
 
 

 

  

Abstract—An epicycloid or hypocycloid mechanism is 
capable of drawing an exact epicycloid or hypocycloid curve. 
Similar mechanism designs can be found abundantly in 
industrial machines or educational equipments. Currently, the 
major type of epicycloid or hypocycloid configurations is 
planetary gear trains, which contain a binary link that has one 
fixed and one moving pivot, and a singular link adjacent to the 
moving pivot. The main feature of the configurations is that a 
point on the singular link may describe an epicycloid or 
hypocycloid curve when the binary link is rotated. The main 
aim of this paper is to develop a new design method in designing 
new configurations of planetary epicycloid (hypocycloid) 
mechanisms. This paper analyses the characteristics of the 
topological structures of existing planetary gear train type 
epicycloid (hypocycloid) mechanisms. The motion equations 
and kinematical model of the mechanism were derived and 
appropriate design constraints and criteria were implemented. 
Finally, using the design constraints and criteria, this work 
designs new epicycloid (hypocycloid) mechanisms. 

 
Index Terms—epicycloids, hypocycloid, mechanism, motion 

equation, kinematical model.  
 

INTRODUCTION 
 The hypocycloid curve produced by fixed a point P on 

the circumference of a small circle of radius br  rolling 
around the inside of a large circle of radius ar . A 3-cusped 
hypocycloid shown in Figure 1 is also called a tricuspoid or 
deltoid [1]. The deltoid was first considered by Euler in 1745 
in connection with an optical problem. It was also 
investigated by Steiner in 1856 and is sometimes called 
Steiner's hypocycloid [2]. A 4-cusped hypocycloid shown in 
Figure 2 is sometimes also called a tetracuspid, cubocycloid, 
paracycle, or asteroid [3]. The parametric equations of the 
deltoid and astroid can be obtained by plugging in 

3/ == ba rrn and 4/ == ba rrn into the equations for a 
general hypocycloid, respectively. 

The epicycloids path traced out by a point P on the edge 
of a circle of radius br  rolling on the outside of a circle of 
radius Ar  [4]. To get n  cusps in the epicycloid, ba rrn /= , 
because then n  rotations of br  bring the point on the edge 
back to its starting position. An epicycloid with one cusp is 
called a cardioid, one with two cusps is called a nephroid, and 
one with five cusps is called a ranunculoid. Figure 3 and 4 
show a 3-cusped and a 4-cusped epicycloid, respectively. 

An exact hypocycloid (epicycloids) curve can be also 
produced by using a hypocycloid (epicycloids) mechanism.  
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Similar mechanism designs can be found abundantly in 
industrial machines.  Currently, the major type of epicycloid 
or hypocycloid configurations is planetary gear trains [5], 
which contain a binary link that has one fixed and one 
moving pivot, and a singular link adjacent to the moving 
pivot. The main feature of the configurations is that a point 
on the singular link may describe an epicycloid or 
hypocycloid curve when the binary link is rotated. 

This paper will analyses the characteristics of the 
topological structures of existing planetary gear train type 
epicycloid (hypocycloid) mechanisms with one degree of 
freedom. The equation of motion and kinematic model of the 
mechanism could be derived and appropriate design 
constraints and criteria were implemented. Subsequently, 
using the design constraints and criteria, this work can design 
a new epicycloid (hypocycloid) mechanism. 

 

NOMENCLATURE 
n  Radius ratio, ba rrn /=  

n′  Link length ratio, bc rrn /=′  

ir  Radius or length of member i  

iT  Number of teeth of gear i  

x , y  X and Y-coordinate of an epicycloid (hypocycloid) 

θ  Angular displacement of driving member (the center 
of small circle., carrier, or binary link) 

iω  Angular velocity of member i  

 

HYPOCYCLOID 
The hypocycloid curve produced by fixed point P on the 

circumference of a small circle of radius br  rolling around 
the inside of a large circle of radius ar .  The Cartesian 
parametric equations of the hypocycloid, path of point P, are: 
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Where ba rrn /=  is radius ratio, θ  is the angular 
displacement of the center of small circle. n-cusped 
hypocycloids can also be constructed by beginning with the 
diameter of a circle, offsetting one end by a series of steps 
while at the same time offsetting the other end by steps 

)1( −n  times as large in the opposite direction and extending 
beyond the edge of the circle. After traveling around the 
circle once, an n-cusped hypocycloid is produced. 

The equation of the 3-cusped hypocycloid is obtained by 
setting 3/ == ba rrn  in the equation of the hypocycloid, 
where ar  is the radius of the large fixed circle and br  is the 
radius of the small rolling circle, yielding the parametric 
equations: 

arx ⎥⎦
⎤

⎢⎣
⎡ += θθ 2cos

3
1cos

3
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3
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3
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The parametric equations of the 4-cusped hypocycloid 
can be obtained by plugging in 4/ == ba rrn  into the 
equations for a general hypocycloid, giving parametric 
equations: 

arx ⎥⎦
⎤

⎢⎣
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4
1cos

4
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ary ⎥⎦
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4
1sin

4
3  (6) 

The following tables summarizes the names given to 
this and other hypocycloids with special integer values of 

ba rrn /= [2-4]. 

Table 1  Hypocycloids with special integer values of n  

ba rrn /=  Hypocycloid 

2 line segment (Tusi couple) 

3 deltoid 

4 astroid 

 

EPICYCLOID 

The epicycloid path traced out by a point P on the edge 
of a circle of radius br  rolling on the outside of a circle of 
radius ar . Epicycloids are given by the parametric equations: 
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Figure1  A 3-cusped hypocycloid 

 
Figure2  A 4-cusped hypocycloid 

 
Figure 3  A 3-cusped epicycloid 
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Figure 4 A 4-cusped epicycloid 
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Where θ  is the angular displacement of the center of 
small circle.  To get n  cusps in the epicycloid, nrr ab /= , 
because then n  rotations of br  bring the point on the edge 
back to its starting position. An epicycloid with one cusp is 
called a cardioid, one with two cusps is called a nephroid, and 
one with five cusps is called a ranunculoid. 

The equation of the 3-cusped epicycloid is obtained by 
setting 3/ == ba rrn  in the equation of the epicycloid, 
where ar  is the radius of the large fixed circle and br  is the 
radius of the small rolling circle, yielding the parametric 
equations: 

arx ⎥⎦
⎤

⎢⎣
⎡ −= θθ 4cos

3
1cos

3
4  (9) 

ary ⎥⎦
⎤

⎢⎣
⎡ −= θθ 4sin

3
1sin

3
4  (10) 

The parametric equations of the 4-cusped epicycloid can 
be obtained by plugging in 4/ == ba rrn  into the equations 
for a general epicycloid, giving parametric equations: 

arx ⎥⎦
⎤

⎢⎣
⎡ −= θθ 5cos

4
1cos

4
5  (11) 

ary ⎥⎦
⎤

⎢⎣
⎡ −= θθ 5sin

4
1sin

4
5  (12) 

The following tables summarizes the names given to 
this and other epicycloid with special integer values of 

ba rrn /= [2-4]. 

Table 2  Epicycloids with special integer values of n  

ba rrn /=  Epicycloid 

1 cardioid 

2 nephroid 

5 ranunculoid 

 

HYPOCYCLOID AND EPICYCLOID DESIGN CRITERIA 

A. Motion equations of the planetary hypocycloid 
A hypocycloid mechanism with simple planetary gear 

train comprises a fixed ring gear, a , a planetary gear, b , and 
a planetary carrier, c .  In a 3-cusped hypocycloid planetary 
gear system, Figure 5, the number of teeth in ring gear a is 

aT , which is thrice that of gear b , i.e., ba TT 3= .  When the 
carrier, c , acts as the input link and rotates one revolution, a 
fixed point, P, on the pitch circle of gear b  will describe a 
hypocycloid path. 

The angular velocity of gear b  is bω  and that of the 
carrier is cω .  The fixed ring gear a  has a angular velocity 

0=aω  and the relationship among the three angular 
velocities is [6]: 
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Substituting 0=aω  and ba TT 3=  into Equation (13) and 
recasting: 

cb ωω 2−=  (14) 

Similarly, in a n-cusped hypocycloid planetary gear 
system, the Cartesian parametric equations of the 
hypocycloid are Equations (1) and (2), the relationship 
among the three angular velocities is: 
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Where n′ is link length ratio.  From Equations (16) and (17), 
it is clear that the final planetary gear, b  which is mounted at 
the end of the carrier, has an angular velocity of the 

)1( −=′ nn  multiples as the carrier but at an opposite 
direction. A 4-cusped hypocycloid planetary gear system can 
be obtained and shown in Figure 6 by plugging in 

4/ == ba rrn into the Equations (15), (16), and (17).  
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B. Motion equations of the planetary epicycloid 
An epicycloids mechanism with simple planetary gear 

train comprises a fixed sun gear, a , a planetary gear, b , and 
a planetary carrier, c .  In a 3-cusped epicycloid planetary 
gear system, Figure 7, the number of teeth in sun gear a is aT , 
which is thrice that of gear b , i.e., ba TT 3= .  When the 
carrier, c , acts as the input link and rotates one revolution, a 
fixed point, P, on on the pitch circle of gear gear b  will 
describe an epicycloid path. 

The angular velocity of gear b  is bω  and that of the 
carrier is cω . The fixed sun gear a  has a angular velocity 

0=aω and the relationship among the three angular velocities 
is [6]: 
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Substituting 0=aω  and ba TT 3=  into Equation (18) and 
recasting: 

cb ωω 4=  (19) 

Similarly, in a n-cusped epicycloid planetary gear system, the 
Cartesian parametric equations of the epicycloid are 
Equations (7) and (8), the relationship among the three 
angular velocities is: 
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From Equations (21) and (22), it is clear that the final 
planetary gear, b  which is mounted at the end of the carrier, 
has an angular velocity of the 1+=′ nn  multiples as the 
carrier but at a uniform direction. A 4-cusped epicycloid 
planetary gear system can be obtained and shown in Figure 8 
by plugging in 4=n into the Equations (20), (21), and (22). 

 
bc rr 2= , ba rr 3= , ba TT 3= , cb ωω 2−=  

Figure 5  A 3-cusped hypocycloid mechanism 

 
bc rr 3= , ba rr 4= , ba TT 4= , cb ωω 3−=  

Figure 6  A 4-cusped hypocycloid mechanism 

 
ba rr 3= , bc rr 4= , bc TT 3= , ab ωω 4=  

Figure 7  A 3-cusped epicycloid mechanism 

 
ba rr 4= , bc rr 5= , bc TT 4= , ab ωω 5=  

Figure 8  A 4-cusped epicycloid mechanism 
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C. Design criteria of hypocycloid (epicycloid) mechanisms 
Let us summarize the main points that have been made 

in this section.  As Equations (15) to (17), Equations (20) to 
(22), Figures 5, 6, 7, and 8 indicate:  

(1). A hypocycloid (epicycloids) mechanism 
contains a binary link (carrier) that has one fixed 
and one moving pivot, a singular link (planetary 
gear) adjacent to the moving pivot, and a frame. 

(2). In a planetary hypocycloid system, the singular 
link has the )1( −=′ nn  multiples angular 
velocity as the binary link but rotates at an 
opposite direction. 

(3). In an epicycloid system, the singular link has the 
)1( +=′ nn  multiples angular velocity as the 

binary link but rotates at an uniform direction. 
(4). The main feature of a hypocycloid (epicycloid)  

mechanism is that a fixed point P on the singular 
link may describe an a hypocycloid (epicycloid) 
when the binary link is rotated. 

The first three important points are design criteria (1) to (3).  
They are helpful to design a new a hypocycloid (epicycloid)  
mechanism. 
 
 

KINEMATIC MODEL OF HYPOCYCLOID 
AND EPICYCLOID MECHANISMS 

The design criterion (1) can be described as shown in 
Figures 9, 10, 11, and 12. They are hypocycloid and 
epicycloid  mechanisms contain a binary link c that has one 
fixed and one moving pivot, a singular link b adjacent to the 
moving pivot, and a frame. 

The design criterion (2) is the kinematic constraint of a 
hypocycloid mechanism and mathematically described as 
follows:  

ccb nn ωωω ′−=−−= )1(  (23) 

1−==′ n
r
rn
b

c  (24) 

Where cω  and bω are the angular velocities of binary link c 
and singular link b, respectively.  If the initial angular 
positions of binary link c and singular link b are zeros, we 
have: 

 θθθ )1( −−=′−= nnb  (25) 

Where θ  and bθ  are the angular displacements of binary 
link c and singular link b, respectively.  If cr  and br  are the 
lengths of binary link c and singular link b, respectively, the 
coordinates x  and y  of point P on the singular link b are: 
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Figure 9  A schematic diagram of a three links linage for 

drawing a 3-cusped hypocycloid curve 

 
Figure 10  A schematic diagram of a three links linage for 

drawing a 4-cusped hypocycloid curve 

 
Figure 11  A schematic diagram of a three linage for drawing 

a 3-cusped epicycloid curve 
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Figure 12  A schematic diagram of a three linage for drawing 

a 4-cusped epicycloid curve 

 
 The design criterion (3) is the kinematic constraint of an 

epicycloid mechanism and mathematically described as 
follows:  
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Where cω  and bω are the angular velocities of binary link c 
and singular link b, respectively.  If the initial angular 
positions of binary link c and singular link b are zeros, we 
have: 

 θθθ )1( +=′= nnb  (30) 

Where θ  and bθ  are the angular displacements of binary 
link c and singular link b, respectively.  If cr  and br  are the 
lengths of binary link c and singular link b, respectively, the 
coordinates x  and y  of point P on the singular link b are: 
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NEW HYPOCYCLOID AND EPICYCLOID MECHANISMS 

The design criteria (1) shows the hypocycloid and 
epicycloid mechanism at least has three links; frame, a binary 
link, and a singular link.  Hence, if the singular link has 

)1( −=′ nn  multiples angular velocity as the binary link but 
rotates at an opposite direction, the mechanism can describe a 
hypocycloid curve. If the singular link has )1( +=′ nn  
multiples angular velocity as the binary link but rotates at an 
uniform direction.  The mechanism will be describe an 
epicycloids curve.     

Based on the design constraints of the topological 
structure and kinematic characteristics of a hypocycloid 
(epicycloid) mechanism, a planetary gear train could be 
designed as a hypocycloid (epicycloid) mechanism. 

 Example 1: New n-cusped hypocycloid mechanisms design 

From the design requirements, a planetary gear train with 
one degree of freedom as shown in Figure 13 can be 
individualized as a n-cusped hypocycloid and the planetary 
gear B could be the final planetary gear. For this system, the 
following relationships are established: 
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Where iT is the number of teeth of gear i . From the design 
constraints on the kinematic characteristics, it is known that: 

 armBB n ωωω 1)( −−==′  (35) 

If the ring gears C and C′ are fixed, then we have: 

 0== ′CC ωω  (36) 

Rearranging Equations (29) to (30), the relationship 
between the tooth number of gear B , BT  and ring gear C , 

CT , can be obtained as: 

 BC TnT =  (37) 

Similarly, the relationship between the tooth number of 
gear B′ , BT ′  and ring gear C′ , CT ′ , can be obtained as: 

 BC TnT ′′ =  (38) 

Furthermore, based on the relationship of the tooth 
numbers between the sun gear, planetary gear, and ring gear, 
we have BCBC TnTTnT ′′ === . 

Finally, we know the planetary gear train as shown in 
Figure 13 will be a n-cusped hypocycloid mechanism, if the 
tooth numbers of gear B , B′ , C , and C′  could be satisfied 
with the facts BCBC TnTTnT ′′ === .  It is evident that the 
mechanism is an assemblage of two simple planetary gear 
trains.  When the carrier makes a full rotation, the arbitrary 
points P on the pitch circle of the planetary gears B  or B′  
describes a n-cusped hypocycloid curve. The results of the 
designed 3-cusped and 4-cusped hypocycloid mechanisms 
are shown as Figure 14 and 15, respectively. 

 

 Example 2: New n-cusped epicycloid mechanisms design 

From the design requirements, a planetary gear train with 
two degrees of freedom as shown in Figure 16 can be 
individualized as a n-cusped epicycloid mechanism and the 
planetary gear B could be the final planetary gear. For this 
system, the following relationships are established: 
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Figure 13 A planetary gear train with 1 degree of freedom 

 
BCBC TTTT ′′ === 33  

Figure 14  A new 3-cusped hypocycloid mechanism 

 
BCBC TTTT ′′ === 44  

Figure 15  A new 4-cusped hypocycloid mechanism 

Where iT is the number of teeth of gear i .From the design 
constraints on the kinematic characteristics, it is known that: 

 armBB n ωωω 1)( +==′  (41) 

If he the sun gear A is fixed, then we have: 

 0=Aω  (42) 

Rearranging Equations (39) to (40), the relationship 
between the tooth number of gear A , AT  and ring gear B , 

BT , can be obtained as: 

 BA TnT =  (43) 

If he the ring gear C is fixed, then we have: 

 0=Cω  (44) 

Rearranging Equations (39) to (40), we can’t find the 
feasible relationship between the tooth number of gears A, 
B′ , B , and C. 

Finally, we know the planetary gear train as shown in 
Figure 16 will be a n-cusped epicycloid mechanism, the tooth 
number of gear B , BT  and sun gear A, AT  is BA TnT = . 
When the arm makes a full rotation, the arbitrary points P on 
the pitch circle of the planetary gear B  describes a n -cusped 
epicycloid curve. The results of the designed 3-cusped and 
4-cusped epicycloid mechanisms are shown as Figure 17 and 
18, respectively. 

CONCLUSION 
This paper analyses the characteristics of the topological 

structures of existing planetary gear train type hypocycloid 
and epicycloid mechanisms with one degree of freedom. The 
equation of motion of the mechanism was derived and 
appropriate design constraints were implemented.  
Subsequently, using the design constraints, this work designs 
one new hypocycloid and one new epicycloid mechanism. 
Finally, we know the methods of the proposed hypocycloid 
and epicycloid mechanism design is easily done.  

 
Figure 16 A planetary gear train with 2 degrees of freedom 

C ′gear  ring Fixed

B′gear Planetary 
Bgear Planetary 

Cgear  ring Fixed

Carrier

C ′gear  ring Fixed

B′gear Planetary 

Bgear Planetary 

Cgear  ring Fixed

Carrier

PPoint 

C ′gear  ring Fixed

B′gear Planetary 

Bgear Planetary 

Cgear  ring Fixed

Carrier

PPoint 

Carrier

B′gear Planetary 

Agear Sun 

Bgear Planetary 

Cgear  Ring

IAENG International Journal of Applied Mathematics, 38:4, IJAM_38_4_06
_______________________________________________________________________________

(Advance online publication: 20 November 2008)



 
 

 

 
BA TT 3=  

Figure 17 A new 3-cusped epicycloid mechanism 

 
BA TT 4=  

Figure 18 A new 4-cusped epicycloid mechanism 
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