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Abstract—The most important feature of numeri-

cal methods based on a spectral decomposition is the

best convergence rate (even infinite for infinitely reg-

ular functions) with respect to all other methods used

in dealing with the solution to most of the differential

equations. However this is true under the manda-

tory condition that at each time step of the evolv-

ing numerical solution no discontinuity occurs, either

advected from the initial condition or self-generated

(shock wave) by the non-linearity of the problem. In

the first part of this paper we will point out that also

by using any second or higher order pseudo-spectral

method applied to the linear advection equation, one

can experience the appearance in the numerical solu-

tion of the celebrated Gibbs phenomenon, located at

the discontinuity points of the initial condition. As

matter of fact in order to avoid such a drawback, the

only applicable methods are the first order ones. In

particular for stability reasons, we chose to consider

the implicit Euler method and experienced that, even

the Richardson’s extrapolation is not able in increas-

ing the accuracy without falling into the same prob-

lem. As a partial remedy, we propose a novel way to

improve the accuracy of the implicit Euler first order

pseudo-spectral method by reducing the coefficient of

its truncation error leading term via a time one-step

extrapolation-like technique. The second part of the

paper is instead devoted to show how for dispersive

differential problems the use of pseudo-spectral meth-

ods represents a very powerful numerical approach in

finding out the notorious solitons dynamics. In par-

ticular we will deal with the celebrated KdV equation

in 1D and its generalization in 2D.
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1 Introduction

Spectral methods are considered to be a valid or at least
equivalent alternative to other numerical approaches in
working out the solution to a partial differential equa-
tion. A very broad and deep treatment of spectral meth-
ods is done in various monographies and other books
like the ones by Gottlieb and Orszag [9], Vichnevetsky
and Bowles [11], Canuto et al. [1], Fonberg [7], Gottlieb
and Hestaven [8] beyond the plenty of references quoted
therein. For instance, as long as problems in acoustics
or optics are concerned, in his book [10, pag.7] LeVeque
states that the primary computational difficulty arises
from the fact that the domain of interest is many orders
of magnitude larger than the wavelength of interest and
as a consequence methods with higher order of accuracy
are typically used, for example, fourth order finite differ-
ence methods or spectral methods.

Dealing with an analytic function, it is proved that,
by means of a spectral decomposition, it is possible to
achieve a uniform convergence, exponentially increasing
with the number of harmonics taken. On the contrary, if
we consider functions that are piecewise smooth, even the
point-wise convergence is lost and the celebrated Gibbs
phenomenon arises consisting in a few overshoots located
at function discontinuities. As in many practical appli-
cations the solution has to be strictly included within a
predefined interval, it is obvious that the appearance of
the Gibbs phenomenon might make the numerical solu-
tion lacking of physical meaning.

Our attention in this paper is devoted to numerically
solving both the linear advection equation, with a con-
stant advection velocity field, and the Korteweg-de Vries
(KdV) equation. Moreover, for these models we prescribe
an initial condition and consider only periodic bound-
ary conditions, so that it is straightforward to apply the
Fourier decomposition approach.

Preliminary versions of this study were presented at the
SIMAI 2006 [4] and WASCOM 2007 [3] conferences.
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2 Definitions and notations

Before studying the problems that will be dealt with in
the subsequent sections, we need to define both the do-
main and the notation that will be employed.

As matter of fact, we will consider the finite space
domain Ω = [0, Lx]× [0, Ly]× [0, Lz] which, for numerical
reason is to be discretized with spacings ∆x = Lx/J ,
∆y = Ly/K and ∆z = Lz/H, in the x, y and z direction,
respectively. Here, J , K and H are integers. On the
grid points (xj , yk, zh) = (j∆x, k∆y, h∆z) of the domain
Ω with j ∈ {0, 1, . . . , J − 1}, k ∈ {0, 1, . . . ,K − 1} and
h ∈ {0, 1, . . . ,H − 1}, the solution u(xj , yk, zh, t) is
approximated by uj,k,h(t). We denote the corresponding
spectral variables by ξp = 2πp/Lx, ηq = 2πq/Ly and
ζr = 2πr/Lz with p ∈ {−J/2, . . . ,−1, 0, 1, . . . , J/2},
q ∈ {−K/2, . . . ,−1, 0, 1, . . . ,K/2} and r ∈
{−H/2, . . . ,−1, 0, 1, . . . ,H/2}. The discrete Fourier
transform (DFT) is given by

vp,q,r = Fuj,k,h =

=
J−1∑
j=0

K−1∑
k=0

H−1∑
h=0

uj,k,he
−i(ξpxj+ηqyk+ζrzh) ,

p = −J
2
, . . . ,−1, 0, 1, . . . ,

J

2
− 1 ,

q = −K
2
, . . . ,−1, 0, 1, . . . ,

K

2
− 1 ,

r = −H
2
, . . . ,−1, 0, 1, . . . ,

H

2
− 1 ,

where i is the imaginary unit. The corresponding inverse
DFT is defined by

uj,k,h = F−1vp,q,r =

=
1

JKH

J/2−1∑
p=−J/2

K/2−1∑
q=−K/2

H/2−1∑
r=−H/2

up,q,re
−i(ξpxj+ηqyk+ζrzh) ,

j = 0, 1, . . . , J − 1 ,

k = 0, 1, . . . ,K − 1 ,

h = 0, 1, . . . ,H − 1 .

In practice the DFT and its inverse are usually carried
out by means of the fast Fourier transform (FFT). As
a consequence the indexes J , K and H must be always
expressed as powers of 2. As the use of a pseudo-spectral
method make use of the FFT (denoted by fft) and its
inverse (indicated as ifft), for the subsequent sections,

we will make use of the notation

v(t, ξ, η, ζ) = fft(u(t, x, y, z)) ,

u(t, x, y, z) = ifft(v(t, ξ, η, ζ)) .

Besides, in order to simplify our notation, in the following
we explicitly indicate the dependence only on time for
both the functions u and the v, whenever this can not
cause any confusion.

3 Linear advection

For the sake of simplicity, let us show how a pseudo-
spectral method is derived in the case of 1D advection
equation

∂u

∂t
+D(au) = 0 , D =

∂

∂x
, (1)

where a is a constant different from zero. By integrating
from t to t+ ∆t we get

u(t+ ∆t)− u(t) = −
∫ t+∆t

t

D(au)dt .

At this point, according to which quadrature rule is used
for the right hand-side of the above equation, we obtain
the corresponding method that has the same accuracy of
the chosen rule. In order to avoid any stability restric-
tion to the time-step, Wineberg et al. [13] proposed to
apply the trapezoid rule, but other possibilities are still
available. For instance we can use, up to a first order of
accuracy, the end-point rectangle rule (implicit Euler) to
find out

u(t+ ∆t)− u(t) = −∆tD(au(t+ ∆t)) ,

that can be rewritten in the form

(1 + a∆tD)u(t+ ∆t) = u(t) ,

or symbolically, in the step form

u(t+ ∆t) = R(∆t)u(t) ,

R(∆t) =
1

1 + a∆tD
,

where the step operator R(∆t) has been defined. Note
that, the inversion of 1 + a∆tD is straightforward since
D is skew adjoint and its eigenvalues are imaginary.

In the case of the trapezoid rule (Crank-Nicolson), in-
stead the step operator would change into

R(∆t) =
1− 0.5a∆tD
1 + 0.5a∆tD

.
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If, by the FFT, we pass to the time-spectral domain, the
1D advection equation becomes

v(t+ ∆t) = R̂(∆t)v(t) ,

where R̂(∆t) = fft(R)(∆t).

In particular, recalling that (iξ)n = fft(Dn), for the end
point rectangle we get

R̂(∆t) =
1

1 + iaξ∆t
,

whereas for the trapezoid rule it results

R̂(∆t) =
1− 0.5iaξ∆t
1 + 0.5iaξ∆t

.

Finally it is worth pointing out that the resulting scheme
is explicit despite we used an implicit approach. This is
always true due to the fact that we are dealing with a
linear equation.

3.1 Multi dimensional advection

By defining the further differential spacial operators

E =
∂

∂y
, F =

∂

∂z
,

we can extend the advection equation(1) to its 3D version
as follows

∂u

∂t
+ a1D(u) + a2E(u) + a3F (u) = 0 ,

where a = (a1, a2, a3) is the velocity vector field assumed
to be constant. Moreover by rewriting it in integral form
on [t, t+ ∆t], we get

u(t+ ∆t) = u(t)−
∫ t+∆t

t

a1D(u)dt

−
∫ t+∆t

t

a2E(u)dt−
∫ t+∆t

t

a3F (u)dt.

By recalling the procedure carried out in the previous
subsection through the application of the end-point rect-
angle quadrature rule, we get the implicit discrete numer-
ical scheme

u(t+ ∆t) = u(t)−∆t {a1D [u(t+ ∆t)]

+a2E [u(t+ ∆t)] + a3F [u(t+ ∆t)]} .

By introducing the symbolic operator R(∆t), this scheme
can be rewritten more compactly in the form

u(t+ ∆t) = R(∆t)u(t) , (2)

R(∆t) =
1

1 + ∆t(a1D + a2E + a3F )
.

In time-spectral domain, equation (2) is rewritten like
this

v(t+ ∆t) = R̂(∆t)v(t) ,

R̂(∆t) =
1

1 + i∆t(v1ξ + v2η + v3ζ)
.

Just for the sake of completion, it is quite a simple matter
to deduce that the step operators for the case of trape-
zoidal rule are

R(∆t) =
1− 0.5∆t(a1D + a2E + a3F )
1 + 0.5∆t(a1D + a2E + a3F )

,

R̂(∆t) =
1− 0.5i∆t(a1ξ + a2η + a3ζ)
1 + 0.5i∆t(a1ξ + a2η + a3ζ)

.

3.2 Advection test problems

As a test problem, we consider the following initial-
boundary value problem

ut −D(u) = 0 , x ∈ [0, Lx]
(3)

u(0, t) = u(Lx, t) ,

subjected to the prescribed periodic boundary conditions
and alternatively to one out of the two following initial
condition,

u(x, 0) = e−(x−Lx/2)2 (4)

or

u(x, 0) =

{
0, 0 < x ≤ Lx/2
1, Lx/2 < x ≤ Lx .

(5)

These represent a Gaussian pulse or a Heaviside function.
It is worth noticing that a = −1, so that the solution is
a left traveling wave. Besides the width of the spacial
domain is fixed as Lx = 10.

Figure 1 provides a comparison of the numerical results
obtained by both the trapezoid rule and the rectangle
rule for the initial condition in (4-5) and according to the
numerical parameters reported in its caption. We remark
that at the final time t = 10 the exact solution will re-
produce the initial condition, so that by overlapping the
initial condition to the advected numerical solution we
can have a visual evaluation of the error committed in
the integration interval [0, 10]. It can be observed that
for regular functions, such as the Gaussian pulse, it is
enough to use a second order method to have a very good
convergence of the numerical solution to the exact one.
However, it is evident that for discontinuous functions,
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Figure 1: 1D advection equation: numerical solutions at t = 10 with 1024 mesh-points in the x variable and time-
step ∆t = 0.0125. Gaussian pulse evolution: top-left: trapezoid rule, top-right: rectangle rule. Heaviside function
evolution: bottom-left: trapezoid rule, bottom-right: rectangle rule.

such as the Heaviside one, the use of methods with or-
der greater than one results in bad degradation of the
numerical solution due to the appearance of the Gibbs
phenomenon. Such qualitative impression are actually
confirmed also numerically by considering the discrete 2-
norm of the difference between the initial condition and
the advected wave as it is summarized in table 1. Just

Table 1: Values of discrete 2-norm error between initial
condition and numerical solution at t = 10 for problems
(3)-(4) and (3)-(5).

‖u(0)− u(10)‖2
initial condition rectangle trapezoid

Gaussian 1.0704 0.1372
Heaviside 4.1161 2.6559

in order to improve the accuracy of the numerical solu-

tion obtained in case of dealing with discontinuous func-
tions, in the next subsection we will propose a numerical
approach based on the local error reduction through an
extrapolation-like technique. The same kind of numeri-
cal test was also applied to the following 2D advection
problem

ut + a1D(u) + a2E(u) = 0 ,

u(0, y, t) = u(Lx, y, t) , (6)

u(x, 0, t) = u(x, Ly, t) ,

with (x, y) ∈ [0, Lx] × [0, Ly], the prescribed periodic
boundary conditions, and alternatively one out of these
two initial conditions

u(x, y, 0) = sin
(

2π
Lx

x

)
sin
(

2π
Ly
y

)
, (7)
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Figure 2: 2D advection equation. Sinusoidal function evolution: top-left: trapezoid rule, top-right: rectangle rule.
Heaviside function evolution: bottom-left: trapezoid rule, bottom-right: rectangle rule.

or

u(x, y, 0) =


1 if Lx/2 < x ≤ Lx and

Ly/2 < y ≤ Ly ,
0 otherwise .

(8)

For this numerical test we fixed a1 = 1, a2 = 1, Lx =
Ly = 10 and an integration time t = 10 so that the
advected numerical solution is located in correspondence
of the initial condition. As long as the other integration
parameters are concerned, we used 256×256 mesh-points
in x and y variables and ∆t = 0.025. Figure 2, display
the obtained numerical results. Also in the 2D case it is
possible to confirm exactly the same considerations made
above for the 1D numerical test.

Finally, we remark that all of these numerical tests were
carried out by means of MATLAB.

3.3 Local error reduction

The first order discrete numerical scheme at a given time
provides the vector T (∆t). Indicating with T (0) the value
of T obtained as the discretization parameter ∆t tends
to zero, we can always write

T (0) = T (∆t)+α1∆t+α2∆t2+α3∆t3+. . .+αm∆tm+. . . ,

where it is assumed that the coefficients αi are indepen-
dent from ∆t. If we refer to the same scheme, but for
the reduced time steps qk∆t, with 0 < q < 1, and the
exponent k ∈ IN, then for each k we can also write

T (0) = T (qk∆t) + qkα1∆t+ q2kα2∆t2

+ q3kα3∆t3 + . . . + qmkαm∆tm + . . . ,
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By indicating with T (k, 0) the discrete value T (qk∆t), we
can introduce an extrapolation scheme

T (k + 1, n+ 1) = T (k, n) +
T (k, n)− T (k + 1, n)

qw − 1
. (9)

As long as the parameter w is equal to the accuracy or-
der owned by the values T (k, 0), such a scheme is just
the one by Richardson and the value T (k, n) would have
actually an accuracy order increased by the integer n.
Otherwise we get an extrapolation-like scheme. Let us
now consider the implicit Euler method that is first or-
der accurate, if we extrapolate properly, i.e. by using
the value w = 1, then for any extrapolated order higher
than one, the solution will go on showing the Gibbs phe-
nomenon. On the contrary, by extrapolating once using
the value w = 2, i.e. we are doing an extrapolation-like
technique, we get discrete values that are still first order
accurate, but the leading term of the truncation error be-
comes q(q−1)α1∆t, whereas the second term is canceled.
If we want to involve the values T (0, 0) and a generic
T (k, 0), then we must modify (9) by using w = 2k. In
such a case it is easy to prove that for the resulting extrap-
olated value the leading term becomes qk(qk − 1)α1∆t.
As a consequence, being 0 < q < 1, in any case we get a
reduction of the local error. Finally, obtaining always a
first order method, there is no point in going on extrap-
olating beyond the first extrapolation step.

Let us consider again the 2D advection equation with
the Heaviside function as initial condition and periodic
boundary conditions

ut + a1D(u) + a2E(u) = 0 , (10)

u(x, y, 0) =


1 if Lx/2 < x ≤ Lx and

Ly/2 < y ≤ Ly ,
0 otherwise .

u(x, 0, t) = u(x, Ly, t) ,

u(0, y, t) = u(Lx, y, t) ,

where (x, y) ∈ [0, Lx]× [0, Ly]. For our numerical calcula-
tion we decided to fix a square domain with Lx = Ly = 10
and as constant velocity vector field a = (1, 1). As a
consequence, at the final time t = 10, the exact solu-
tion will reproduce the initial condition. We carried out
two numerical experiments, for the above 2D case and
the analogous 1D case, using q = 1/2 and ∆t = 0.025.
They consisted in calculating the solution by applying one
step of the extrapolation-like technique involving T (0, 0)
and T (k, 0) for 1 ≤ k ≤ 5, so that the obtained solu-
tion, T (k, 1), can be compared with the one obtained

simply by refining the mesh by the same step reduction
factor used for each T (k, 0). Besides, the FFT was com-
puted involving up to 1024 harmonics for the 1D case,
whereas for the 2D case it involved 128 harmonics. In
both cases, there is an improvement in slope recovery
at the discontinuities. This remark can be appreciated
graphically by looking at figure 3, for the 1D case, and
figure 4, for the 2D case. In order to prove numerically
such a result, we can define errextra as the difference
between the initial condition and the final time solution
obtained by one step of extrapolation-like technique, i.e.
errextra = |T (0)− T (k, 1)|, whereas analogously errref
is referred to the solution obtained by mesh refining, i.e.
errref = |T (0)− T (k, 0)|. In table 2, for 1D case, and
in table 3, for the 2D case, we report the errextra and
errref 2-norm values for increasing values of k. From

Table 2: 1D numerical comparison for increasing k. Here
∆t = .025, N=1024, and tmax = 10.

k ‖errextra‖2
∥∥errref

∥∥
2

∥∥errref
∥∥

2
− ‖errextra‖2

0 0.047818 0.047818

1 0.036378 0.040208 0.003830

2 0.032009 0.033808 0.001799

3 0.027628 0.028425 0.000798

4 0.023558 0.023896 0.000338

5 0.019945 0.020083 0.000138

Table 3: 2D numerical comparison for increasing k. In
this case ∆t = .025, N=128, and tmax = 10.

k ‖errextra‖2
∥∥errref

∥∥
2

∥∥errref
∥∥

2
− ‖errextra‖2

0 0.065722 0.065722

1 0.048061 0.053928 0.05867

2 0.041443 0.044170 0.02727

3 0.034838 0.036046 0.01208

4 0.028638 0.029163 0.00525

5 0.022861 0.023092 0.00231

these two tables it can be seen how a real improvement is
achieved. It is clear that the higher is the value taken for
k the less is the numerical profit in applying the present
technique and, as a consequence, the maximum profit is
achieved by choosing k = 1.
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Figure 3: 1D solutions for k = 0, 1, 3, 5: on the left, T (k, 0) obtained for mesh refining, whereas on the right, T (k, 1)
obtained for extrapolation-like.

Figure 4: 2D contour plot solution at u = 0.99 for k = 0, 1, 3, 5: on the left, T (k, 0) obtained for mesh refining,
whereas on the right, T (k, 1) obtained for extrapolation-like.

4 Dispersive problems

Pseudo-spectral methods using the trapezoid rule have
been applied successfully to several problems of inter-
est governed by nonlinear PDEs: KdV, Klein Gordon,
Whitham (the equation for weak dispersion proposed in
[12]), etc. As an example let us consider the KdV equa-
tion

∂u

∂t
+D

(
u2

2

)
+D3u = 0 .

It is a simple matter to verify that, in the trapezoid rule

case, we get symbolically

u(t+ ∆t) = R(∆t)u(t)

− S(∆t)
(
u2(t+ ∆t) + u2(t)

)
,

where R(∆t) and S(∆t) are symbolic operators defined
by

R(∆t) =
1− 0.5∆tD3

1 + 0.5∆tD3
,

and

S(∆t) =
0.25∆tD

1 + 0.5∆tD3
.

If with the FFT, we switch to the time-spectral domain,
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we have

v(t+ ∆t) = R̂(∆t)v(t)

− Ŝ(∆t)
(
fft(u2(t+ ∆t)) + fft(u2(t))

)
.

Moreover, the introduced symbolic operators can be com-
puted by the FFT, like it was done in the previous sec-
tion. As usual, the nonlinear terms are best computed
in the spatial representation, hence we transform back
to the original space, make the multiplication, which is
point-wise in x, and transform again. We have here an
implicit method. For the solution of the nonlinear sys-
tem, it is possible to apply the Newton method, but it
requires the inversion of full matrices. As a consequence,
Newton iterations result to be not suitable for spectral
methods. On the other hand, nonlinear spectral meth-
ods are usually implemented by using, first order, but
simpler, successive approximation. That is, we can apply
the iterations

vn+1(t+ ∆t) = w(t)− S(∆t)
(
fft(u2

n(t+ ∆t))
)
,

where

w(t) = R(∆t)v(t)− S(∆t)
(
fft(u2(t))

)
,

un(t+ ∆t) = ifft(vn(t+ ∆t)) , u2
1(t+ ∆t) = u2(t) .

Finally, it is worth saying that the above iteration can be
triggered also by a first predictor explicit step by assum-
ing

u2
1(t+ ∆t) = ifft(R̂(∆t)v(t)− Ŝ(∆t)fft(u2(t)))

4.1 The 2D KdV (or KPI) equation

Let us consider now the 2D KdV equation [5] also known
as KPI equation

D

[
∂u

∂t
+D

(
3u2
)

+D3u

]
− 3E2u = 0 . (11)

By passing to the time-spectral domain, through the
FFT, we can rewrite (11) as

dv

dt
(t) + iξfft(3u2(t))−

(
iξ3 + i3

η2

ξ

)
v(t) = 0 .

Then if we integrate it in time, we get

v(t+ ∆t) = v(t)−
∫ t

t+∆t

iξfft(3u2(t))dt

+
∫ t

t+∆t

i

(
ξ3 + 3

η2

ξ

)
v(t)dt ,

that, by applying the trapezoid rule, can be rewritten
more compactly as

v(t+ ∆t) = R̂(∆t)v(t)

− Ŝ(∆t)(fft(u2(t)) + fft(u2(t+ ∆t))) ,

where

R̂(∆t) =
1 + 0.5∆ti

(
ξ3 + η2

ξ

)
1− 0.5∆ti

(
ξ3 + η2

ξ

) ,

and

Ŝ(∆t) = 1.5 iξ∆t .

4.2 Dispersive test problems

Here we report the results of numerical experiments car-
ried out, through a pseudo-spectral method, on two test
problems; the 1D and the 2D KdV equations. As a simple
test problem, we consider the classical two solitons inter-
action discovered by Zabusky and Kruskal in the 1960’s
[14]. The problem to be solved is:

∂u

∂t
+ 6pD

(
u2

2

)
+D3u = 0 , x ∈ [0, Lx]

(12)
u(x, 0) = u0(x) , u(0, t) = u(Lx, t) ,

with initial condition

u0(x) =
c1
2p
sech2

(√
c1
2

(x− 0.1Lx)
)

+
c2
2p
sech2

(√
c2
2

(x− 0.4Lx)
)
. (13)

In our case we fix Lx = 100, p = 1, with c1 = 1.5 and
c2 = 0.5. Besides, the value of the parameter p can be
chosen freely in order to cover all of the different versions
of (12) existing in literature. A MATLAB code was used
to implement the second order method defined above and
to produce the numerical results reported in figure 5. By
looking at frames in figure 5, although they keep main-
taining their shape after merging, one can appreciate the
non-linear feature of the phenomenon because when they
are totally merged the amplitude does not correspond to
the sum of the two of them.

As long as 2D dispersive problems are concerned, we
carry out two numerical tests on the following problem
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Figure 5: Interaction of two solitons for the KdV equation. Numerical solutions with 1024 mesh-points in the x
variable and ∆t = 0.05. Top-left: t = 0.0, top-right: t = 12.55, center-left: t = 15.0, center-right: t = 17.1,
bottom-left: t = 19.2, and bottom-right: t = 21.65.

already treated by Feng et al. in [6] and in [5]

D

[
∂u

∂t
+D

(
3u2
)

+D3u

]
− 3E2u = 0 , (14)

u(x, y, 0) = 4
2∑
i=1

−bi(x, y) + di(y)
[bi(x, y) + di(y)]2

,

u(x, 0, t) = u(x, Ly, t) ,

u(0, y, t) = u(Lx, y, t) .

where (x, y) ∈ [0, Lx] × [0, Ly], bi(x, y) =
[x− x0,i + λi (y − y0,i)]

2 and di(y) = µ2
i (y − y0,i)

2 +
1/µ2

i . The initial condition consists of two lump-type
solitons located in x0,i and y0,i, whereas the param-
eters λi and µi determine the velocity vector field as
vi=(3(λ2

i + µ2
i ),−6λi), where i = 1, 2, according to [5].

As first test, we fix

x0,1 = 10 , x0,2 = 18 , y0,1 = y0,2 = 20 ,

Lx = Ly = 40 ,

µ2
1 = 1.5 , µ2

2 = 0.75 , λ1 = λ2 = 0 ,

and the numerical parameters are 256× 256 mesh-points
in the x and y variables and ∆t = 0.004. Figure 6 shows
the interactions of two lump-type solitons initially travel-
ing along the same line at six discrete subsequent times.
By looking at figure 6, we can repeat the same consider-
ation, already said in the 1D case, concerning the ampli-
tude of the merged lump-type solitons: at the complete
interaction the amplitude is smaller than the sum of the
two initial amplitudes. Moreover the non-linear feature
of the phenomenon can be also appreciated from the fact
that also the velocity of the two lump-type solitons is af-
fected by their merging. Indeed it is evident that, after
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Figure 6: Interaction of two lump-type solitons marching along the same line for the KPI equation. Numerical
solutions with 256 × 256 mesh-points in the x and y variable and ∆t = 0.004. Top-left: t = 0.0, top-right: t = 1.0,
center-left: t = 1.5, center-right: t = 2.0, bottom-left: t = 2.5, and bottom-right: t = 4.5.

merging, their velocity vectors divert, despite they were
traveling along the same direction. In other words we
have here a soliton like behavior. However, these two
lump solitons undergo an inelastic collision.

As second test, we choose

x0,1 = 10 , x0,2 = 10 , y0,1 = 10 , y0,2 = 30 ,

Lx = Ly = 40 ,

µ2
1 = 1 , µ2

2 = 1 , λ1 = −1 , λ2 = 1 ,
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Figure 7: Interaction of two lump-type solitons traveling along orthogonal lines for the KPI equation. Numerical
solutions with 128 × 128 mesh-points in the x and y variable and ∆t = 0.01. Top-left: t = 0.0, top-right: t = 1.0,
center-left: t = 1.5, center-right: t = 2.0, bottom-left: t = 2.5, and bottom-right: t = 3.0.

and in this case the numerical parameters used are
128 × 128 mesh-points in the x and y variables and
∆t = 0.01. Figure 7 displays the interactions of two
lump-type solitons traveling along orthogonal directions.

In this case, the behavior of the lump-type solitons is
closer to 1D case as their velocity vectors remains un-
changed by their merging. In some way these two lump
solitons undergo an elastic collision.
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5 Concluding remarks

In this paper we have considered pseudo-spectral meth-
ods for two classes of problems of relevant interest:
namely, linear advection and nonlinear dispersive prob-
lems. As far as linear advection problems are concerned,
we have verified that, when dealing with discontinuous
functions, the Gibbs phenomenon can be avoided by using
a pseudo-spectral method of order one (in time). More-
over, even classical extrapolation techniques are not suit-
able to overcome the Gibbs phenomenon, that is actually
a numerical artifact. However, we were able to assert the
usefulness of an extrapolation like approach in order to
reduce the local truncation error. It is clear that the pro-
posed extrapolation-like error reduction technique can be
easily extended to 3D problems.

On the other hand, we have seen that the use of our sec-
ond order (in time) pseudo-spectral method for nonlinear
dispersive problems is a very efficient numerical resource
in order to work out and classify the different kinds of
solutions belonging to such a kind of problems. In par-
ticular, we can appreciate how our numerical scheme can
follow the stable propagation of the lump-type solitons
without any deformation.

The part of this work dealing with the advection equa-
tion was motivated by a preliminary study, by the first
author [2], concerning the implicit Euler and the second
order Adams-Moulton methods in the ordinary differen-
tial context.
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