n− 1 arbitrary
constants in the solution where n is the number of de-
grees of freedom of a system of first order ODEs. After
substituting the Ansatz

Xj(t) = (t− t0)ρj

∞∑
n=0

Xjn(t− t0)n, j = 1, 2, . . . , n, (1)

into a system of ODEs, where X(t) denotes a vector
whose components are the unknown functions, one deter-
mines simultaneously the singular exponents ρj (at least
one of which is negative) and the leading coefficient X0

through a leading order balance and the successive coef-
ficients Xjn (n ≥ 1) through a recurrence relation of the
form

M(n)Xjn = Fn[X0, X1, . . . , Xn−1]. (2)
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When the matrix M(n) fails to be invertible at a positive
integer n, equation (2) imposes a compatibility condition
on the previously determined coefficients X0, . . . , Xn−1

which fails in general. It is remarkable that for a large
class of integrable systems the compatibility condition
holds and the coefficient Xn remains arbitrary in the se-
ries expansion of the solution. The roots of det(M(n)) =
0 are called resonances and we say that the system passes
the Painlevé-WTC test when there are n− 1 positive in-
teger resonances and the compatibility conditions hold at
all resonant levels. The convergence of the series (1) fol-
lows from a general result of Kichenassamy and Littman
[2, 3].

We now turn to some of the finer details of the method.
There are three principle steps in the algorithm:

1. determining the dominant behavior,

2. determining the resonances and

3. examining the compatibility conditions at the reso-
nances.

It is obvious that the algorithm can stop at the first,
second or third step. Consider the autonomous system of
first order

ẋ = f(x), (3)

where the function f is a polynomial in x (the procedure
is applicable in a far more general situation (2) but we
do not need such a generality here). In the first step we
substitute the leading monomial

xi ∝ ai0(t− t0)mi , i = 1, 2, 3, . . . , n (4)

into the system (3). In equation (4) t0 is the arbitrary
position of the singularity which can be assumed to be
the origin by performing a time translation τ = (t− t0).
On simplifying we get the equations

miai0τ
mi−1 = fi(a10τ

m1 , . . . , an0τ
mn),

i = 1, 2, . . . , n.
(5)

We solve these equations for mi’s and ai0’s which will
balance the leading order terms. It may happen that
more than one set of the exponents mi (i = 1, 2, . . . , n)
admits of dominant balance. If the only possible mi’s are
non-integers, then the algorithm stops. The expansion
coefficients ai0(i = 1, 2, . . . , n) satisfy m relations with
m ≤ n.

In the second step we determine the resonances as follows:
Definition 1: Let (m1, . . . ,mn, a10, . . . , an0) be a given

vector from the first step. We consider the simplified
system that retains only the leading terms. Inserting

xi(t) = ai0τ
mi +

∞∑
j=1

aijτ
mi+j (6)

into the simplified equation yields, for j ≥ 1, a =
(a1j , . . . , anj),

M(j)a = c,

where M is an n × n matrix whose elements depend on
j and c = (c1, . . . , cn) is a vector whose components are
expressions in terms of the previously determined coeffi-
cients aij . The nonnegative roots of det M are called as
the resonances.

For autonomous systems; (−1) always happens to be a
resonance when the singular exponent is a negative inte-
ger. This is due to arbitrariness of t0. Kichenassamy and
Srinivasan [4] have established this result and have also
provided necessary and sufficient conditions for (−1) to
be a resonance in case of non autonomous equations. In
his thesis, Srinivasan [13] has given a rigorous argument
bringing out the connection between the resonance (−1)
and arbitrariness of t0. Unless all the resonances are inte-
gers, equation (3) does not pass the Painlevé test and the
algorithm stops. While non-integer rational resonances
are allowed within the weak extension of the Painlevé
test (see Ramani et al [12]), irrational or complex res-
onances lead to infinite branching, and the system (3)
cannot possess the Painlevé property. In the case of ra-
tional exponents and resonances, one may introduce an
uniform variable and seek Puisseux expansions. A case
in point is the Harry-Dym equation

ut = u3uxxx

which has leading order 2/3 and resonances −1, 2/3 and
4/3. The equation admits a Puisseux series solution

u(x, t) = x2/3
∞∑

m=0

um(t)xm/3.

In the recent paper of Srinivasan and Sharma [14] such
Puisseux expansions are employed in connection with
problems of imploding shells. The expansions provide
precise information regarding the profile of the solution
in a neighborhood of the time of implosion.

In the third step we determine whether the Ansatz (1)
admits arbitrary coefficients at the resonant levels. We
substitute the Laurent expansion into equation (3) and
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study the resulting system of linear algebraic equations
arising at the resonant levels, namely

M(j)


a1j

a2j

...
anj

 =


c1

c2

...
cn

 , (7)

where M is the matrix determined by Definition 1. The
property of the solution to the system of linear equations
(7) is responsible for the existence of an arbitrary ex-
pansion coefficient. If there is no solution to equation (7)
then we go for the weak extension of Painlevé test namely
logarithmic psi series.

If the resonance has multiplicity k (1 < k ≤ n− 1), then
rank of matrix M is n − k implying thereby that n − k
number of expansion coefficients are arbitrary.

3 The ODE Reductions of Stratified
Boussinesq Equations:

In certain ranges of scales in the atmosphere and in the
ocean where the flow velocities are too slow to account
for compressible effects, the fluid dynamics is governed
by the following Boussinesq equations that involve the
interaction of gravity with density stratification about a
reference state.

Dv
Dt

= −∇p +
gρ̃

ρb
ê3, Div v = 0,

Dρ̃

Dt
= 0, (8)

Following Majda [7], we look for special solutions of (8)
in the following form which are linear functions of x with
coefficients that are functions of time alone, and exam-
ine their local structure and then build a larger class of
solutions that reflect the local analysis.

v(x, t) = D(t)x + 1
2w(t)× x,

ρ̃(x, t) = ρb + b(t) · x,

p(x, t) = 1
2 < P̂ (t) x, x >,

(9)

where v denotes the velocity field, ρ̃ the density, p the
kinetic pressure that is p = p̃/ρb, g the acceleration due
to gravity that points in −ê3 direction, D(t) the strain
field, an arbitrary traceless symmetric matrix to be cho-
sen, w = curl v, the vorticity vector and P̂ (t) the sym-
metric matrix given by

−P̂ (t) = Ḋ +D2 + Ω2 +
g

2ρb

{
e3bT + beT

3

}
,

with Ω being the matrix of the linear transformation x 7→
1
2w × x relative to the standard basis and superscript T

the transposition. Note that the density stratification
about a constant state ρb is taken to be of the form b ·x.
On substituting the Ansatz (9) in (8) one finds that the
vectors w(t) and b(t) evolve according to the system of
ODEs:

ẇ(t) = D(t)w(t) + g
ρb

e3 × b(t),
ḃ(t) = −D(t)b(t) + 1

2w(t)× b(t).
(10)

Thus, in the absence of an external strain field the sys-
tem (10) reduces to the following system of six coupled
autonomous ODEs:

ẇ =
g

ρb
e3 × b, ḃ =

1
2
w × b. (11)

In there paper Srinivasan, Sharma and Desale [15] has
shown that the system of equations (11) is completely
integrable. In the following section we look the system
(11) for singular analysis in the light of ARS conjecture.

4 Singular solution of the system of
ODEs:

We have a system of six coupled ODEs (11). Now we
assume that w = (w1,w2,w3) and b = (b1,b2,b3) with
this assumption equations (11) can be written component
wise as:

ẇ1 = − g

ρb
b2, ẇ2 =

g

ρb
b1, ẇ3 = 0

ḃ1 =
1
2
(w2b3 − w3b2), ḃ2 =

1
2
(w3b1 − w1b3),

ḃ3 =
1
2
(w1b2 − w2b1).

(12)

Since, ẇ3 = 0 we get w3 = constant = w30 (arbitrary
constant) say and effectively we have a system of five
ODEs.

ẇ1 = − g

ρb
b2, ẇ2 =

g

ρb
b1,

ḃ1 =
1
2
(w2b3 − w30b2), ḃ2 =

1
2
(w30b1 − w1b3),

ḃ3 =
1
2
(w1b2 − w2b1).

(13)

We seek solutions to the system (13) in the following
form:

w1(t) =
∞∑

j=0

w1jτ
m1+j , w2(t) =

∞∑
j=0

w2jτ
m2+j ,

b1(t) =
∞∑

j=0

b1jτ
n1+j , b2(t) =

∞∑
j=0

b2jτ
n2+j ,

b3(t) =
∞∑

j=0

b3jτ
n3+j ,

(14)
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where τ = t − t0 and t0 is the arbitrary position of sin-
gularity in complex domain. Among the several possible
cases for dominant balance, the system of ODEs (11) ad-
mits the singular solution in the following case of principle
dominant balance.

ẇ1 = − g

ρb
b2, ẇ2 =

g

ρb
b1,

ḃ1 =
1
2
w2b3, ḃ2 = −1

2
w1b3,

ḃ3 =
1
2
(w1b2 − w2b1).

(15)

4.1 Determination of leading orders:

To determine the leading orders m1, m2, n1, n2 and n3

appearing in the expansion (14), it is sufficient to consider
the truncated expansion up to the leading order. Substi-
tuting this truncated version of expansions (14) into (15)
we obtain

m1w10τ
m1−1 = − g

ρb
b20τ

n2 ,

m2w20τ
m2−1 =

g

ρb
b10τ

n1 ,

n1b10τ
n1−1 =

1
2
w20b30τ

m2+n3 ,

n2b20τ
n2−1 = −1

2
w10b30τ

m1+n2 ,

n3b30τ
n3−1 =

1
2

(
w10b20τ

m1+n2 − w20b10τ
m2+n1

)
.

(16)
Equating the like powers of τ on both sides of above equa-
tions we obtain the linear equations

m1 − 1 = n2, m2 − 1 = n1,
n1 − 1 = m2 + n3, n2 − 1 = m1 + n3,
n3 − 1 = m1 + n2, n3 − 1 = m2 + n1.

(17)

From equations (17) the exponents are uniquely deter-
mined as

m1 = m2 = −1, n1 = n2 = n3 = −2. (18)

Substituting the values of exponents from equations (18)
into equations (16) and equating the likes powers of τ ,
we obtain the relations for coefficients in leading order,
which are as follows

w10 =
g

ρb
b20, w20 = − g

ρb
b10, b10 = −1

4
w20b30,

b20 =
1
4
w10b30, b30 = −1

4

(
w10b20 − w20b10

)
.

(19)

By solving equations (19), we find two possible branches
of leading orders

w10 = ±
√
−16− w2

20,

w20 = arbitrary constant

b10 = −ρb

g
w20, b20 = ±ρb

g

√
−16− w2

20,

b30 =
4ρb

g
.

(20)

Here we have two possible branches of leading orders
hence we will get two different singular solutions in com-
plex domain. Our next step is to determine the reso-
nances.

4.2 Determination of resonances:

To determine the resonances first we rewrite the equa-
tions (14) by using the exponents given in equations (18)

w1(t) = w10τ
−1 +

∞∑
j=1

w1jτ
j−1,

w2(t) = w20τ
−1 +

∞∑
j=1

w2jτ
j−1,

b1(t) = b10τ
−2 +

∞∑
j=1

b1jτ
j−2,

b2(t) = b20τ
−2 +

∞∑
j=1

b2jτ
j−2,

b3(t) = b30τ
−2 +

∞∑
j=1

b3jτ
j−2.

(21)

Substituting the above equations into the system of ODEs
(13) we get after some algebraic calculations the following
recursion relations for the coefficients which are valid for
j ≥ 2.

M(j)


w1j

w2j

b1j

b2j

b3j

 =


0
0

1
2Aj

1
2Bj

1
2Cj

 , (22)

where

Aj = −w30b2(j−1) +
j−1∑
k=1

w2kb3(j−k),

Bj = w30b1(j−1) −
j−1∑
k=1

w1kb3(j−k),

Cj =
j−1∑
k=1

w1kb2(j−k) −
j−1∑
k=1

w2kb1(j−k),

(23)
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and matrix M(j) is

M(j) =


j − 1 0 0 g

ρb
0

0 j − 1 − g
ρb

0 0

0 − b30
2 j − 2 0 −w20

2
b30
2 0 0 j − 2 w10

2

− b20
2

b10
2

w20
2 −w10

2 j − 2

 . (24)

The above recursion relations (22) determine the un-
known expansion coefficients uniquely unless the deter-
minant of matrix M(j) is zero. Those values of j at
which the determinant det (M(j)) vanishes are called
resonances. Here we see that for both possible branches
of leading orders given in equations (20) the determinant
of matrix M(j) is

det (M(j)) = (j + 1)j(j − 2)(j − 3)(j − 4). (25)

Hence, the resonances are

j = −1, 0, 2, 3, 4. (26)

Here j = −1 is a usual resonance and j = 0 is correspond-
ing to the arbitrariness of w20 in leading order behavior.

For the next step in the algorithm we check the com-
patibility conditions at nonnegative resonances given in
equation (26).

4.3 Compatibility conditions:

At the positive resonances (26), the recursion relations
(22) remain valid if and only if the RHS of (22) lies in
the range of M(j). This means that the vector appear-
ing on the right hand side of (22) must be annihilated
by every left null vector of M(j) (when j is a resonance)
resulting in a set of compatibility conditions to be sat-
isfied by the previously determined coefficients. When
these conditions hold, the j-th coefficient vector enters
as an arbitrary coefficient vector in the expansion (21).
On the other hand if the compatibility condition fails at
a resonant level, logarithms need to be introduced in the
expansion (see [2, 3] for details). We investigate this in
each of the two possible branches given by the leading or-
der analysis and we determine the expansion coefficients
in each case up to the last resonant level.

• Case 1: Consider the leading order coefficients

w10 =
√
−16− k2

1,

w20 = k1 (arbitrary constant),

b10 = −ρb

g
k1,

b20 =
ρb

g

√
−16− k2

1,

b30 =
4ρb

g
.

(27)

• Compatibility condition at j = 1. Since the recur-
sion relations (22) come into force when j ≥ 2, we di-
rectly substitute equations (27), (21) into the equations
(13) and equate the like powers of τ on both sides of
the resulting expansion thereby obtaining the following
system of linear equations for w11, w21, b11, b21 and b31.

M(1)


w11

w21

b11

b21

b31

 =



0
0

−w30ρb

√
−16−k2

1
2g

−k1ρbw30
2g

0


, (28)

where M(1) is a matrix obtained by substituting (27) and
j = 1 into the equation (24). The system of linear equa-
tions (28) has a unique solution, hence w11, w21, b11, b21

and b31 are uniquely determined to be

w11 = −w30k1
4 , w21 = w30

√
−16−k2

1
4 ,

b11 = b21 = b31 = 0
(29)

• Compatibility condition at the resonance j = 2.
Now substituting (29) and (27) into the recursion rela-
tions (22) for j = 2, we get the following set of linear
equations

M(2)


w12

w22

b12

b22

b32

 =


0
0
0
0
0

 . (30)

In the above homogeneous system of linear equations the
rank of coefficient matrix M(2) is 4 and, hence one of
the variable is independent. Let b32 be independent and
assign the arbitrary value b32 = k2 so that solutions of
system of equations (30) are given in terms of b32, which
are as follows.

w12 = −gk2

√
−16− k2

1

4ρb
, w22 = −gk1k2

4ρb
,

b12 = −k1k2

4
, b22 =

k2

√
−16− k2

1

4
,

b32 = k2.

(31)
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• Compatibility condition at the resonance j = 3.
To determine the arbitrary constant which will be in-
volved with the resonance j = 3, we use equations (31),
(29) and (27) into the recursion relations obtained from
equations (22) corresponding to j = 3; we get the follow-
ing matrix form of linear equations

M(3)


w13

w23

b13

b23

b33

 =


0
0
0
0
0

 . (32)

The above homogeneous system of linear equations (32)
has infinitely many solutions with one independent vari-
able. By using row reduced echelon form we found the
variable b23 to be independent. Now assign the arbitrary
value to b23 that is to say b23 = k3, the solutions of above
system of linear equations (32) are given below.

w13 = −gk3

2ρb
, w23 =

gk3

√
−16− k2

1

2k1ρb
,

b13 =
k3

√
−16− k2

1

k1
, b23 = k3, b33 = 0 .

(33)

• Compatibility condition at the resonance j = 4.
To determine the arbitrary constant which is involved
with the resonance j = 4, we substitute the equations
(33), (31), (29) and (27) into the recursion relations given
by equations (22) for j = 4. We obtain the system of non
homogeneous linear equations, which is given below.

M(4)


w14

w24

b14

b24

b34

 =


0
0

1
2A4

1
2B4

1
2C4

 , (34)

where

A4 = −k3w30 −
gk1k

2
2

4ρb
,

B4 =
gk2

2

√
−16− k2

1

4ρb

+
k3w30

√
−16− k2

1

k1
,

C4 = −gk2
1k

2
2

16ρb
+

gk2
2(16 + k2

1)
16ρb

− k1k3w30

4
+

k3w30(16 + k2
1)

4k1
.

(35)

We see that system of equations (34) is consistent and has
infinitely many solutions with one independent variable.

By row reduced echelon form we see that b24 is a free
variable. Let b24 = k4 be an arbitrary constant so that
solutions of equations (34) are given by:

w14 = −gk4

3ρb
, w24 = − gk1k4

3ρb

√
−16− k2

1

,

b14 = − k1k4√
−16− k2

1

, b24 = k4,

b34 = − 8k4

3
√
−16− k2

1

+
gk1k

2
2 + 4ρbk3w30

4ρbk1
.

(36)

• Compatibility condition for j ≥ 5. We see from
equation (25) that the determinant of matrix M(j) is non
zero for j ≥ 5; hence the equations (22) have a unique
solution. To determine the expansion coefficients wij and
bij where i = 1, 2, 3 and j ≥ 5, we substitute (27), (29),
(31), (34) and (36) into the recursion relations (22) and
determine all the expansion coefficients uniquely.

In the present case of leading orders given in equations
(27), we substitute (27), (29), (31), (33) and (36) into the
equations (21), we get the general solution to the system
of equation (11) in terms of Laurent series given below

w1(t) =
√
−16− k2

1 τ−1 − w30k1

4

− gk2

√
−16− k2

1

4ρb
τ − gk3

2ρb
τ2

− gk4

3ρb
τ3 +

∞∑
j=5

w1jτ
j−1,

w2(t) = k1τ
−1 +

w30

√
−16− k2

1

4

− gk1k2

4ρb
τ +

gk3

√
−16− k2

1

2k1ρb
τ2

− gk1k4

3ρb

√
−16− k2

1

τ3 +
∞∑

j=5

w2jτ
j−1,

w3(t) = w30,

(37a)
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b1(t) = −k1ρb

g
τ−2 − k1k2

4

+
k3

√
−16− k2

1

k1
τ − k1k4√

−16− k2
1

τ2

+
∞∑

j=5

b1jτ
j−2,

b2(t) =
ρb

√
−16− k2

1

g
τ−2 +

k2

√
−16− k2

1

4

+ k3τ + k4τ
2 +

∞∑
j=5

b2jτ
j−2,

b3(t) =
4ρb

g
τ−2 + k2

+
( −8k4

3
√
−16− k2

1

+
gk1k

2
2 + 4w30k3ρb

4k1ρb

)
τ2

+
∞∑

j=5

b3jτ
j−2,

(37b)

where wij , bij (for i = 1, 2, 3 and j ≥ 5) are uniquely
determined by the recursion relations (22) and (23).

The Laurent series in (37a, 37b) contains the six arbi-
trary constant k1, k2, k3, k4, w30, arbitrary position of
singularity t0 and satisfying the system of ODEs (11).
Thus, in the present case of leading orders the system of
reduced ODEs of Stratified Boussinesq equations passes
the Painlevé test and has a movable pole type singularity.

• Case 2: Consider the leading order coefficients

w10 = −
√
−16− k2

1, w20 = k1 (arbitrary constant)

b10 = −ρb

g
k1, b20 = −ρb

g

√
−16− k2

1, b30 =
4ρb

g
.

(38)
Using the same approach as in the previous case we have
determined the expansion coefficients of (21) for j = 1,
j = 2, j = 3 and j = 4. Plugging these coefficient into
the recursion relations (22) and (23), we can uniquely
determine the expansion coefficients wij and bij for j ≥ 5.
Hence, in this case of leading order coefficients the system
of ODEs (11) also passes the Painlevé test and general

solution is given below.

w1(t) = −
√
−16− k2

1 τ−1 − w30k1

4

+
gk2

√
−16− k2

1

4ρb
τ − gk3

2ρb
τ2

− gk4

3ρb
τ3 +

∞∑
j=5

w1jτ
j−1,

w2(t) = k1τ
−1 − w30

√
−16− k2

1

4

− gk1k2

4ρb
τ − gk3

√
−16− k2

1

2k1ρb
τ2

+
gk1k4

3ρb

√
−16− k2

1

τ3 +
∞∑

j=5

w2jτ
j−1,

w3(t) = w30,

b1(t) = −k1ρb

g
τ−2 − k1k2

4
− k3

√
−16− k2

1

k1
τ

+
k1k4√
−16− k2

1

τ2 +
∞∑

j=5

b1jτ
j−2,

b2(t) = −ρb

√
−16− k2

1

g
τ−2 − k2

√
−16− k2

1

4

+ k3τ + k4τ
2 +

∞∑
j=5

b2jτ
j−2,

b3(t) =
4ρb

g
τ−2 + k2

+
( 8k4

3
√
−16− k2

1

+
gk1k

2
2 + 4w30k3ρb

4k1ρb

)
τ2

+
∞∑

j=5

b3jτ
j−2.

(39)

5 Conclusion:

Now we conclude that among the several possible cases
of principle dominant balance the system of ODE re-
duction of stratified Boussinesq equations (11) is com-
pletely integrable (in the light of ARS conjecture) in the
cases of principle dominant balance (15). In both possi-
ble branches of leading orders the system of ODEs (11)
passes the strong Painlevé test and general solutions are
given by equations (37a, 37b), (39). From equations (37a,
37b), (39) we see that solutions of the system of ODEs
(11) are singular in a complex domain and it has a mov-
able pole type singularity at t = t0.
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