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Abstract—The weak convergence of a sequence of
stochastic processes is classically studied in the Sko-
rohod space D[0, 1] or C[0, 1] but the weak Hölder con-
vergence offers more continous functionals than C[0, 1]
for statistical applications. We study the weak con-
vergence of stochastic processes in Hölder spaces and
using some results of tightness proved in these spaces,
we obtain a Hölderian version of Donsker-Prohorov’s
invariance principle. First for the polygonal interpo-
lation of the partial sums process, generalizing Lam-
perti’s invariance principle to the non-stationary case
and similar results are proved for the convolution
smoothing of the partial sums process.
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1 Introduction

In parametric and non parametric statistics, many statis-
tical applications (estimation, testing hypothesis,...) are
based on continuous functionals of paths of processes
and solved using the weak convergence of stochastic pro-
cesses. The weak convergence of a sequence (ξn, n ≥ 1)
of stochastic processes in some functional space provides
results about the asymptotic distribution of continuous
functionals of the paths. Since the Hölder spaces are
topologically embedded in the spaces C[0, 1] of continu-
ous functions and in the Skorokhod space D[0, 1], they
support more continuous functionals. From this point of
view, the alternative framework of Hölder spaces gives
functional limit theorems of a wider scope. This choice
may be relevant as soon as the paths of ξn and the limit
process (like e.g. the Brownian motion and the Brown-
ian bridge) share some Hölder regularity. The first result
in this direction seems to be Lamperti’s Hölderian invari-
ance principle [6] for the (centered and normalized) polyg-
onal partial sums processes. This result was completed
in recent contributions by Račkauskas and Suquet [8, 10]
who extended it to the case of adaptive self-normalized
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partial sums processes and proposed a necessary and suf-
ficient condition for a generalized form of Lamperti’s in-
variance principle. Some statistical applications of weak
Hölder convergence are proposed by the same authors
[9, 11].

We consider a sequence (Xj)j≥1 of independent ran-
dom variables not necessarily identically distributed with
EXj = 0 and EX2

j = σ2
j . We denote ξn the ran-

dom polygonal lines obtained by linear interpolation be-
tween the points

(
j
n ,

Sj

sn

)
where Sj =

∑j
k=1 Xj and

sn =
√

σ2
1 + · · ·+ σ2

n.

When the Xj are identically distributed with EX2
j = σ2,

the Donsker-Prohorov’s invariance principle establishes
then the C [0, 1] weak convergence of ξn to the Brown-
ian motion W . The invariance principle in the Banach
Hölder space Hα [0, 1] has been established by Lamperti.
Kerkyacharian and Roynette have derived it again using
the Faber-Schauder basis of triangular functions.

Theorem 1 (Lamperti [6]) Let (Xj)j≥1 be a sequence
of independent identically distributed random variables
with EXj = 0 and E |Xj |2 = σ2. Suppose that for some
constant γ > 2, E |Xj |γ < ∞.

For all n ∈ N∗, 0 ≤ j < n, define

ξn(t, ω) =
1
sn

k=j∑
k=1

Xk (ω)+
nt− j

sn
Xj+1(ω),

j

n
≤ t <

j + 1
n

.

Then the sequence (ξn)n≥1 converges weakly to the Brow-
nian motion W in H0

α for all α < 1
2 −

1
γ .

Using some results of tightness proved in these spaces,
Hamadouche [3] has extended this result to depen-
dent random variables(α-mixing and association) and
has proved the weak convergence in H0

α of the convo-
lution smoothed process to the Brownian motion.

Our aim is to extend Lamperti’s theorem to polygonal
and convolution smoothed partial sums process with a se-
quence of independent random variables (Xj)j≥1 not nec-
essarily identically distributed. The polygonal smoothing



is sometimes rough, like in the study of weak convergence
of empirical and quantile processes in [2, 4]. Thus it is
interesting to study the convolution smoothing which is
useful in statistical applications, estimation of density,
etc. Also we use the classical definition of the partial
sums process, which is useful in the literature, for a non-
stationary sequence of independent random variables in-
stead of the adaptative construction used in [10] because
for the general case of triangular array of random vari-
ables with uneven variances, the convergence of finite-
dimensional distributions to Brownian motion does not
immediately follow from the central limit theorem.

In Section 2, we recall the Banach Hölder space Hα [0, 1]
and its closed subspace H0

α [0, 1]. We consider stochastic
processes with paths in H0

α [0, 1] and treat them as ran-
dom elements of H0

α [0, 1]. We give some results of the
weak convergence and tightness. Our invariance princi-
ples are presented in Section 3. We extend the Donsker-
Prohorov’s theorem for the independent random variables
not necessarily identically distributed and prove the weak
convergence in H0

α [0, 1] of the polygonal smoothed of the
partial sums process to the Brownian motion. Similar
result is proved for the convolution smoothed process.

2 Random elements in Hölder space

We study stochastic processes with Hölderian paths as
random elements of the functional space Hα [0, 1]. We
observe directly the whole path, which corresponds to
select at random a function ξ with distribution Pξ.

2.1 Definitions

We define the Hölder space Hα [0, 1] (0 < α ≤ 1) as the
space of functions f vanishing at 0 such that

‖f‖α = sup
0<|t−s|≤1

|f (t)− f (s)|
|t− s|α

< ∞. (1)

Define the Hölderian modulus of continuity of f by

wα (f, δ) = sup
0<|t−s|≤δ

|f (t)− f (s)|
|t− s|α

(2)

and the subspace H0
α [0, 1] of Hα [0, 1] by

f ∈ H0
α ⇔ f ∈ Hα and lim

δ→0
wα (f, δ) = 0. (3)

(Hα, ‖.‖α) is a non-separable Banach space.

(
H0

α, ‖.‖α

)
is a separable Banach space.

(
Hα, ‖.‖β

)
is separable for 0 < β < α and is topologically

embedded in Hβ .

2.2 Weak convergence in Hölder space

The concept of weak convergence of probability measures
can be formulated for the general metric space. We use
this theory to obtain a whole class of limit theorems for
functions of the partial sums S1, . . . , Sn, . . .

2.3 Tightness

For the tightness, it is more convenient to work with
H0

α [0, 1] which is separable instead of Hα [0, 1]. As the
canonical injection of H0

α [0, 1] in Hα [0, 1] is continuous,
weak convergence in the former implies weak convergence
in the later. A first sufficient condition for the tightness
in H0

α [0, 1] is given by

Theorem 2 (Kerkyacharian-Roynette [5]) Let
(ξn)n≥1 be a sequence of processes vanishing at 0 and
suppose there are γ > 0, δ > 0 and c > 0 such that

∀λ > 0, P (|ξn (t)− ξn (s)|γ) ≤ c

λγ
|t− s|1+δ

. (4)

Then the sequence (ξn)n≥1 is tight in H0
α [0, 1] for 0 <

α < δ
γ .

The following corollary gives the moments version of the
precedent theorem.

Corollary 3 (Lamperti [6]) Let (ξn)n≥1 be a sequence
of processes vanishing at 0. Suppose there are γ > 0,
δ > 0 and c > 0 such that

E |ξn (t)− ξn (s)|γ ≤ c |t− s|1+δ
. (5)

Then the sequence (ξn)n≥1 is tight in H0
α [0, 1] for 0 <

α < δ
γ .

The sufficient and necessary condition which can be use-
ful to test the optimally of certain results is given by the
Hölder version of Ascoli’s theorem.

Theorem 4 (Račkauskas, Suquet [7]) Let (ξn)n≥1

be a sequence of random elements of H0
α [0, 1]. (ξn)n≥1

is tight if and only if

∀ ε > 0, lim
δ→0

sup
n≥1

P (wα (ξn, δ) ≥ ε) = 0. (6)



For more flexibility in the handling of moment inequali-
ties, we use this following result.

Theorem 5 (Hamadouche [3]) Let (ξn)n≥1 be a se-
quence of random elements of H0

α [0, 1], satisfying the fol-
lowing conditions

a) there exist constants a > 1, b > 1, c > 0 and a
sequence of positive numbers (an) ↘ 0 such that

E |ξn (t)− ξn (s)|a ≤ c |t− s|b , (7)

for all |t− s| ≥ an, 0 ≤ s, t ≤ 1 and n ≥ 1.

b) For any ε > 0,

lim
n→∞

P (ωα (ξn, an) > ε) = 0. (8)

Then for all α < a−1 (min (a, b)− 1), (ξn)n≥1 is tight in
H0

α [0, 1].

3 Invariance principles in Hölder space

We consider the sequence (Xj)j≥1 of independent ran-
dom variables, not necessarily identically distributed with
EXj = 0 and σ2

j = EX2
j . Denote sn =

√
σ2

1 + · · ·+ σ2
n,

Si =
∑i

k=1 Xk and S0 = 0. We suppose that there
exist γ > 2, m > 0 and M > 0 such that ∀ j ≥ 1

E |Xj |γ ≤ M < ∞ and m ≤ σ2
j = E |Xj |2 −→

j→∞
σ2.

(9)

3.1 Polygonal smoothing of partial sums
process

We extend here the Donsker-Prohorov’s theorem for in-
dependent random variables not necessarily identically
distributed which is the first extension of Lamperti’s in-
variance principle.

Theorem 6 Let (Xj)j≥1 be a sequence of independent
random variables, not necessarily identically distributed
with EXj = 0 and EX2

j = σ2
j and satisfying (9).

Define for all n ∈ N∗, 0 ≤ j < n ,

ξn(t, ω) =
1
sn

k=j∑
k=1

Xk (ω) +
nt− j

sn
Xj+1 (ω) , (10)

for all j
n ≤ t < j+1

n .

Then the sequence (ξn)n≥1 converges weakly to the Brow-
nian motion W in H0

α [0, 1] for all α < 1
2 −

1
γ .

Proof. We apply Theorem 5, with an = 1
n .

Tightness of distributions Pn = Pξ−1
n .

By Corollary 3, it is sufficient, to prove that under the
assumptions of Theorem 6

E |ξn(t)− ξn(s)|γ ≤ K |t− s|1+δ with 1 + δ =
γ

2
> 1.

First case: j
n ≤ s ≤ t ≤ j+1

n .

We have

|ξn(t)− ξn(s)| =
∣∣∣∣ 1
sn

n (t− s)Xj+1 (ω)
∣∣∣∣ .

Under the assumption (9) it is easy to see that there exists
a constant M ′ = M

2
γ such that

m < E |Xj |2 ≤ M ′, ∀j ≥ 1. (11)

By the last inequalities, we deduce

|ξn(t)− ξn(s)| ≤
∣∣∣∣ 1√

nm
n (t− s) Xj+1

∣∣∣∣ =

( n

m

) 1
2 |(t− s) Xj+1| .

Then

E |ξn(t)− ξn(s)|γ ≤ E

∣∣∣∣( n

m

) 1
2

(t− s) Xj+1

∣∣∣∣γ ≤
m− γ

2 M |t− s|
γ
2 ,

since n |t− s| ≤ 1 and E |Xj+1|γ < M .

Finally
E |ξn(t)− ξn(s)|γ ≤ K |t− s|1+δ

, (12)

with K = m− γ
2 M and 1 + δ = γ

2 > 1.

Second case: j−1
n ≤ s ≤ j

n ≤ j+k
n ≤ t ≤ j+k+1

n , k =
0, 1, ..., n− j − 1.

By triangular inequality,

|ξn(t)− ξn(s)| ≤
∣∣∣∣ξn(t)− ξn(

j + k

n
)
∣∣∣∣+∣∣∣∣ξn(

j + k

n
)− ξn(

j

n
)
∣∣∣∣



+
∣∣∣∣ξn(

j

n
)− ξn(s)

∣∣∣∣ .

By Jensen’s inequality we have

E |ξn(t)− ξn(s)|γ ≤ 3γ−1

(
E

∣∣∣∣ξn(t)− ξn(
j + k

n
)
∣∣∣∣γ

+ E

∣∣∣∣ξn(
j + k

n
)− ξn(

j

n
)
∣∣∣∣γ

+ E

∣∣∣∣ξn(
j

n
)− ξn(s)

∣∣∣∣γ)
.

The first and the third terms can be treated as in the
precedent case, thus there exist some constants K1 and
K3 such that

E

∣∣∣∣ξn(t)− ξn(
j + k

n
)
∣∣∣∣γ ≤ K1 |t− s|1+δ (13)

and

E

∣∣∣∣ξn(
j

n
)− ξn(s)

∣∣∣∣γ ≤ K3 |t− s|1+δ
. (14)

For the middle term, we have

E

∣∣∣∣ξn(
j + k

n
)− ξn(

j

n
)
∣∣∣∣γ = E

∣∣∣∣ 1
sn

Sj+k −
1
sn

Sj

∣∣∣∣γ ≤
(

1
nm

) γ
2

E |Sj+k − Sj |γ .

By the Marcinkiewicz-Zygmund’s inequality, it follows

E

∣∣∣∣ξn(
j + k

n
)− ξn(

j

n
)
∣∣∣∣γ ≤

(
1

nm

) γ
2

Cγ .(∑k

i=1
E |Xi|2

) γ
2

≤
(

1
nm

) γ
2

Cγ (kM ′)
γ
2 =

Cγ

(
M ′

m

) γ
2

(
k

n

) γ
2

.

Since |t− s| ≥ j+k
n − j

n = k
n ,

E

∣∣∣∣ξn(
j + k

n
)− ξn(

j

n
)
∣∣∣∣γ ≤ Cγ

(
M ′

m

) γ
2

|t− s|
γ
2 .

We deduce that there exist constants K2 = Cγ

(
M ′

m

) γ
2

and δ > 0 such that

E

∣∣∣∣ξn(
j + k

n
)− ξn(

j

n
)
∣∣∣∣γ ≤ K2 |t− s|1+δ

. (15)

With the three inequalities (13), (14) and (15) we obtain

E |ξn(t)− ξn(s)|γ ≤ 3γ−1 (K1 + K2 + K3) |t− s|1+δ
.

So, there exists a constant K = 3γ−1 (K1 + K2 + K3)
such that

E |ξn(t)− ξn(s)|γ ≤ K |t− s|1+δ with 1 + δ =
γ

2
> 1.

Thus by Corollary 3, the sequence of distributions
(Pn)n≥1 of processes ξn is tight in H0

α [0, 1] for any
0 < α < δ

γ = 1
2 −

1
γ .

Convergence of the finite-dimensional distributions.

To show that the finite-dimensional distributions of the
ξn converges to those of W , we consider first a point s

and must prove that ξn (s) D−→ Ws.

With the definition of ξn, we have∣∣∣∣ξn (s)−
S[ns]

sn

∣∣∣∣ = (ns− [ns])
1
sn

X[ns]+1 ≤
1
sn

X[ns]+1.

It suffices to prove that 1
sn

X[ns]+1
P−→ 0 and S[ns]

sn

D−→
Ws.

For ε > 0, the Bienaymé-Tchebychev’s inequality implies
that

P

(
1
sn

X[ns]+1 ≥ ε

)
≤ 1

nm

M ′

ε2
→

n→∞
0

since nm ≤ s2
n and V AR (Xj) ≤ M ′, ∀ j ≥ 1. Then

1
sn

X[ns]+1
P−→ 0.

We know that by the Lindberg’s theorem, Sn

sn
converges

in distribution to the normal law N if

lim
n→∞

n∑
k=1

1
s2

n

∫
|Xk|≥εsn

X2
k dP = 0.

With the assumption |Xk| ≥ εsn, we have 1 ≤ |Xk|δ

|εsn|δ

n∑
k=1

1
s2

n

∫
|Xk|≥εsn

X2
k dP ≤

n∑
k=1

1
s2

n

∫
|Xk|≥εsn

|Xk|2+δ

|εsn|δ
dP

≤ M

εδm
2+δ
2

1

n
δ
2
−→ 0
n→∞

.

Then S[ns]

sn

D−→ N . Using the independence of random
variables and the assumption (9), it is easy to prove that

lim
n−→∞

V AR

[
S[ns]

sn

]
= s and E

(
S[ns]

sn

)
= 0,



so S[ns]

sn

D−→ Ws.

Consider now two points s and t with s < t. By the same
arguments applied to the triangular array (Xi, [ns] < i ≤
[nt]), we obtain

S[nt] − S[ns]

sn

D−→ Wt −Ws.

The two components of
(

S[ns]

sn
,

S[nt]

sn
− S[ns]

sn

)
are indepen-

dent by the independence of (Xj). Since R is separable,
it follows that(

S[ns]

sn
,
S[nt]

sn
−

S[ns]

sn

)
D−→ (Ws,Wt −Ws) .

On the other hand∣∣∣∣(ξn (t)− ξn (s))−
(

S[nt]

sn
−

S[ns]

sn

)∣∣∣∣ ≤ ∣∣∣∣ 1
sn

X[nt]+1

∣∣∣∣ +

∣∣∣∣ 1
sn

X[ns]+1

∣∣∣∣ .

We have shown that 1
sn

X[ns]+1
P→ 0 con-

sequently 1
sn

X[nt]+1
P→ 0 so it follows that∣∣∣(ξn (t)− ξn (s))−

(
S[nt]

sn
− S[ns]

sn

)∣∣∣ P−→ 0 and hence

|ξn (t)− ξn (s)| D−→ (Wt −Ws). Since ξn (s) and
ξn (t) − ξn (s) are independent by the independence of
Xj , we deduce that

(ξn (s) , ξn (t)− ξn (s)) D−→ (Ws,Wt −Ws) .

We conclude that (ξn (s) , ξn (t)) D−→ (Ws,Wt) since the
function h defined by (x, y) 7→ (x, x + y) is continuous.

We treat a set of three or more points in the same way,
and hence the finite-dimensional distributions converges
properly. This achieves the proof of Theorem 6.

3.2 Convolution smoothing of partial sums
process

We recall here some results and some assumptions used
by Hamadouche [3] for the convolution smoothed process
in Hα [0, 1]. We consider the Donsker-Prohorov’s normal-
ized partial sums process

ξn (t) =
1
sn

S[nt] (t) , t ∈ [0,1] . (16)

For the sake of convenience, we shall use both following
expressions of ξn

ξn (t) =
1
sn

n∑
i=1

Si1[ i
n , i+1

n [ (t) , (17)

ξn (t) =
1
sn

n∑
k=1

Xk1[ k
n ,1] (t) . (18)

Let K be a probability density on the real line R such
that ∫

R
|u|K (u) du < ∞ (19)

and (bn)n≥1 a sequence of positive numbers such that
lim

n→∞
bn = 0 and

1
bn

= O
(
n

τ
2
)
, 0 < τ <

1
2
. (20)

We define the sequence (Kn)n≥1 of convolution kernels
by

Kn (t) =
1
bn

K

(
t

bn

)
, t ∈ R. (21)

Lemma 7 (Hamadouche [3]) Let f be a bounded mea-
surable function with support in [0, 1] and K a convolu-
tion kernel satisfying

K ∈ L1 ([−1, 1]) ∩ L
1
2 ([−1, 1]) , (22)

|K (x)−K (y)| ≤ α (K) |x− y| , x, y ∈ [−1, 1] , (23)

for some constant α (K). Then the restriction to [0 ,1] of
(f ∗K)− (f ∗K) (0) is in H 1

2
[0, 1].

We consider the smoothed partial sums process defined
by

ζn (t) = (ξn ∗Kn) (t)− (ξn ∗Kn) (0) t ∈ [0, 1] . (24)

The term (ξn ∗Kn) (0) is subtracted in order to have a
process with paths vanishing at zero.

Theorem 8 Let (Xj)j≥1 be a sequence of independent
random variables, not necessarily identically distributed
with EXj = 0 and EX2

j = σ2
j and satisfying (9). Suppose

that the convolution kernels Kn satisfy (19), (21), (22)
and (23). Then the sequence of smoothed partial sums
process ζn defined by (24) converges weakly to the Brow-
nian motion W in H0

α [0,1] for all α < 1
2 −max

(
τ, 1

γ

)
.

Proof. By lemma 7, ζn is in H0
α [0, 1] for all α < 1

2 . We
apply Theorem 5 with an = 1

n . We recall that

(ξn ∗Kn) (t) =
∫

R
ξn (t− u) Kn (u) du =



∫
R

ξn (u)Kn (t− u) du.

Tightness. Using Theorem 5 with an = 1
n , we study

separately the cases t − s ≥ 1
n and t − s < 1

n . Without
loss of generality we can assume that t > s.

First case: t− s ≥ 1
n .

E |ζn (t)− ζn (s)|γ = E |ξn ∗Kn (t)− ξn ∗Kn (s)|γ =

E

∣∣∣∣ 1
sn

∫
R

(∑[n(t−u)]

k=[n(s−u)]+1
Xk

)
Kn (u) du

∣∣∣∣γ =

E

∣∣∣∣EKn

(
1
sn

∑[n(t−u)]

k=[n(s−u)]+1
Xk

)∣∣∣∣γ .

Applying the Jensen’s inequality whith respect to
Kn(u) du we obtain

E |ζn (t)− ζn (s)|γ ≤ E

(
EKn

∣∣∣∣ 1
sn

∑[n(t−u)]

k=[n(s−u)]+1
Xk

∣∣∣∣γ)
.

By the Fubini’s theorem we have

E |ζn (t)− ζn (s)|γ ≤ EKn

(
E

∣∣∣∣ 1
sn

∑[n(t−u)]

k=[n(s−u)]+1
Xk

∣∣∣∣γ)
≤

∫
R

E

∣∣∣∣ 1
sn

∑[n(t−u)]

k=[n(s−u)]+1
Xk

∣∣∣∣γ Kn (u) du.

Using the Marcinkiewicz-Zygmund’s inequality for the
moments of sums of the independent random variables
we obtain

E |ζn (t)− ζn (s)|γ ≤

∫
R

(
1
sn

)γ

Cγ

(∑[n(t−u)]

k=[n(s−u)]+1
E |Xk|2

) γ
2

Kn (u) du.

Using the assumptions (9) and (11), we deduce that

E |ζn (t)− ζn (s)|γ ≤∫
R

(
1√
nm

)γ

Cγ

(∑[n(t−u)]

k=[n(s−u)]+1
M ′

) γ
2

Kn (u) du ≤∫
R

(
1√
nm

)γ

CγMγ ([n (t− u)]− [n (s− u)])
γ
2 Kn (u) du.

Since [n (t− u)]− [n (s− u)] ≤ n (t− s) + 2 and

|t− s| ≥ 1
n ,

E |ζn (t)− ζn (s)|γ ≤∫
R

(mn)−
γ
2 CγMγ (n |t− s|+ 2)

γ
2 Kn (u) du ≤∫

R
m− γ

2 CγMγ

(
|t− s|+ 2

n

) γ
2

Kn (u) du ≤∫
R

m− γ
2 CγMγ (|t− s|+ 2 |t− s|)

γ
2 Kn (u) du ≤∫

R
m− γ

2 CγMγ (3 |t− s|)
γ
2 Kn (u) du ≤

m− γ
2 CγMγ (3 |t− s|)

γ
2

∫
R

Kn (u) du ≤

m− γ
2 CγMγ3

γ
2 |t− s|

γ
2 .

Hence there exists a constant C ′
γ = m− γ

2 CγMγ3
γ
2 such

that

E |ζn (t)− ζn (s)|γ ≤ C ′
γ |t− s|

γ
2 .

Second case: 0 ≤ t− s < 1
n .

|ζn (t)− ζn (s)| = |ξn ∗Kn (t)− ξn ∗Kn (s)| =∣∣∣∣∣
∫

R

1
sn

n∑
k=1

Xk (Kn (t− u)−Kn (t− s)) 1[ k
n ,1] (u) du

∣∣∣∣∣ ≤∫
R

1
sn

n∑
k=1

|Xk| |Kn (t− u)−Kn (t− s)| 1[ k
n ,1](u)du ≤

∫
R

1
sn

n∑
k=1

|Xk|
1
bn

∣∣∣∣K (
t− u

bn

)
−K

(
s− u

bn

)∣∣∣∣ 1[ k
n ,1] (u) du.

Using Assumption (23) of Lemma 7, it follows

|ζn(t)− ζn(s)| ≤∫
R

1
sn

n∑
k=1

|Xk|
1
bn

α(K)
∣∣∣∣ t− s

bn

∣∣∣∣ 1[ k
n ,1] (u) du ≤

1
sn

n∑
k=1

|Xk|
1
bn

α(K)
|t− s|

bn

∫
R

1[ k
n ,1] (u) du ≤

1√
nm

n∑
k=1

|Xk|
1
b2
n

α (K) |t− s|
(

1− k

n

)
≤

1√
nm

1
b2
n

α(K)
n∑

k=1

|Xk| |t− s| ,

since
(
1− k

n

)
< 1 and hence

|ζn (t)− ζn (s)|
|t− s|α

≤ 1√
nm

1
b2
n

α (K)
n∑

k=1

|Xk| |t− s|1−α
.



As a result,

wα

(
ζn,

1
n

)
= sup
|t−s|≤ 1

n

|ζn (t)− ζn (s)|
|t− s|α

≤

1√
m

1
b2
n

α (K)n−
1
2

n∑
k=1

|Xk|
∣∣∣∣ 1
n

∣∣∣∣1−α

≤

1√
m

1
b2
nn

1
2−α

α (K)
1
n

∑n

k=1
|Xk| .

Now to prove that wα

(
ζn, 1

n

) P→ 0, it suffices to show
that

1√
m

1
b2
nn

1
2−α

α (K)
1
n

n∑
k=1

|Xk|
P→ 0.

By the Markov’s inequality we have

P

[
α(K)√

m

1
b2
nn

1
2−α

1
n

n∑
k=1

|Xk| > δ

]
≤

1
δ

α(K)√
m

1
b2
nn

1
2−α

1
n

n∑
k=1

E |Xk| .

The assumption (9) and the Schwartz’s inequality give
E |Xk| ≤ M ′ 12 so

P

[
α(K)√

m

1
b2
nn

1
2−α

1
n

∑n

k=1
|Xk| > δ

]
≤

1
δ

α(K)√
m

1
b2
nn

1
2−α

n
√

M ′

n
→ 0
n→∞

.

Using the assumption (20) we deduce that

1
b2
n

na− 1
2 =

(
1
bn

n
1
2 (α− 1

2 )
)2

−→
n→∞

0 if α <
1
2
− τ.

We conclude about tightness by Theorem 5, noting that
its hypothesis are satisfied for a = γ, b = γ

2 , c = C ′
γ

and an = 1
n . We obtain then the tightness of (ζn) in

H0
α [0, 1] for all α < 1

2 − τ and α < 1
2 −

1
γ so for all

α < 1
2 −max

(
τ, 1

γ

)
.

Convergence of the finite-dimensional distributions of
{ζn, n ≥ 1}. By Theorem 6, the finite-dimensional distri-
butions of ξn converge to those of the Brownian motion,
it will be the same for those of ζn if we prove for in-
stance the convergence to zero of E |ζn (t)− ξn (t)|2 for

all t ∈ [0, 1].

E |ζn − ξn (t)|2 = E

∣∣∣∣∫
R

ξn (t− u)Kn (u) du− ξn (t)
∣∣∣∣2

= E

∣∣∣∣∫
R

1
sn

(
S[n(t−u)] − S[nt]

)
Kn (u) du

∣∣∣∣2

= E

∣∣∣∣∣∣
∫

R

1
sn

[n(t−u)]∑
i=[nt]+1

XiKn (u) du

∣∣∣∣∣∣
2

= E

∣∣∣∣∣∣Ek

 1
sn

[n(t−u)]∑
i=[nt]+1

Xi

∣∣∣∣∣∣
2

.

Applying the Jensen’s inequality with respect to Kn, we
obtain

E |ξn ∗Kn (t)− ξn (t)|2 ≤ E

Ek

∣∣∣∣∣∣ 1
sn

[n(t−u)]∑
i=[nt]+1

Xi

∣∣∣∣∣∣
2
 .

By the Fubini’s theorem we have

E |ξn ∗Kn (t)− ξn (t)|2 ≤ EKn

E

∣∣∣∣∣∣ 1
sn

[n(t−u)]∑
i=[nt]+1

Xi

∣∣∣∣∣∣
2


≤
∫

R
E

∣∣∣∣∣∣ 1
sn

[n(t−u)]∑
i=[nt]+1

Xi

∣∣∣∣∣∣
2

Kn(u) du.

Applying again the Marcinkiewiez-Zygmund’s inequality,
it follows

E |ξn ∗Kn (t)− ξn (t)|2 ≤

c

∫
R

(
1
sn

)2 [n(t−u)]∑
i=[nt]+1

E
∣∣X2

i

∣∣Kn(u)du ≤

c

∫
R

M ′

nm
(n |u|+ 2)Kn(u)du

(since ([n(t− u)]− [nt]) ≤ (n |u|+ 2))

≤ c
M ′

m

∫
R

(
|u|+ 2

n

)
Kn(u)du ≤

c′
∫

R

(
|u|+ 2

n

)
Kn(u)du with c′ = c

M ′

m
.

By (22) and noting v = u
bn

, it follows that

E |ξn ∗Kn (t)− ξn (t)|2 ≤

c′
∫

R

(
bn |v|+

2
n

)
1
bn

K(v)bndv ≤

c′
(

bn

∫
R
|v|K(v)dv +

2
n

)
.



Since
∫

R |v|K(v)dv < ∞ and bn goes to zero as n goes
to infinity, we deduce that ξn (t) ∗ Kn (t) − ξn (t) goes
to 0 in L2 (Ω) for all t ∈ [0, 1]. In particular for t = 0,
E |ξn ∗Kn (0)|2 goes to 0 as n goes to infinity. We have
finally, for all t ∈ [0, 1]

E |ζn (t)− ξn (t)|2 =

E |(ξn ∗Kn) (t)− (ξn ∗Kn) (0)− ξn (t)|2 ≤

2
(
E |(ξn ∗Kn) (t)− ξn (t)|2 + E |(ξn ∗Kn) (0)|2

)
→

n→∞
0.

Hence

ζn (t)−ξn (t) L2

→ 0 and implies ζn (t)−ξn (t) P→ 0
so

∑k
i=1 |ζn (ti)− ξn (ti)|2 = ‖ζn − ξn‖2Rk

P→ 0.

This achieves the proof of the convergence of the finite-
dimensional distribution of ζn. The Theorem 8 is then
proved.
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