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Abstract—In this paper we discuss precondition-

ers for the incompressible Navier-Stokes equations.

In combination with Krylov subspace methods, they

give a fast convergence for the solution of the Navier

-Stokes equations. With the help of numerical exper-

iments, we report some new findings regarding the

convergence of these preconditioners. Besides that, a

renumbering scheme for direct solvers and ILU pre-

conditioners is introduced that improves the conver-

gence of the solvers. We compare Bi-CGSTAB and

a newly developed Krylov subspace method IDR(s)

preconditioned with ILU. Both 2D and 3D experi-

ments are used to measure the performance of the

preconditioners.
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1 Introduction

The incompressible Navier-Stokes equations, given as

−ν∇2u + u.∇u + ∇p = f in Ω (1)

∇.u = 0 in Ω, (2)

are used to simulate fluid flow in a medium with the fol-
lowing properties: the fluid is incompressible and has a
Newtonian character. Equation (1) represents the mo-
mentum equation and (2) is the continuity equation or
mass conservation equation. ν is the viscosity (inversely
proportional to the Reynolds number), u is the veloc-
ity vector and p is the pressure. For ν → ∞ , the sys-
tem of equations in (1) and (2) tends to a linear system
of equations known as Stokes problem. The boundary
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value problem we consider, is system (1) and (2) posed
on a two dimensional domain Ω, together with boundary
conditions on ∂Ω = ∂ΩD ∪ ∂ΩN given by

u = w on ∂ΩD, ν
∂u

∂n
− np = 0 on ∂ΩN ,

where w is a given function.
The system given in (1) and (2) is discretized by the
finite element method. Due to the presence of the con-
vective term (u.∇u) in the momentum equation, the dis-
cretization of the Navier-Stokes equation leads to a sys-
tem of non-linear equations. The Navier-Stokes system
is linearized by Picard’s method. In the Picard iter-
ation method, the velocity from the previous iteration
is substituted into the convective term. Starting with
an initial guess u(0) for the velocity field, Picard’s it-
eration constructs a sequence of approximate solutions
(u(k+1), p(k+1)) by solving a linear Oseen problem

−ν∆u(k+1) + (u(k).∇)u(k+1) + ∇p(k+1) = u in Ω, (3)

∇.u(k+1) = 0 in Ω, (4)

in matrix notation
[

F BT

B 0

] [

u
p

]

=

[

f
g

]

. (5)

F = A + N , where A is the viscous part, N is the contri-
bution of convective term linearized by Picard’s method,
BT is the gradient operator, and B is the divergence op-
erator. The linearization of the Navier-Stokes problem
gives rise to a saddle point problem, which means that
there is a large block of zeros at the main diagonal.

Several techniques have been introduced to solve this sys-
tem efficiently. Recently various preconditioners have
been published, that can be used to accelerate the solu-
tion of system (5) by Krylov subspace methods [1–3]. We
will discuss SIMPLE-type preconditioners as formulated
by Vuik [3] in Section 2. Some remarks are also added on
the importance of relaxation parameters in SIMPLE-type
preconditioners.
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In Section 3, we discuss numerical solutions based on LU
factorization (direct solver) and incomplete LU precon-
ditioner. In the Navier-Stokes problem, LU/ILU factor-
ization may fail due to zeros on the main diagonal un-
less partial pivoting is applied. We define a reordering
of unknowns that leads to an almost optimal profile or
bandwidth for a direct solver. Applied to an ILU precon-
ditioner, this reordering usually improves the convergence
behavior of Krylov subspace methods. Various other or-
derings have been proposed in the literature [4–6], but
our ordering scheme outperforms all of them. We also
prove that our reordering scheme does not breakdown.
Besides that, some features of a newly developed Krylov
subspace method IDR(s) [7] are discussed and a compar-
ison is made with Bi-CGSTAB preconditioned with our
ILU.

In Section 4, numerical experiments are performed in 2D
and 3D domains. We end with some conclusions in Sec-
tion 5.

2 Preconditioners for the Navier-Stokes
Equations

Preconditioning is a technique used to enhance the con-
vergence of an iterative method to solve a large linear
systems iteratively. Instead of solving a system Ax = b,
one solves a system P−1Ax = P−1b, where P is the pre-
conditioner. A good preconditioner should lead to fast
convergence of the Krylov method. Furthermore, sys-
tems of the form Pz = r should be easy to solve.

For the Navier-Stokes equations, the objective is to design
a preconditioner, that increases the convergence of an
iterative method independent of the Reynolds number
and number of gridpoints. Secondly, the application of a
preconditioner should be cheap. For more details, see [8].
We discuss here preconditioners for the incompressible
Navier-Stokes equations.

2.1 SIMPLE(R) Preconditioner

SIMPLE (Semi Implicit Method for Pressure Linked
Equations) [9], [10] is a classical algorithm for solving
the Navier-Stokes equations, discretized by a finite vol-
ume technique. In this algorithm, to solve the momentum
equations, the pressure is assumed to be known from the
previous iteration. The newly obtained velocities do not
satisfy the continuity equation since the pressure field is
only a guess. Corrections to velocities and pressure are
proposed to satisfy the discrete continuity equation. The
SIMPLE algorithm can be derived from the block LU

decomposition of the coefficient matrix (5)

[

F BT

B 0

]

=

[

F 0
B S

] [

I F−1BT

0 I

]

, (6)

where S = −BF−1BT known as the Schur complement
matrix. The approximation F−1 = D−1 = diag(F )−1 in
(2,2) and (1,2) in L and U block matrices, respectively,
leads to the SIMPLE algorithm. Define

[

u∗

δp

]

=

[

I D−1BT

0 I

] [

u
p

]

. (7)

Solve first
[

F 0
B −BD−1BT

] [

u∗

δp

]

=

[

f
g

]

, (8)

and then u and p from (7). In the SIMPLE algorithm,
the above two steps are performed recursively leading to:

SIMPLE algorithm:

1. Solve Fu∗ = ru − BT p∗.

2. Solve Ŝδp = rp − Bu∗.

3. update u = u∗ − D−1BT δp.

4. update p = p∗ + δp ,

where pressure p∗ is estimated from the prior iteration.
D is the diagonal of the convection diffusion matrix F
and Ŝ = −BD−1BT is an approximation of the Schur
complement.

Vuik et al [3], used SIMPLE and its variants as a precon-
ditioner to solve the incompressible Navier-Stokes prob-
lem. One iteration of the SIMPLE algorithm is used as
a preconditioner with assumption p∗ = 0. The precondi-
tioner gives nice convergence if used in combination with
the GCR method. However, the convergence decreases
if the number of grid elements or Reynolds number in-
creases. A variant of SIMPLE, SIMPLER gives conver-
gence independent of Reynolds number. Instead of esti-
mating the pressure p∗ in the SIMPLE algorithm, p∗ is
obtained from solving a subsystem:

Ŝp∗ = rp − BD−1((D − F )uk + rv), (9)

where uk is obtained from the prior iteration. In case
SIMPLER is used as preconditioner, uk is taken equal
to zero. The classical SIMPLER algorithm proposed by
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Patanker consists of two pressure solves and one veloc-
ity solve. However, in the literature the SIMPLER algo-
rithm is formulated such that the steps of the algorithm
are closely related to the Symmetric Block Gauss-Seidel
method [3]. This form of the SIMPLER preconditioner
can be written as:

(

u∗

p∗

)

=

(

uk

pk

)

+ M−1
L BL

((

ru

rp

)

− A

(

uk

pk

))

, (10)

(

uk+1

pk+1

)

=

(

u∗

p∗

)

+ BRM−1
R

((

ru

rp

)

− A

(

u∗

p∗

))

, (11)

where A represents the coefficient matrix given in (5), uk

and pk in (10) are obtained from the previous step (both
zero in our case) and

BR =

(

I −D−1BT

0 I

)

, MR =

(

F 0

B Ŝ

)

and (12)

BL =

(

I 0
−BD−1 I

)

, ML =

(

F BT

0 Ŝ

)

. (13)

The steps given in (10) and (11) contain two Poisson
solves, two velocity subproblems solves- apposed to one
velocity solve in the classical algorithm- and matrix vec-
tor updates. However, the extra velocity solve in for-
mulation (10) and (11) has no significant effect on the
convergence of the SIMPLER preconditioner. In the re-
mainder of this paper, we will use SIMPLER with only
one velocity solve.

SIMPLER is more expensive than SIMPLE. One iter-
ation of the SIMPLER algorithm is approximately 1.3
times more expensive than the SIMPLE iteration [3].
SIMPLER convergence is also faster than the SIMPLE
preconditioner. However, convergence with both precon-
ditioners is decreased with an increase in the number of
grid elements.

Effect of relaxation parameter

In the classical SIMPLE methods for finite volumes it is
common practice to apply relaxation parameters to im-
prove convergence. Unfortunately good choices for relax-
ation parameters can only be found by trial and error.

In our case we use SIMPLE as preconditioner, which
means that we apply only one SIMPLE iteration per GCR
step. In this case we introduce a relaxation parameter ω
in the pressure part. The last step in the SIMPLE-type
preconditioners is replaced by

p = p∗ + ωδp. (14)

In contrast to the finite volume case, no relaxation pa-
rameter for the velocity part is used. The parameter ω
is varied between 0 and 1. From our experiments it is
clear that a proper choice of ω is more important when
SIMPLE is used as iterative solver, than when it is used
as preconditioner.

3 Reordering Scheme for LU/ILU Fac-
torization

In this section we will discuss an a priori renumbering
scheme to use both in the ILU preconditioner and a direct
solver to solve the Navier-Stokes problem. From a practi-
cal point of view, it would be attractive, if standard classi-
cal iterative solution schemes, like preconditioned Krylov
solvers, could be applied, without any changes. However,
in the case of non-stabilized elements, the zero pressure
block in the continuity equation, prevents straightforward
application of LU and ILU factorization. If the common
ordering of unknowns is used, i.e. placing first all un-
knowns of node 1, then those of node 2 and so on, one
might get a zero pivot, especially if velocities at some
boundaries are prescribed and therefore both factoriza-
tions may fail. Pivoting, on the other hand, will result in
a large increase of memory usage and, as a consequence,
computation time. Besides that, it is hard, to predict,
a priori, the amount of memory required, which from an
implementation point of view is, not very practical. To
avoid this problem, it is better to use a suitable a priori
reordering of unknowns. We propose a new ordering that
avoids breakdown of LU factorization. Our reordering
schemes consist of two steps.

1. Renumbering of grid points, which can be accom-
plished by any renumbering method that gives an
optimal profile. We use Cuthill McKee (CMK) [11]
and Sloan [12] renumbering schemes for grid points.

2. The second step consisits of reordering of unknowns.
Unknowns can be reordered as first all the veloc-
ity unknowns, followed by pressure unknowns in the
grid. This is know as p-last ordering.

A new type of reordering is introduced, in which the
grid is divided into levels. Each level consists of a
connected set of nodes. Thereafter, the unknowns
are ordered per level. At each level, first velocity
unknowns are placed and then followed by the pres-
sure unknowns. We call it p-last per level reordering.

Let us define the notion of levels for Cuthill McKee. Sup-
pose we have created levels 1 to i-1. Then level i is de-
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fined as the set of nodes that are connected directly to
level i-1, and are not in one of the prior levels. Nodes are
connected if they belong to the same element.

The first level may be defined as a point, or even a line in
R2 or a surface in R3. In the p-last per level reordering,
one has to be careful at the start of this process. If, for
example, the velocities in the first node, are prescribed,
we start with a pressure unknown that gives rise to a
zero pivot. Therefore, we always combine the first few
levels, into a new level. If the number of free velocity
unknowns in this new level, is less than the number of
pressure unknowns, we also add the next level to level
1, and if necessary this process is repeated. In practice
combinations of 2 or 3 levels is sufficient. Note that the
starting level has always a small contribution to the global
profile [13].

3.1 Direct Solver

In a direct method, a matrix A can be written in the form

A = LU,

where L is a lower triangular matrix and U is an upper
triangular matrix. We have to solve LUx = b, which can
be done in the following steps
first solve Ly = b,
then solve Ux = y.

In a direct method, The LU factorization is the costly
part of the computational process and the solution of the
two steps is usually of minor cost. The elimination pro-
cess fills the non-zero entries of a sparse matrix within a
band or profile. So large numbers of entries have to be
stored and the CPU time increases. Generally, the sys-
tem arising from the discretization of the finite element
method has a sparse structure, which means that it con-
tains a large number of zeros. The aim of a sparse direct
solvers is to avoid doing operations on zero entries and
therefore to try to minimize the number of fill-ins. We
may save the computational cost and CPU time with an
efficient reordering strategy which can be used to modify
the structure of the matrix.

In the Navier-Stokes problem, if, for a direct solver, we
use the p-last ordering, we end up with a very large profile
of the matrix. This is true even if we use an optimal node
renumbering. The main advantage of ordering is that no
pivoting is necessary, since during factorization, the zeros
on the main diagonal in the zero pressure block disappear,
see for example [5]. On the other hand, p-last per level, in
combination with a suitable node renumbering strategy,

produces a nearly optimal profile shown in Figure (1) and
avoids the need for pivoting in case of direct solvers. It
has been applied to many practical problems, without
ever producing small pivots.
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Profile  = 52195, Bandwidth = 570
p−last ordering with lexicographic numbering
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Profile  =31222,  Bandwidth = 212              
p−last per level ordering with Sloan renumbering

Figure 1: Effect of Sloan renumbering of grid points and
p-last per level reordering of unknowns on the profile and
bandwidth of the matrix

3.2 ILU Preconditioner

Since an optimal ordering of unknowns for a direct solver,
usually improves the behavior of an ILU preconditioner,
we investigate p-last per level ordering, as well as p-last
ordering, in combination with ILU. The sparseness
structure is defined as follows:

(LD−1U)i,j 6= 0 for (i, j) ∈ S,

where S consists of fill-in positions as the set of un-
knowns, that are directly connected. This implies that,
zeros in the pressure block, are also part of the set S, pro-
vided that there is a connectivity with velocity unknowns.
The p-last reordering is used in SIMPLE preconditioner
along with a renumbering scheme of grid points. This
decreases the bandwidth of the coefficient matrix corre-
sponding to the velocity and pressure unknowns. In gen-
eral, the sparsity pattern of the coefficient matrix remains
the same through out the non-linear iterations, therefore
the reordering technique is applied once at the start of
the iterations.

In our experiments, p-last per level in combination with
a suitable renumbering for grid points is used. We have
observed that p-last per level improves the convergence
of the preconditioned iterative method and avoids the
breakdown of ILU.
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3.3 Breakdown of LU or ILU Factorization

Our strategy of p-last per level does not break down. The
breakdown of ILU and LU due to p-last per level is only
based on the choice of the first level. In many cases the
first level contains prescribed boundary points. It might
happen that our selected level gives rise to the pressure as
a first row in the matrix, that in turn gives rise to a zero
on the main diagonal. Therefore we kept our first level
larger than the other levels. The question is, what should
be the minimum number of points or nodes(unprescribed)
in the first level so that our scheme encounter a danger
of breakdown?

To explain how the minimum size of the first level must
be chosen we consider a 2 × 2 Q2-Q1, Taylor-Hood ele-
ment subdivision of a square shown in Figure (2). If all
the velocities at the boundary are prescribed, restricting
the initial set to the (oblique) dashed region, i.e. nodes
1 to 7, implies that in set 1 we have only 2 unknown ve-
locities and 4 unknown pressures. Even if we start with
the velocities, Gaussian elimination in these rows will not
remove all zeros on the diagonal. This is the same reason
why we have to satisfy the LBB condition. Adding node
8 to the dashed region makes the number of velocity un-
knowns in the first level equal to the number of pressure
unknowns and the problem no longer exists.

So on the first level we need at least the same number
of unprescribed velocity degrees of freedom as there are
pressure degrees of freedom. Furthermore, the velocity
unknowns should have a nonzero connection with the
pressure unknowns.

Figure 2: 2x2 Q2-Q1 grid

3.4 IDR(s) accelerated with ILU

In the past we used the Bi-CGSTAB [14] iterative method
in combination with our ILU preconditioner. Theoreti-
cally Bi-CGSTAB gives the exact solution in 2N matrix-
vector multiplications, with N the number of unknowns,

provided exact arithmetic is used. A disadvantage of Bi-
CGSTAB is its eratic convergence behavior.

Recently IDR(s)( Induced Dimension Reduction) [7] has
been developed as a new Krylov alternative. The param-
eter s defines the size of a subspace of search vectors. The
larger s, the more memory is required. IDR(1) has the
same properties as Bi-CGSTAB. For s > 1 the method
becomes more stable. The number of matrix-vector mul-
tiplications per iteration is equal to s, the number of it-
erations usually decreases for increasing s. Theoretically
N + N/s matrix-vector multiplications are necessary to
get the exact solution. The reduction of the number of
iterations for increasing s is not monotonic. Large val-
ues of s sometimes even do not improve performance of
IDR(s) [15]. Usually s is taken in the order of 4. IDR(s)
in combination with ILU is usually more stable than Bi-
CGSTAB. In this paper we compare both methods.

4 Numerical Experiments

Numerical experiments are performed for the following
benchmark problems:

1. Driven cavity problem; flow in a square cavity with
enclosed boundary conditions and a lid moving from
left to right given as:

y = 1; − 1 ≤ x ≤ 1|ux = 1 − x4,

known as regularized cavity problem.

2. The L-shaped domain (−1, L) × (−1, 1), known as
the backward facing step. A Poisseuille flow profile is
imposed on the inflow (x = −1; 0 ≤ y ≤ 1) and zero
velocity conditions are imposed on the walls. Neu-
mann conditions are applied at the outflow which au-
tomatically sets the mean outflow pressure to zero.
Results are also performed in a 3D backward facing
step.

The GCR method, [16] PCG [17], Bi-CGSTAB and
IDR(s) are used in our experiments. Both direct solvers
and ILU preconditioners are used to solve subsystems
in the SIMPLE-type preconditioners. We divide the ex-
periments into two sections; Section 4.1 which deals only
with SIMPLE-type preconditioners and Section 4.3 which
consists of a comparison of SIMPLE-type preconditioners
with our ILU preconditioner. The iteration is stopped if

the linear systems satisfy ‖rk‖2

‖b‖2

≤ tol, where rk is the

residual at the kth step of the Krylov subspace method,
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b is the right hand side, and tol is the desired tolerance
value. Some abbreviations used are: It.(s) for number
of iterations (time in seconds), Mat.-Vec. stands for ma-
trix vector multiplications, ts for time in seconds and NC
for no convergence. The accuracy of the inner solvers in
the SIMPLER preconditioner is represented in the form
10p,u,p (exponent for the pressure solve, velocity solve and
pressure solve), while in SIMPLE, pressure is computed
with accuracy 10−2 and the velocity 10−1 in the precon-
ditioning steps. The grid size in the tables and figures
refer to the number of Q2-Q1 elements. Numerical ex-
periments are performed on an Intel 2.66 GHz processor
with 8GB RAM.

4.1 SIMPLE-type Preconditioners

The Stokes problem is solved with SIMPLE and SIM-
PLER preconditioners using exact and inexact solvers
for the subsystems shown in Table 1. For the inexact
solution, we used preconditioned CG. If we use exact in-
ner solves, SIMPLER converges faster than SIMPLE al-
though SIMPLER requires an extra pressure solve. Both
preconditioners seem efficient in CPU time if exact inner
solves are used instead of inexact solves. However, for
large problems in 2D and problems in 3D, exact inner
solvers are not a cheap option to use. The convergence
of the SIMPLE preconditioner is more effected by the in-
crease in the grid size than the SIMPLER preconditioner.
However, a positive aspect of the SIMPLE preconditioner
we have observed is that the convergence of the SIMPLE
preconditioner is independent of the accuracies used to
solve the subsystems, while the SIMPLER preconditioner
strongly depends on the inner accuracies. The larger
the number of grid elements, the larger the accuracy re-
quirement for the inner solver in the SIMPLER precon-
ditioner. Iterations in the SIMPLER preconditioner can
be reduced with the increase in inner accuracies. On the
other hand, increasing inner accuracies will have no large
effect on the convergence of the SIMPLE preconditioner.

The Navier-Stokes problem solved with varying Reynolds
numbers is shown in Table 2. We report here the num-
ber of iterations taken by preconditioned solver after one
Picard step. We see that SIMPLER is converging faster
than SIMPLE. However, SIMPLER requires some suit-
able inner accuracy for convergence. From the table, it is
clear that the inner accuracy problem arises only due to
the increase in the number of grid elements. As the vis-
cosity decreases, the number of iterations of both precon-
ditioners increase. This increase is large in the SIMPLE
preconditioner and mild in SIMPLER. Viscosity indepen-
dent convergence with the SIMPLER preconditioner can

be achieved only if subsystems are solved with a high
accuracy.

Table 1: Solution of the Stokes cavity flow problem with
preconditioned GCR(20) method with accuracy 10−6.

Grid SIMPLE SIMPLER
- Exact Inexact Exact Inexact accuracy

It. (ts) It. (ts) It. (ts) It. (ts) 10p, u, p

8 × 8 20(0.13) 25(0.19) 10(0.07) 14(0.14) -2, -1, -2
16 × 16 37(1.84) 45(1.75) 15(0.89) 19(0.2) -2, -1, -3
32 × 32 71(14.5) 89(24.8) 24(5.3) 40(12.6) -2, -1, -3
64 × 64 121(132) 165(362) 40(47.5) 49(183) -3, -2, -4

Table 2: The Navier-Stokes cavity flow problem with pre-
conditioned GCR(20) method with accuracy 10−6, sub-
system in the preconditioners are solved inexactly with
ILU preconditioned Bi-CGSTAB.

ν SIMPLE SIMPLER
It. (ts) It. (ts) 10p, u, p

0.02 129(42) 37(27) -3, -2, -3
0.01 179(68) 38(31) -3, -2, -3
0.002 677(245) 70(66) -3, -2, -3
0.001 1086(431) 118(96) -3, -2, -3

Effect of relaxation

Experiments revealed that application of a relaxation pa-
rameter for the velocity gives no improvement in the con-
vergence. Therefore, we restrict ourselves to varying the
relaxation parameter ω in (14). Since relaxation did not
improve the convergence of SIMPLER only SIMPLE is
considered.

In the case of Stokes, choosing ω properly, might reduce
the number of iterations with a factor 3 or 4. For exam-
ple, in Figure (3), the optimal value of ω (0.05) reduces
the number of outer iterations from 193 to 59 for a 64×64
grid. The reduction in the number of inner iterations -
not shown in figure - is from 1400 to 77 for the velocity
subsystem and 3600 to 1200 for the pressure subsystem.

Table 3 shows the effect of ω for various values of ν in
the Navier-Stokes equations. We can see from the table
that a proper value of ω might give some gain, but the
profit is only small compared to that of the Stokes prob-
lem. Furthermore it is clear that the optimal value of ω
is different for Stokes and Navier-Stokes. the probable
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Figure 3: The Stokes problem solved in Q2-Q1 discretized
driven cavity problem with varying ω: 32×32 grid (Left),
64 × 64 grid (Right).

cause is that the pressure approximation in the second
step of the non-linear iteration is much better than in
first iteration.

Table 3: Effect of relaxation on the Navier-Stokes prob-
lem with a solution accuracy 10−6.

ν ω = 1 ω = 0.5 ω = 0.35 ω = 0.3 ω = 0.2
It. It.(s) It. It. It.

0.02 657 641 552 552 563
0.01 870 803 773 857 783
0.001 7637 7080 6800 6666 NC

4.2 Impact of reordering on the direct solver

In this section, we present some results to see how our re-
ordering strategy effects the efficiency of the direct solver.
We report our findings with our renumbering scheme.
Our renumbering scheme effectively reduces the profile
and bandwidth of the matrix. In Table 4, we see the
reduction with Sloan and Cuthill McKee renumbering
method with p-last per level reordering of unknowns.
Profile and bandwidth reduction is computed by divid-
ing profile and bandwith with p-last by p-last per level.
Profile reduction with the Sloan method is better than
Cuthill McKee, while in bandwidth reduction Cuthill Mc-
Kee performs better than Sloan. Thus, our reordering
method reduces the memory and work and computation
time if the system is solved with a direct solver.

To prove numerically that our reordering scheme im-
proves the efficiency of the direct solver, the Stokes prob-
lem is solved with a direct solver with various renumber-
ing and reordering combinations shown in Table 5. With
p-last reordering, - with various renumbering schemes -
we do not see much difference in CPU time consumed by
the direct solver to get the exact solution. However, using
p-last per level, the efficiency of the direct solver increases

enormously. Sloan renumbering with p-last per level re-
ordering gives better results than the other combinations.
Though a better choice of a renumbering scheme also en-
hances the efficiency of the direct solver, we see that the
increase is largely due to the p-last per level reordering
strategy.

Table 4: Profile and bandwidth reduction in the back-
ward facing step with Q2-Q1 discretization.

Grid Profile reduction Bandwidth reduction
- Sloan CMK Sloan CMK

4 × 12 0.37 0.61 0.18 0.17
8 × 24 0.28 0.54 0.13 0.08
16 × 48 0.26 0.5 0.11 0.04
32 × 96 0.25 0.48 0.06 0.02

Table 5: The Stokes backward facing step solved with
direct solver with Q2-Q1 discretization.

Grid p-last
- Lexicographic CMK Sloan

16 × 48 5.6s 3.9s 3.1s
24 × 72 44.3s 33.4s 28s
32 × 96 205s 160s 142s
Grid p-last per level

16 × 48 3.15s 0.25s 0.13s
24 × 72 21s 1.14s 0.54s
32 × 96 88s 3.3s 1.5s

4.3 Comparison: ILU Preconditioner and
SIMPLE-type Preconditioner

The renumbering of grid points and reordering of un-
knowns is used in the ILU preconditioner to solve the
Stokes and the Navier-Stokes problem. In Figure (4), we
see that

• p-last per level with Sloan and CMK give aster con-
vergence than p-last for the 2D backward facing step
Stokes problem,

• p-last per level with Sloan renumbering is faster than
p-last per level with CMK renumbering,

• the number of iterations increases with the increase
in the number of grid elements.

In the onward experiments, p-last per level reordering of
unknowns will be used in combination with the Sloan and
CMK renumbering schemes.
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The 3D Stokes and the Navier-Stokes backward facing
step problem are solved with the preconditioners dis-
cussed in this paper. Results given in Table 6 and 7 re-
veal that our renumbering method performs better than
the block preconditioners. In 2D the ILU preconditioner
with the Sloan renumbering is performing faster than ILU
computed with CMK, however in 3D, it is the other way
around. ILU with CMK renumbering gives better con-
vergence than the Sloan renumbering. The SIMPLER
preconditioner seems not to be applicable without accu-
rate inner solvers which makes SIMPLER an expensive
option to use as preconditioner. To achieve convergence
for SIMPLER, for the two finest grids in Table 6 and 7, it
was necessary to use an inner accuracy of more than 10−4

to solve inner subsystems. On the other hand SIMPLE
shows robust convergence behavior with approximate in-
ner solves. A common aspect of all these preconditioners
is that convergence with these preconditioner is depen-
dent on the grid size.
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Figure 4: The 2D Stokes backward facing step prob-
lem solved with ILU preconditioned Bi-CGSTAB method
with accuracy 10−6.

Table 6: Solution of the 3D Stokes backward facing step
with accuracy 10−6.

Grid GCR(20) Bi-CGSTAB
SIMPLE SIMPLER CMK Sloan
It.(ts) It.(ts) It.(ts) It.(ts)

8 × 8 × 24 31(4.2) 28(6) 24(1.28) 33(1.7)
16 × 16 × 48 74(142) 60(460) 54(26) 70(33)
24 × 24 × 72 104(1089) NC 99(165) 122(200)

Table 7: Solution of the 3D Navier-Stokes backward fac-
ing step (16×16×48) with preconditioned GCR(20) with
accuracy 10−2 and 10−4 in the Picard linearization. The
accumulated number of iterations are reported.

SIMPLE SIMPLER CMK Sloan Picard
It.(ts) It.(ts) It.(ts) It.(ts) It.

0.02 300(789) 92(869) 225(120) 271(159) 7
0.01 464(1150) 115(925) 311(159) 368(200) 9
0.004 773(1448) 155(919) 856(317) 649(293) 12

4.4 Experiments with IDR(s)

In this section, we compare Bi-CGSTAB and IDR(s) pre-
conditioned with ILU. In Figure (5), the number of iter-
ations and CPU-time for the solution of the Stokes back-
ward facing step problem for two different grid are plot-
ted. We see that an increase of s from 1 to 2 reduces
the CPU-time considerably (especially for the fine grid),
but further increase of s has no significant profit. The
increase of s does not give a monotone decrease of itera-
tions.

In Table 8 we see the number of matrix-vector multiplica-
tions and CPU-time for the Stokes driven cavity problem
solved on a uniform grid. Since 1 iteration of Bi-CGSTAB
costs 2 matrix-vector multiplications and IDR(s) requires
s multiplications per step this is the best way of compar-
ison. The difference between Bi-CGSTAB and IDR(4)
is not very significant. However, the table suggests that
this difference increases for increasing grid size.

The main reason to use IDR is the better performance in
case the ILU-preconditioner is not so efficient. To show
this we consider a 2D lid driven cavity with a grid re-
fined in the region where we have strong gradients. The
subdivision is symmetric with respect to midpoints of the
square (Figure (6)). The stretch factor SF is defined as
the ratio of the largest and smallest edge in the grid. Ta-
ble 9 shows the effect of the stretch factor for the Stokes
problem on a 128×128 grid. The optimal choice, IDR(7),
shows a much better performance for increasing SF than
Bi-CGSTAB.

In Table 10, the backward facing step Stokes problem is
solved on stretched grid in which the number of elements
perpendicular to the flow direction are increased gradu-
ally. Bi-CGSTAB shows convergence only for the first
case while IDR(s) converges for all.

In general, IDR(s) proved to be more stable than Bi-
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Figure 5: The 2D Stokes backward facing step prob-
lem solved with ILU preconditioned IDR(s) method with
varying s dimension: 32 × 96 grid (Top), 64 × 96 grid
(Bottom).

CGSTAB. For the problems, where Bi-CGSTAB shows
convergence, IDR(s) always shows convergence. How-
ever, in some cases, we observed divergence of Bi-
CGSTAB whereas IDR(s) converged.

5 Conclusions

In this paper, various preconditioners for the discretized
Navier-Stokes equations have been compared. SIMPLE -
type and ILU preconditioners in combination with special
renumbering scheme are discussed in this paper.

• 2D experiments show that SIMPLER performs bet-
ter than SIMPLE. However, the convergence of the
SIMPLER preconditioner strongly depends on the
accuracies of the subsystem solvers. Increase in
problem size, hardens the demand to use an accu-
rate inner solver. This limits the use of the SIM-
PLER preconditioner in 3D. On the other hand,
though SIMPLE converges in more outer iterations
than SIMPLER, it does not require an increase of
accuracy of the inner subsystem. This makes the
SIMPLE preconditioner suitable for a wide range of
problems. The viscosity independent convergence of

Figure 6: A 32 × 32 grid with stretch factor = 8.

Table 8: ILU preconditioned Krylov subspace methods
comparison with increasing grid size for the driven cavity
Stokes flow problem.

Grid Bi-CGSTAB IDR(4)
Mat.-Vec. (ts) Mat.-Vec. (ts)

16 × 16 38(0.01) 33(0.01)
32 × 32 90(0.14) 75(0.14)
64 × 64 214(1.6) 159(1.4)

128 × 128 512(16) 404(15)
256 × 256 1386(183) 1032(156)

Table 9: ILU preconditioned Krylov subspace methods
comparison with increasing stretch factor for the driven
cavity Stokes flow problem.

Stretch factor Bi-CGSTAB IDR(7)
Mat.-Vec.(ts) Mat.-Vec.(ts)

1 512(16) 370(15)
4 804(25) 432(17.5)
7 1104(34) 524(21)
11 1354(43) 612(24)
15 1576(49) 663(26)

Table 10: ILU preconditioned Krylov subspace methods
comparison for the backward facing step Stokes problem.

Grid Bi-CGSTAB IDR(s)
Mat.-Vec.(ts) Mat.-Vec.(ts) s

32 × 96 214(1.3) 168(1.26) 4
64 × 96 NC 597(7.7) 4
96 × 96 NC 933(18) 4
128 × 96 NC 1105(31) 8
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SIMPLER can only be achieved with exact solves
for the subsystem. Proper choice of the relaxation
parameter can reduce the number of outer/inner it-
erations if Stokes problem is solved with the SIMPLE
preconditioner.

• Our special reordering scheme has first been de-
veloped for direct solvers. Results show that our
reordering scheme reduces both memory and CPU
time usage in a direct solver.

• For the ILU preconditioner, the p-last per level re-
ordering scheme gives better convergence than p-
last. p-last per level reordering reduces the profile
and bandwith of the matrix and avoids breakdown
of LU/ILU. In 2D, with p-last per level reordering,
Sloan performs better than CMK. In 3D, CMK gives
faster convergence than Sloan. The convergence of
all these preconditioners strongly depends on the
grid size. Compared to the other preconditioner dis-
cussed, SIMPLE convergence is more effected by the
decrease in viscosity. Besides simple and cheaper im-
plementation, our ILU preconditioner performs bet-
ter than SIMPLE-type preconditioners.

• Our ILU preconditioner has been combined with
both Bi-CGSTAB and IDR(s). It is shown that
IDR(s) is more stable especially for increasing grid
size and stretched meshes.
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