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Abstract— This paper proposes a new location
problem of competitive facilities, e.g. shops and
stores, with uncertain demands in the plane. By rep-
resenting the demands for facilities as random vari-
ables, the location problem is formulated to a stochas-
tic programming problem, and for finding its solution,
three deterministic programming problems: expec-
tation maximizing problem, probability maximizing
problem, and satisfying level maximizing problem are
considered. After showing that one of their optimal
solutions can be found by solving 0-1 programming
problems, their solution method is proposed by im-
proving the tabu search algorithm with strategic vi-
bration. Efficiency of the solution method is shown
by applying to numerical examples of the facility lo-
cation problems.
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1 Introduction

Competitive facility location problem (CFLP) is one of
optimal location problems for commercial facilities, e.g.
shops and stores, and the objective of a decision maker
(DM) for the CFLP is mainly to obtain as many demands
for her/his facilities as possible. Mathematical studies on
CFLPs are originated by Hotelling [8]. He considered the
CFLP under the conditions that (i) customers are uni-
formly distributed on a line segment, (ii) each of DMs can
locate and move her/his own facility at any times, and
(iii) all customers only use the nearest facility. CFLPs
on the plane were studied by Okabe and Suzuki [13], etc.
As an extension of Hotelling’s CFLP, Wendell and McK-
elvey [20] assumed that there exist customers on a finite
number of points, called demand points (DPs), and they
considered the CFLP on a network whose nodes are DPs.

Based upon the CFLP proposed by Wendell and McK-
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elvey, Hakimi [6] considered CFLPs under the condi-
tions that the DM locates her/his facilities on a network
that other competitive facilities were already located.
Drezner [3] extended Hakimi’s CFLPs to the CFLP on
the plane that there are DPs and competitive facilities. In
the above CFLPs, customers choose their using facilities
by estimating only the distance from them to facilities.
Huff [9] defined the attractive function of facility for cus-
tomers by considering not only the distance but also qual-
ity of facility. Drezner’s CFLPs with Huff’s attractive
function are studied by Uno and Katagiri [17], Fernández
et al. [4], Bruno and Improta [2], and Zhang and Rush-
ton [21]. As other extensions of Drezner’s CFLPs, CFLPs
with fuzziness are considered by Moreno Pérez et al [11],
and CFLPs based on maximal covering are considered by
Plastria and Vanhaverbeke [14].

In the above studies of CFLPs, the demands of cus-
tomers for facilities are represented as deterministic val-
ues. Wagnera et al. [19] considered facility location mod-
els with random demands in a noncompetitive environ-
ment. For the details of noncompetitive location models
with random demands, the reader can refer to the study
of Berman and Krass [1].

In this paper, we proposes a new CFLP with random
demands by extending Drezner’s CFLP with Huff’s at-
tractive function. Then, the location problem can be for-
mulated as a stochastic programming problem. For find-
ing its optimal solutions, three deterministic program-
ming problems: expectation maximizing problem, proba-
bility maximizing problem, and satisfying level maximiz-
ing problem are considered. These problems are noncon-
vex and nonlinear programming problems, and we need
to find at least one optimal solution of them. However,
for most CFLPs in the plane [3, 17], their optimal solu-
tions cannot be found by directly applying general ana-
lytic solution methods with derivatives of the objective
function, Kuhn-Tucker conditions, etc. Moreover, Uno
and Katagiri [17] and Uno et al. [18] showed that op-
timal solutions of CFLPs in the plane cannot be found
by directly applying heuristic solution methods for non-
linear programming problems, e.g. genetic algorithm for
numerical optimization for constrained problem (GENO-
COP) [10]. For solving the problems efficiently, we first
show that one of their optimal solutions can be found
by solving a 0-1 programming problems. Since the refor-



mulated problems are NP-hard, we propose an efficient
solution method for the problems. For discrete optimiza-
tion problems, the tabu search algorithm, proposed by
Glover [5], is one of the efficient solution algorithms; for
the details of the tabu search algorithm, the reader can
refer to the book of Reeves [15]. Hanafi and Freville [7]
proposed an efficient tabu search approach for the 0-1
multidimensional knapsack problem, which is designed
based on a strategic vibration. By utilizing characteris-
tics of the CFLPs, we propose a solution method for the
CFLPs improving their tabu search approach. Moreover,
efficiency of the solution method is shown by applying to
several examples of the CFLPs with random demands.

The remaining structure of this article is organized as
follows. In Section 2, we formulate the CFLP with ran-
dom demands as a stochastic programming problem, and
for finding its solution, three deterministic programming
problems are reformulated. Since the formulated prob-
lems cannot be solved directly, we show that one of their
optimal solutions can be found by solving 0-1 program-
ming problems in Section 3. In Section 4, we propose
an efficient solution method based upon tabu search al-
gorithms by utilizing characteristics of the CFLPs. We
show the efficiency of the solution method by applying to
numerical examples of the CFLPs with random demands
in Section 5. Finally, in Section 6, concluding comments
and future extensions are summarized.

2 Formulation of CFLP with random de-
mands

In the proposed CFLPs, we assume that all customers
only exist on DPs in plane R2. For convenience sake, by
aggregating all customers on the same DP, we regard one
DP as one customer.

There are n DPs in R2, and let D = {1, . . . , n} be the
set of indices of the DPs. Let m be the number of new
facilities that the DM locates, and k be the number of
competitive facilities which have been already located
in R2. The sets of indices of the new facilities and the
competitive facilities are denoted by F = {1, . . . ,m} and
FC = {m + 1, . . . ,m + k}, respectively.

Let ui ∈ R2 be the site of DP i ∈ D, and xj ∈ R2 and
qj > 0 be the site and quality of facility j ∈ F ∪ FC ,
respectively. Then, attractive power of facility j for DP
i is represented as the following function introduced by
Huff [9]:

ai(xj , qj) ≡


qj

||ui − xj ||2
, if ||ui − xj || > ε,

qj

ε2
, if ||ui − xj || ≤ ε,

(1)

where ε > 0 is an upper limit of the distance that cus-
tomers can move without any trouble. It is assumed that
all customers only use one facility with the largest at-
tractive power, and if the two or more attractive powers

are the same, they use the facility in reverse numerical
order of the indices of facilities; that is, in the order of
competitive facilities and new facilities.

Let x = (x1, . . . ,xm) be the location of the new facilities.
Then we use the following 0-1 variable for representing
whether DP i uses new facility j ∈ F :

φj
i (x) =

{
1, if DP i uses the new facility j,
0, otherwise. (2)

Let w̄i be the random variable meaning the buying power
(BP) of DP i. New facility j ∈ F can obtain the BP w̄i

if φj
i (x) = 1. The objective of the DM is maximizing the

sum of BP that all the new facilities obtain. Then, the
CFLP with random demand is formulated as the follow-
ing stochastic programming problem:

maximize f(x) =
n∑

i=1

m∑
j=1

w̄iφ
j
i (x)

subject to x ∈ R2m

 (3)

For finding optimal solutions of (3), we consider the fol-
lowing three deterministic programming problems: (i) ex-
pectation maximizing problem

maximize E[f(x)]
subject to x ∈ R2n

}
(4)

(ii) probability maximizing problem

maximize Pr[f(x) ≥ f0]
subject to x ∈ R2n

}
(5)

where f0 means a given satisfying level of obtaining BP,
and (iii) satisfying level maximizing problem

maximize f0

subject to Pr[f(x) ≥ f0] ≥ α
x ∈ R2n

 (6)

where α is a given satisfying level of probability that the
DM can obtain BP level f0.

Problems (4), (5), and (6) are nonconvex nonlinear pro-
gramming problems, and we need to find at least one
optimal solution for each of the problems. In the next
section, we show that the above three problems can be
reformulated as 0-1 programming problems.

3 Reformulation to 0-1 programming
problems

In the location model of the previous section, if the loca-
tion of the new facilities are given, the values of (2) for all
facilities and DPs are given, and then objective function
values of (4), (5), and (6) can be computed. On the other
hand, the outline of our solution method is as follows:



1. Give the set of DPs that the DM wants to obtain
their BPs preferentially for each new facility, and

2. Find the location of all new facilities which can ob-
tain BPs from the given all DPs, if any.

From (1), the set of DPs that new facility j ∈ F cannot
obtain their BPs wherever it is located can be represented
as follows:

D△
j = {i ∈ D |

√
qj/aC

i ≤ ε}, (7)

where
aC

i ≡ min
j∈FC

{ai(xj , qj)}. (8)

Then, the set of DPs that there is at least one location of
new facility j which can obtain their BPs is denoted by
Dj = D\D△

j . For each new facility j, the DM gives the
set of DPs D̄j ⊆ Dj that she/he wants to obtain their
BPs by locating it preferentially. Let

lij =
{

1, if i ∈ D̄j ,
0, otherwise. (9)

Then, D̄j can be represented as 0-1 vector lj =
(l1j , . . . , lnj).

For new facility j and vector lj given by the DM, we
consider the following problem with an auxiliary variable
rj ≥ 0:

minimize r2
j

subject to ||xj − ui||2 ≤ qj

aC
i

· rj ,

∀i ∈ {̄i|l̄ij = 1},
xj ∈ R2, rj ≥ 0.

 (10)

Let (xlj

j , r
lj

j ) be an optimal solution of (10). Then, the
following theorem plays an important role to find an op-
timal location of the CFLP.

Theorem 1 If r
lj

j < 1, the new facility j can obtain BPs

from any DP i satisfying lij = 1 by locating it at x
lj

j .

Proof: For the constraint of (10) and r
lj

j < 1, ||xlj

j −
ui||2 < qj/aC

i is satisfied for any DP i satisfying lij = 1.
Then, aC

i < qj/||x
lj

j − ui||2 is satisfied. From (1), this
relation means that the attractive power of new facility
j is more than that of all competitive facilities if new
facility j is located at x

lj

l . �

Note that because (10) is a convex programming prob-
lem, (10) can be solved by using the solution algorithms
for convex programming problems, such as sequential
quadratic programming (SQP) method; for the details
of the SQP method, the reader can refer to the book of

Nocedal and Wright [12]. From Theorem 1, the following
corollary is derived for finding an optimal solution of the
CFLP.

Corollary 2 Let L = t(l1, . . . , lm) ∈ {0, 1}mn and xL =
(xl1

1 , . . . ,xlm
m ). Then, there exists L such that xL is an

optimal solution of (4), (5), and (6).

Proof: Let x∗ be an optimal solution of (4). We define
the 0-1 matrix L̄ = (l̄1, . . . , l̄m) ∈ {0, 1}mn, each of whose
element for i ∈ D and j ∈ F is that l̄ij = φj

i (x
∗). Then,

from Theorem 1, xL̄ is also an optimal solution of (4)
because φj

i (x
L̄) = φj

i (x
∗) for all i, j and r

l̄j

j < 1 for all
j. This is also shown for the cases of (5) and (6). �

Let rL = max{rl1
1 , . . . , rlm

m }. From Corollary 2, finding
an optimal solution of (4), (5), and (6) can be formulated
as the following 0-1 programming problems respectively:

maximize E[f(xL)]
subject to rL < 1,

L ∈ {0, 1}mn

 (11)

maximize Pr[f(xL) ≥ f0]
subject to rL < 1,

L ∈ {0, 1}mn

 (12)

maximize f0

subject to rL < 1,
P r[f(xL) ≥ f0] ≥ α,
L ∈ {0, 1}mn

 (13)

Because the number of solving (10) for finding an op-
timal 0-1 matrix is 2mn, the above three problems are
NP-hard. In the next section, we propose an efficient
solution method for the problems.

4 Tabu search algorithm with strategic
vibration

Tabu search is one of the local search methods. In our
solution method, we define a move from a current solu-
tion, denoted by Lnow, as an increase or a decrease of
its one element. The neighborhood of a current solution
of (11), (12), or (13) is represented as a set of all solu-
tions that can be transferred by only one move from the
current solution. In the tabu search including our so-
lution method, the next searching solution from Lnow,
denoted by Lnext, is basically chosen to the best solu-
tion for given criteria, e.g. objective function value, in
the neighborhood of Lnow. However, if we use such a
search without modification, a circulation of certain cho-
sen moves occurs after a local optimal solution is found,
and then it can only search in a narrow part of the fea-
sible set. For preventing such a circulation, if a move is
chosen in the search, the tabu constraint for its opposite



move is activated for given terms, called the tabu term
and denoted by T1. Then the activated moves are forbid-
den to choose in T1 terms, called tabu, even if the moves
make the objective function value best in all solutions in
a neighborhood. Such tabu moves are memorized in the
tabu list for the search.

Although the tabu search method has advantage for
searching in local areas intensively, there are generally
many local optimal solutions of (11), (12), or (13). For
searching an optimal solution efficiently, we propose the
solution method by utilizing characteristics of CFLP.

First, we introduce an important theorem showing a simi-
larity between the 0-1 programming problems in the pre-
vious section and multidimensional knapsack problems.
Let lk+

j := lj + ek, where ek is the k-th unit vector, and
Lk+

j := t(l1, . . . , lk+
j , . . . , lm).

Theorem 3 Let L ∈ {0, 1}mn be the matrix that l̄ij =
φj

i (x
L) for all i, j and xL be an optimal solution of (11),

(12), or (13). Then, if there exists DP k ∈ D satisfying
lkj = 0 for any new facility j, rlk+

j ≥ 1 for any j.

Proof: We assume that there exists k, j such that rlk+
j <

1. Then, from Corollary 2, the DM can obtain BP of
DP k by locating facility j at xlk+

j , adding to the BPs
that she/he can obtain by locating facility j at xlj . This
contradicts the fact that xL is an optimal solution. �

From Theorem 3, an optimal solution of the three 0-1 pro-
gramming problems exists on the neighborhood of their
common constraint rL < 1. This is similar to the mul-
tidimensional knapsack problem whose optimal solution
exists on the neighborhood of its constraints.

Moreover, the multidimensional knapsack problem has
the characteristic that if any element of solution is
changed from zero to one, the objective function value
is improved. Similarly, for the three 0-1 programming
problems, if L and Lk+

j hold that rL < 1 and rLk+
j < 1,

xLk+
j is mostly superior to xL. This is because (10) for

Lk+
j includes the constraint for obtaining BP of DP k,

adding to the constraints of (10) for L.

From these two characteristics, the solution methods for
multidimensional knapsack problems are also efficient for
(11), (12), and (13). For multidimensional knapsack
problems, Hanafi and Freville [7] proposed an efficient
solution method based upon the tabu search algorithm
with strategic vibration. We apply their solution method
to the problems with some modifications for the CFLP.
Then, our proposing solution method is described as fol-
lows:

Tabu search algorithm with strategic vibra-
tion

Step 0: Generate the initial searching solution Lnow,
and initialize the tabu list and other variables. If
rLnow

< 1, then go to Step 4.

Step 1: Move Lnow to Lnext by decreasing an element

of Lnow with the purpose of decreasing rLnext
as

much as possible. This step is repeated until it is

satisfied rLnext
< 1.

Step 2: Move Lnow to Lnext with the purpose of im-
proving the objective function value of (11), (12), or
(13). This step is repeated at given certain terms,
denoted by T2.

Step 3: Move Lnow to Lnext by decreasing an element

of Lnow with the purpose of decreasing rLnext
as

much as possible. This step is repeated until rLnext

is less than a certain vector, denoted by rlow.

Step 4: Move Lnow to Lnext by increasing an element
of Lnow with the purpose of improving the objective
function value of (11), (12), or (13). This step is

repeated until it is not satisfied rLnext
< 1.

Step 5: Do the same operations as Step 2.

Step 6: Move Lnow to Lnext by increasing an element
of Lnow with the purpose of improving the objective
function value of (11), (12), or (13). This step is

repeated until rLnext
is more than a certain vector,

denoted by rupp.

Step 7: If given terminal conditions are satisfied, then
this algorithm is terminated. The obtaining approxi-
mate solution is the best solution about the objective
function value of (11), (12), or (13) in all searched
solutions. Otherwise, return to Step 1.

5 Numerical experiments

In this section, we show the efficiency of the solution al-
gorithm in the previous section by applying to three ex-
amples of the CFLPs. In these examples, the numbers
of DPs are n = 30, 40, 50. The sites of DPs u1, . . . ,un

are given in [0, 100] × [0, 100] randomly. Their random
BPs w̄1, . . . , w̄n are represented as random variables each
of which has three scenarios whose probabilities are 0.5,
0.3, and 0.2, and BP of each DP for each scenario is given
in [5, 12] randomly. We give fifteen competitive facilities,
that is k = 15, and for competitive facility j ∈ FC , its site
xj and quality qj are randomly given in [0, 100]× [0, 100]
and {1, . . . , 5}, respectively. In this plane, the DM locates
one facility, that is m = 1, whose quality is that q1 = 3.
For (12) and (13), we give f0 = 30 + n and α = 0.8.



Next, we give parameters about our solution method. We
set the tabu term T1 = n/2 − 10. At Step 2, we set that
T2 = 10. At Steps 3 and 6, we set that rlow = 0.3 and
rupp = 3. The terminal condition at Step 7 is satisfied
if the tabu search algorithm is iterated at more than 10
times.

For showing the efficiency of our solution method, we
compare its computational results to that of the genetic
algorithm; for the details of the genetic algorithms, the
readers can refer to the study of Sakawa et al. [16]. We
set generation gap G = 0.9, population size NGA = 150,
and terminal generation TGA = 2000. Probabilities of
crossover, mutation, and inversion are pC = 0.9, pM =
0.01, and pI = 0.03, respectively.

We apply the tabu search algorithm and the genetic al-
gorithm to three examples of the CFLPs, where each of
these algorithms is implemented 20 times for each exam-
ple by using DELL Optiplex GX620 (CPU: Pentium(R)
4 2.33GHz, RAM: 512MB). The computational results of
solving the CFLPs are shown in Tables 1-6. From Tables
1-6, the tabu search algorithm can obtain better solu-
tions for (11), (12), and (13) than those of the genetic
algorithm with shorter computational times. This means
that our solution method is efficient for the CFLPs with
random demands.

Table 1: Computational results by the tabu search algo-
rithm with strategic vibration for (11)

n 30 40 50
Best 64.87 67.79 86.77
Mean 64.87 67.79 86.77
Worst 64.87 67.79 86.77

CPU times (sec) 9.83 20.73 48.28

Table 2: Computational results by the genetic algorithm
for (11)

n 30 40 50
Best 64.87 67.79 86.77
Mean 64.87 66.30 84.78
Worst 64.87 64.54 70.07

CPU times (sec) 47.86 52.93 69.14

6 Conclusions and future researches

In this paper, we have proposed a new CFLP on the
plane with random demands. We have formulated the
CFLP as a stochastic programming problem, and for
finding an optimal solution of the problem, the three
deterministic programming problems: expectation max-
imizing problem, probability maximizing problem, and
satisfying level maximizing problem are considered. Be-
cause these problems cannot be solved directly, we have
shown that one of their optimal solutions can be found
by solving 0-1 programming problems. Since the 0-1 pro-

Table 3: Computational results by the tabu search algo-
rithm with strategic vibration for (12)

n 30 40 50
Best 0.7 0.5 0.7
Mean 0.7 0.5 0.7
Worst 0.7 0.5 0.7

CPU times (sec) 10.41 22.73 53.70

Table 4: Computational results by the genetic algorithm
for (12)

n 30 40 50
Best 0.7 0.5 0.7
Mean 0.7 0.5 0.64
Worst 0.7 0.5 0.5

CPU times (sec) 47.86 59.20 77.79

Table 5: Computational results by the tabu search algo-
rithm with strategic vibration for (13)

n 30 40 50
Best 45.86 48.20 58.96
Mean 45.86 48.20 58.96
Worst 45.86 48.20 58.96

CPU times (sec) 11.47 29.20 48.81

Table 6: Computational results by the genetic algorithm
for (13)

n 30 40 50
Best 45.86 48.20 58.96
Mean 45.66 47.23 56.27
Worst 44.85 44.85 50.10

CPU times (sec) 54.11 61.70 80.28

gramming problems are NP-hard, we have proposed an
efficient solution method based upon the tabu search al-
gorithm with strategic vibration by utilizing characteris-
tics of the CFLPs. Efficiency of the solution method is
shown by applying to several examples of the CFLPs.

These three reformulated deterministic programming
problems have the characteristic that the more the DPs
whose BPs are obtained by the new facilities are in-
creased, the more their objective function values are im-
proved. We can improve efficiency of our solution method
by utilizing the characteristic. However, if the CFLP
with random demands is reformulated to deterministic
programming problems for considering risk, e.g. vari-
ance and VaR minimizing problems, these problems do
not necessarily have the characteristic and then cannot
be found their optimal solutions by applying our solu-
tion method. Therefore, to propose an efficient solution
method for such problems is a future study.
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