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Abstract— Constructive heuristics for the schedul-
ing problem of n independent jobs on m identical par-
allel machines with minimum makespan objective are
described. The proposed algorithms, which are n log n
algorithms as the LPT algorithm of Graham, itera-
tively combine partial solutions that are obtained by
partitioning the set of jobs into suitable families of
subsets. The procedure used to partition the jobs
in partial solutions and the rule used for selecting
the partial solutions to combine, are designed to re-
duce the measure of spread of the processing times m-
set associated to the partial solution. The algorithms
were tested using different families of instances taken
from the literature and results compared with other
algorithms.
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1 Introduction

In this paper, we study the scheduling problem of n in-
dependent jobs on m parallel machines. Each job i must
be processed without interruption by only one of the m
machines (non-preemptive environment); as the machines
are identical, the processing time pi of the job i is inde-
pendent of the processing machine (environment of iden-
tical parallel processors). Our goal is to minimize the
makespan, i.e., the total time required to complete all
jobs. Using the standard three field classification scheme
of Graham et al. (1979), this problem is usually denoted
as P ||Cmax and it is well known to be NP-hard in strong
sense for an arbitrary m > 2, see Garey and Johnson
(1978), and Ullman (1976). For large instances, one needs
to rely on good heuristic procedures to provide solutions
that are probably close to the optimum. Heuristic al-
gorithms are classified into constructive algorithms and
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versità della Calabria, 87036 Arcavacata di Rende, Cosenza, Italy,
Email: mig.gualtieri@unical.it; Paolamaria Pietramala, Diparti-
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improvement algorithms. The list scheduling family of
Graham (1966 and 1969), which includes the Largest Pro-
cessing Time (LPT ), and the MultiFit Decreasing (MFD)
scheduling algorithm of Coffman et al. (1978), belongs to
first category. Hochbaum and Shmoys (1987) presented
a polynomial approximation scheme (PTAS ) that seems
to be, in some sense, the best possible.
Improvement algorithms have been proposed, for exam-
ple, by França et al. (1994), Anderson et al. (1997) and
Frangioni et al. (2004).
Surveys on the heuristic algorithms for parallel machine
scheduling problems have been provided by Cheng and
Sin (1990), by Lawler et al. (1993) and by Chen et al.
(1998). An overview of existing results and of recent re-
search areas is presented in the handbook edited by Leung
(2004).

In this paper, we present some constructive n log n algo-
rithms. These algorithms, from an analysis of the com-
putational results with respect to the relative error, are
more accurate than the n log n LPT algorithm of Gra-
ham and seem comparable in several cases to the two
considered improvement algorithms. As in Paletta and
Pietramala (2007) and Gualtieri et al. (2008), our algo-
rithms are based on the idea of combining iteratively par-
tial solutions until a feasible solution for the scheduling
problem is obtained. The initial partial solutions are cal-
culated by partitioning the set of jobs into z subsets such
that the elements of related m-set of processing times are
as close to each other as possible. In order to do this, we
make use of the measures of spread, that are commonly
employed techniques in statistical problems.
Our paper improves the results of Gualtieri et al. (in
which only the gap between the maximum and the min-
imum processing time is considered), because it sheds
light on the fact that the key point in our algorithm is to
minimize the variability between all the elements of the
processing times m-set associated with a partial solution.
In order to compare the heuristics with other algorithms,
we used different families of instances, taken from the
literature, for our computational investigation.

The paper is organized as follows. Section 2 presents
the partitions that are used to design the algorithms
and summarizes the basic elements of statistical meth-



ods. Section 3 contains the description of the algorithms
and the results of the computational investigation con-
cerning P ||Cmax.

2 Partial Solutions and Measures of
Spread

Let I = {1, ..., i, ..., n} be the set of n independent jobs,
M = {1, ..., j, ...,m} be the set of m identical parallel ma-
chines and A = {p1, ..., pi, ..., pn} be the set of processing
times of the jobs.
We associate to a partition of m · (z − 1) + s subsets I =
{I1

1 , ..., I1
j , ..., I1

m, ..., Ir
1 , ..., Ir

m, ..., Iz
1 , ..., Iz

j , ..., Iz
s }, s 6

m of the set I, the family of z partial solutions P =
{I1, . . . , Ir, . . . , Iz}. Here Ir = {Ir

1 , . . . , Ir
j , . . . , Ir

m}, r =
1, ..., z − 1, represents the rth partial solution and Ir

j the
set of jobs that are performed by the machine j; in the zth
partial solution Iz = {Iz

1 , . . . , Iz
j , . . . , Iz

s , ∅s+1, . . . , ∅m},
s 6 m, the notation ∅j means that the machine j is not
performing any jobs.
Let pr

j :=
∑

i∈Ir
j

pi be the sum of the processing times of
the jobs belonging to Ir

j , r = 1, ..., z − 1 and j = 1, ...,m,
let pz

j :=
∑

i∈Iz
j

pi be the sum of the processing times of
the jobs belonging to Iz

j for j = 1, ..., s and pz
j := 0 for

s < j 6 m. Each partial solution Ir, r = 1, ..., z − 1,
has, associated with it, the processing times m-set Gr =
{pr

1, . . . , p
r
j , . . . , p

r
m}, whereas Iz has, associated with it,

the processing times m-set Gz = {pz
1, . . . , p

z
s, 0, . . . , 0},

s 6 m.
A partial solutions Ir is called an ordered partial solution
if the elements of Gr are sorted in not increasing order
with respect to their size, that is,

pr
1 > . . . > pr

j > . . . > pr
m.

A family of z partial solutions P = {I1, . . . , Ir, . . . , Iz}
is called ordered z-family of partial solutions if every Ir

is an ordered partial solution.
Let Ir and Iq be two ordered partial solutions. The com-
bination among Ir and Iq is a new partial solution defined
as the m-family

Ir ] Iq := {Ir
1 ∪ Iq

m, . . . , Ir
j ∪ Iq

m−j+1, . . . , I
r
m ∪ Iq

1}.

where the set Ir
j ∪ Iq

m−j+1, j = 1, . . . , m, represents the
jobs performed by the machine j. The total processing
time needed for the machines to perform all the jobs be-
longing to Ir ]Iq is computed by using the sum between
the processing times m-sets Gr and Gq defined as the
m-set

Gr ⊕Gq := {pr
1 + pq

m, . . . , pr
j + pq

m−j+1, . . . , p
r
m + pq

1}.

Thus pr
j +pq

m−j+1 represents the total processing time re-
quired to perform all the jobs belonging to Ir

j ∪ Iq
m−j+1.

Note that Ir]Iq is a partial solution that is not necessar-
ily ordered since the elements of Gr ⊕Gq are not sorted
in non-increasing order with respect to their size.

The ordered sum among Gr and Gq is the ordered m-set
Ord(Gr⊕Gq) whose elements are the elements of Gr⊕Gq

sorted in non-increasing order with respect to their size
and the ordered combination among Ir and Iq is the m-
family Ord(Ir]Iq) whose sets are those of Ir]Iq sorted
such that the j-th element of Ord(Gr⊕Gq) represents the
total processing time of the j-th job-set of Ord(Ir ] Iq).

In this paper we want to construct an ordered z-family of
partial solutions for the scheduling problem and combine
them until a feasible solution is obtained.
Since the objective is to minimize the makespan of the
solution, one tries to minimize the makespan of every
partial solution. This is done by making the m elements
of the processing times sets very “close” to each other. In
order to measure this “closeness” we utilize the statistical
measures of spread. A measure of variability or spread
quantifies how dispersed the values in a data set tend to
be. It is a real number that is zero if all the data are
identical and increases as the data become more diverse.
If the spread is small, most of the data are nearly equal;
if the spread is large, there are large differences among
the data.
In the study of the variability of a data set, various types
of measures of spread are used. Let X = {x1, x2, ..., xj}
be a set of real values.

The average or arithmetic mean or mean of X is defined
by

µ(X) =
1
j

∑

i=1,...,j

xi.

The pth percentile of X is the smallest number that is
at least as large as p% of the numbers in X. Some per-
centiles have special names: the lower quartile of X or
Q1(X) is the 25th percentile, the median of X or Q2(X) is
the 50th percentile and the upper quartile of X or Q3(X)
is the 75th percentile.
The mean and the median of X are measures of location:
they are, depending upon the definition of proximity of
two numbers, “as close as possible” to all the elements of
X.

The simplest measures which characterize the amount of
spread are the range of X, or R(X), which is the difference
between the maximum and the minimum value in the set
X, and the interquartile range of X, or IQR(X), which
is the difference between upper and lower quartiles of X:

R(X) := max X−min X, IQR(X) := Q3(X)−Q1(X).

They do not measure the spread of the majority of values
in the data set, they only measure the spread between two
values.

The variance of X is a measure of the degree of dispersion



of the elements in X from the mean value of X, given by

σ2(X) :=
1
j

∑

i=1,...,j

(xi − µ(X))2.

This is a “natural” measure of dispersion if the center of
the data is measured about the mean, because the func-
tion f(θ) = 1

j

∑
i=1,...,j(xi − θ)2 has a unique minimum

at θ = 1
j

∑
i=1,...,j xi.

The standard deviation of X, defined as the square root
of the variance

σ(X) :=
√

σ2(X) =
√

1
j

∑

i=1,...,j

(xi − µ(X))2

is easier to handle from a mathematical point of view and
has the same unity of measurement as the data.

The mean absolute deviation of X

α(X) :=
1
j

∑

i=1,...,j

|xi −Q2(X)|.

is a “natural” measure of dispersion if the center of the
data set is measured about the median, because the func-
tion f(θ) = 1

j

∑
i=1,...,j |xi− θ| has a unique minimum at

the median of {x1, x2, ..., xj}.
The variance, the standard deviation and the mean ab-
solute deviation of X are measure of variability that de-
scribe how much the values of X are close to a typical
value of X.

The Gini’s mean difference of X, instead, is a measure
that reflects how the values in X differ from each other,
that is,

GMD(X) :=
1

j(j − 1)

j−1∑

i=1

j∑

k=i+1

|xi − xk|.

The various measures of spread are independent from
each other, but all of these statistical describers are in-
fluenced by the “extreme” values of the data.

3 Algorithms. Computational Results

Algorithms
The proposed PSC (Partial Solution Combination) algo-
rithm, firstly partitions the jobs by using the IPS (Initial
Partial Solution) procedure, in order to obtain an ordered
z-family of partial solutions P = {I1, . . . , Ir, . . . , Iz}.
Secondly, the algorithm selects two ordered partial solu-
tions whose processing times m-sets have bigger measures
of spread and combines them with the ordered combina-
tion operator. The algorithm continues to iterate (exactly
z − 1 times) until a feasible solution of the scheduling
problem is obtained.

Generalizing the approach of Gualtieri et al., both the
procedure used to partition the jobs into an ordered z-
family of partial solutions, and the rule used for selecting
which two partial solutions are to be combined, are de-
signed in order to reduce as much as possible the measure
of spread of the processing times m-sets Gr so that the
m elements of Gr are as close as possible to each other
and the makespan is minimized.

The IPS procedure, firstly orders the jobs so that p1 >
p2 > . . . > pn. Secondly, IPS computes the minimum
number z of partial solutions, in which the first element
is a singleton, as the greatest index of the jobs for which

∑

i=1,...,z6n

pi 6 max
{

p1, pm + pm+1,
1
m

∑

i=1,...,n

pi

}

holds. Thirdly, by using as seeds the first z jobs, the
procedure initializes z partial solutions. Finally, IPS
processes the remaining jobs as follows. Suppose that
the job i must be inserted. Thus, IPS selects an ordered
partial solution to which the greatest value of measure
of spread is associated, say Ir. If pr

m + pi 6 pr
1, the job i

is inserted in the last job-set of Ir; otherwise, IPS uses
the job i as a seed to initialize a new partial solution.
Let us denote by V r = V (Gr) the measure of variability
of the processing times m-set Gr associated with the
ordered partial solution Ir.

IPS Procedure

Initialization

- Order the jobs so that p1 > . . . > pi > . . . > pn. Set
z the greatest index of the jobs so that

∑

i=1,...,z6n

pi 6

max{p1, pm + pm+1,
1
m

∑

i=1,...,n

pi};

- Set I1={I1
1 = {1}, I1

2 = ∅, . . . , I1
j = ∅, . . . , I1

m = ∅},
I2={I2

1 = {2}, I2
2 = ∅, . . . , I2

j = ∅, . . . , I2
m = ∅},...,

Iz={Iz
1 = {z}, Iz

2 = ∅, . . . , Iz
j = ∅, . . . , Iz

m = ∅}, and
G1 = {p1

1 = p1, p
1
2 = 0, . . . , p1

j = 0, . . . , p1
m = 0},

G2 = {p2
1 = p2, p

2
2 = 0, . . . , p2

j = 0, . . . , p2
m = 0},...,

Gz = {pz
1 = pz, p

z
2 = 0, . . . , pz

j = 0, . . . , pz
m = 0};

- Set V r = V (Gr), r = 1, ..., z;

- Set P = {I1, . . . , Ir, . . . , Iz−1,Iz} (P is ordered so
that V 1 > . . . > V r > ... > V z).

Construction

For i = z + 1, . . . , n

- select I1 (since V 1 = max
r=1,...,z

V r);

- If p1
m + pi 6 p1

1 then



- set I1
m = I1

m ∪ {i} and p1
m = p1

m + pi;
- sort the elements of G1 so that p1

1 > . . . >
p1

j > . . . > p1
m;

- arrange I1 so that p1
j is the total time

required by the jobs belonging to I1
j , for

j = 1, ...,m;
- set V 1 = V (G1) and sort P so that V 1 >

V 2 > ... > V z;

Otherwise

- set z = z + 1, Iz={Iz
1 = {i}, Iz

2 =
∅, . . . , Iz

j = ∅, . . . , Iz
m = ∅}, P=P ∪ Iz;

- set Gz = {pz
1 = pi, p

z
2 = 0, . . . , pz

j =
0, . . . , pz

m = 0};
- set V z = V (Gz), and sort P so that V 1 >

. . . > V r > ... > V z;

End If p1
m + pi 6 p1

1

End For i.

PSC Algorithm

Initialization

- Use the IPS procedure to obtain an ordered z-family
of partial solutions P. If IPS returns with only one
partial solution then Stop (the algorithm provides an
optimal solution);

Construction

For j = 1, . . . , z − 1

- select two ordered partial solutions belonging
to P whose processing times m-sets have bigger
measures of spread (say Il and Ik);

- compute Gz+j=Ord(Gl⊕Gk), Iz+j =Ord(Il ]
Ik) and V z+j = V (Gz+j);

- set P=(P\{Il, Ik}) ∪ Iz+j ;

End For j.

It is routine to show that the PSC algorithm runs in
O(nlog(n))-time, which is the running time of the IPS
procedure, when the measures range, interquartile range,
variance, standard deviation and mean absolute deviation
are utilized. When Gini’s mean difference is used, the
PSC algorithm runs in O(nlog(n) + m2)-time.

Implementation Outcome
We have implemented and tested our heuristic with five
different measures of variability, on three families of in-
stances, in order to verify whether some choice is domi-
nant with respect to the accuracy of the feasible solution.

We report all the cases; in fact, our investigation has
shown that good results are obtained by using the

range, the variance, the standard deviation, the mean
absolute deviation and Gini’s mean difference, whereas
the inter-quartile range did not lead to significant per-
formance results. In general, the variance, the standard
deviation, the mean absolute deviation and Gini’s mean
difference showed to be the best choices. This result is
not surprising, because such measures of spread involve
all the elements of a partial solution. The results on the
range could be surprising. However, this is explained
by the fact that, as showed by Paletta and Pietramala,
the smaller is the range associated with the initial
ordered partial solutions, the smaller becomes the range
associated with the feasible solution and, therefore, the
smaller is the heuristic error.

The Instances
Three families of instances, which posses a very different
structure, are taken from the literature.
In the first two families the number of machines m is
5, 10, 25, the number of jobs n is 50, 100, 500, 1000 (the
case m = 5 and n = 10 is also tested), and the integer
processing times belong to the intervals [1, 100], [1, 1000]
and [1, 10000]. Ten instances are randomly generated for
each choice of m, n and of the processing times interval,
with a total of 390 instances within each family.
These two families differ in shape of the distribution of
processing times. In the UNIFORM family, presented by
França et al., the processing times are generated by using
an uniform distribution. The generator of the NONUNI-
FORM family, presented by Frangioni et al. (1999 and
2004), given an interval [a, b] of the processing times,
produces instances where 98% of the processing times are
uniformly distributed in the interval [(b− a)0.9, b], while
the remaining processing times fall within the interval
[a, (b−a)0.02]. Both generators are available at the URL
www.di.unipi.it/di/groups/optimize/Data/index.html
The last family of instances (BINPACK) is obtained
from bin packing instances, which are available at the
OR-Library of J.E. Beasley, from
http://mscmga.ms.ic.ac.uk/jeb/orlib/binpackinfo.html

In this family the processing times are uniformly dis-
tributed in [20, 100] and the number of machines m is
the number of bins in the best known solution of the bin
packing instances.

Plan of the Experimentation
Our algorithms were tested on these three families of in-
stances and were compared with the classical LPT heuris-
tic of Graham, the 3-PHASE heuristic of França et al.
(1994) and the local search K-SPT algorithm of Fran-
gioni et al. (2004). We exploit the results of Frangioni
et al. (1999) for the 3-PHASE and K-SPT algorithms,
since we use the same instances. The results of Frangioni
et al. do not include the number of instances solved by
optimality.



Our results were averaged for a group of 10 instances and
were given in terms of the relative error with respect to
the lower bound

L2 = max








1
m

∑

i=1,...,n

pi




, p1, pm + pm+1



 ,

where p1 > p2 > . . . > pn.
In Tables 1-6 we report the results of the five algorithms.
For sake of simplicity, our algorithms are referred with
the name of the used measure of spread. In Tables 7 and
8, the columns LPT, 3-PH, K-SPT and BEST describe,
respectively, the results of the LPT heuristic, of the
algorithm of França et al., of the algorithm of Francioni
et al. and of best result between our five variants. Since
our results were averaged for groups of ten instances and
the ten results can be from different variants, Tables 7
and 8 provide no information on the choice made. On
the other hand, no superiority of a specific measure has
been observed, so that we are unable to make a choice of
the suitable spead measure before the algorithm starts.
The number of instances in which the algorithms obtain
the makespan equal to the lower bound (which represent
the number of instances solved to optimality) is reported
in column opt.

Computational Results
Experiments with different measures of spread on these
three family of instances have shown that quality of the
solutions does not depend strongly on the chosen mea-
sure. Moreover, a choice of a particular measure does
not lead a significant reduction of the run time. The BIN-
PACK instances seem not suitable for a statistical meth-
ods approach; in fact, only in the case when the range
is used, the obtained solutions were better than the ones
provided by LPT. Therefore, we present only the results
for the other two families of instances. The results for
UNIFORM instances are shown in Table 1-3 and 7 for
the three subsets of instances with processing times in
[1, 100], [1, 1000], and [1, 10000]. UNIFORM instances are
known to be efficiently approached with LPT, 3-PHASE
and K-SPT algorithms. LPT usually obtains low gaps,
and solves to optimality a fair number of instances, while
3-PHASE and K-SPT offer more accurate results than
LPT. Our algorithms offer significant improvements over
LPT (Table 7); in 15 (resp. in 23) out of 39 cases the av-
erage relative error of BEST is comparable with respect
to the more accurate 3-PHASE (resp. K-SPT ). For ex-
ample, when the processing times belong to [1, 100], the
average relative errors of BEST and 3-PHASE are equal
in 8 out of 13 cases and when the processing times be-
long to [1, 10000], the average relative errors of BEST
and K-SPT are equal in 8 out of 13 cases. The results
for NONUNIFORM instances are shown in Table 4-6 and
8 for the three subsets of instances with processing times
in [1, 100], [1, 1000], and [1, 10000]. These instances are

more difficult than the UNIFORM instances, as greater
gaps remain in all of the four algorithms examined. BEST
consistently outperformed the LPT heuristic (Table 5),
generating much smaller gaps. In addition, compared
with the 3-PHASE (resp. K-SPT ) algorithm, BEST ob-
tained smaller or equal gaps in 30 (resp. in 23) out of 39
cases.
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4 Conclusions

In this paper, we proposed n log n algorithms for solv-
ing parallel machine scheduling problem to minimize the
makespan. These algorithms produce less average rela-
tive errors than the LPT algorithm, and, usually, the av-
erage relative errors are comparable with those generated
by the 3-PHASE and K-SPT improvement heuristics.
Our algorithms are based on five different measures of
spread, that are techniques commonly employed in statis-
tical problems. While the use of each measure possesses
some degree of success, no overwhelming superiority of a
single measure has been determined.
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