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Construction of Balanced Functions without
Extending Their Number of Variables

Aissa. Belmeguenali, Noureddine. Doghmane, and Khabnsouri

Abstract— In this work, we first give a general method whih
can get a large class of balanced Boolean functionwith
reasonably high nonlinearity, larger than that obtaned by
Lobanov. Then, we study the secondary constructioof Boolean
functions without extending their number of variables, introduced
recently by Carlet. This gives interesting cryptogaphic properties
in terms of balancedness, nonlinearity and algebrai immunity.
We conclude the paper by proving that the algebraiemmunity of
the constructed functions is better than among ofhe starting
functions.

Boolean

Index Terms—Algebraic function,

nonlinearity, resiliency.

immunity,

. INTRODUCTION

Boolean functions, when used in stream ciphemzner
model or filter model), are required to have gopgptographic
properties. Some of the important properties al@ttadness, a
high algebraic degree, a high non linearity anthéncase of the
combiner model, a reasonably high correlation imityu
These properties ensure that the functions arstassiagainst
correlation attacks [1] and linear cryptanalysis [2

Recently, algebraic attacks [8], [9], [10], [1[02], [13], [14]
have been observed that a Boolean functibrused as a
cryptographic primitive, must have a high algebiigionunity.
But not sufficient property for Boolean functionegsin stream

A2 =1
ciphers. In [15], Lobanov proved thf > 2 Z .

io \U
for every n -variable Boolean functions. Moreover,
constructing a family of Boolean function achievirge

A2 =1
equality Nf =2 Z ( j he proved that this lower
izo \

bound cannot be improved further. The result of] [aBd
theorem 2 of [16] give a new reason why one showetduse

functions f with low nonlinearity, since in that cas@l ()

by

would be low. However, they do not ensure thaf ihas high
algebraic  immunity  (for instance an  optimum

n
oneAl (f)= [E} ) then its nonlinearity will be high. Indeed,

the result of [15] implies then thaf has nonlinearity at

o
n_l . n-1 . .
IeastZZ ( j that is, 2" " —| n-11if Nis odd
i=o \ —
2

n-1 n-1
and2"™ —| n -l n |if niseven.

2 2

ciphers. It is an important topic to construct Boolean The object of this work is double. In the first &mi is a
functions with optimum algebraic immunity. But tees duestion of studying the non linearity and the bige

functions must also satisfy the other criteria Heca

above for being likely to be used in stream ciphers
Non linearity is the most important property amadhgse

cryptographic properties on Boolean function usedtream
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immunity of a N -variable function. General method which can
get a large class of Boolean functions are consiiekll these
functions have algebraic immunity at ledst, where

n
k << [E} is any integer. We study their Walsh transforms.

Furthermore, by choosing suitable parameters, vesvghat
some infinite classes of balanced functions canehaen

n-1 n-1
linearity significantly larger tha@"™* — n 1 =In
2 2

Thus, we use Carlet's construction [17] to constBmolean
functions with better cryptographic properties, ethgives the
guidance for the design of balanced Boolean funstio resist
algebraic attack, and helps to design good crypfuyc
primitives of cryptosystems.
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The paper is organized as follows. Section 2 gives Boolean functions used in cipher system must hagbd h
preliminaries. In section 3, we give a general rodéto get a nonlinearity to prevent correlation and linear elt&[18], [19],

large numerous Boolean functions with algebraic imity at [20], [1]. A Boolean function f on |:2n is balanced

n . _ . .
k << {E} and have important nonlinearity. In section 4 wéf wt(f) =wt(f U1). In other words,f is balanced if and

only if wt(f)=2"". Correlation immune functions and
resilient functions are two important classes ofolBan
functions. Xiao and Massey [21] provided a spectral
characterization of correlation immune atwdh order resilient

deduce balanced functions with nonlinearity, lartiem that
obtained by Lobanov. In section 5, we use constnct
introduced by Carlet [17] to derive construction@flanced
functions with reasonably high nonlinearity and st®w that, ] ) i S ]
the algebraic immunity of the constructed functid®better functions. A functionf is t-th order correlation immune if
than among of the starting functions. Section 6ctates the and only if its Walsh transform satisfidd/f (u) =0, for

study. 1< wt(u) <t, wherewt(u) denotes the Hamming weight of

u, andf is t -resilient if moreoveWf (0) =0.OuOF,",
Il. PRELIMINARIES 0<wt(u) <t.

A Boolean function onn -variable may be viewed as @ The gaigebraic immunity of a Boolean functioh is the
mapping fromF,in toF, . The set of alln -variable Boolean smaller degree of non null functiong such that
functions is denoted Hg, . By LI we denote sum modulo 2. f*g=0or (10 f)* g=0 . Otherwise, the minimum
The Hamming weighwt(f) of a Boolean functionf on value of d such thatf or 1[0 f admits an annihilator of
F,'is the size of itssupport{xD F; f(X) :]} . The degreed. We denoted byAl, () the algebraic immunity of
Hamming distanced ( f, g) between two Boolean functions a Boolean functiorf . It is shown in [13] and [10] that algebraic
f and gis the Hamming weight of their differendel] g, immunity of a Boolean functiorf is at mos[%].
d(f,g)=wt(f Jg). An n-variable Boolean function  Notation: x[Oy = (x, 0y, % 0Y,...x,0y,)

f has unique ?Igebralc normal form (A'N'F)'wherex=(Xl,XZ,...,Xn), y=(y1,y2,...,yn)DF2“;
f (X Xy) =8+ @)X + 10x=(10x10x,,..00x,) is the bitwise

=0 complement ofX = (X,, X, ..., X ).
Dlay XX+t an, XXX,

1<i<j<n It is known that for a fixed every vectou [ F,' such
Where the coefficien,, &, & ..., &, ,belong to F,. thatwt(u) = m, we have
i i ‘ (m)n-m
The algebraic degree of Boolean functidn, denoted Z(_ 1)u5t _ z(_ 1)J mnem Ki (m’ n). 3
byd®(f), is defined as the number of variables in the égh - +’/7 = = ] -

order term with nonzero coefficient. If algebraggdee of f is  \where K, (X, n) is the Krawtchouk polynomial [22].
smaller than or equal to one théris called affine function. An Proposition 1:

affine function with a constant term equal to zevaalled a 1) Ko(m, n) =1 Kl(m, n) =n-2m:

linear function. Many properties of Boolean funasocan be . _

described by the Walsh-Hadamard transform. Lktbe 2) (I +1)Ki+1(m’ n)— (n—2m)Ki(m, n)—
(n-i+1k_,(mn);

Boolean function offr,’. Then the Walsh-Hadamard transform
of f is defined as:

3) (n-m)K, (m+1,n)=(n-2)K (mn)-

OuOF; Wi(u) = > (=1) '™ (=D"*. 1)
*OF, mk (m—ln), ‘
Where XU =X .U, +...+ X .U, denotes the usual scalar  4) K; (m, n) = (— 1)I Ko (n -m, n).
product of vectordl andX . The following lemmas will be used to prove the itsin the

The nonlinearity Nf of a n -variable functionf is the Paper.

.. . } . . . n __1
mmn’_num _d|stance from the set of ah -variable affine Lemma 1: [23] For 1<i< and
functions, it equal to:

2
Nf = 2" —%maMf(u)|. @ lsms<n-1/K (mn)<K;(Ln).

uoFy
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Lemma 2For every two integerfl andm= 0: we have . CONSTRUCTIONOFBOOLEAN FUNCTIONS

n The idea of our construction comes from the folloyvi

1) 0 =1 Construction 1:Let K,nbe any two positive integers such

n

2 nj _1. thatk << [E} Let gand f be two Booleans functions of
N :
0 B, with the following conditions.

3) =0, for everym > n;
m

1) gequal zero forwt(X) < k andwt(x) = n—Kk,

2 =(3}G‘J+...+G_J+@; 0 it wi()<k

(n+1J (n j (nj 2) f(X)=<{9(x) if kswt(x)<n-k
5) = 1 + , for everyn=0 and

m+l) Am+1) (m 1if W) > n—k
m=0.

4

~

Lemma 3{17] Let f,, f, andf, be three Boolean functions Then we have the following important result.

onF,'. We denoted by, the Boolean function equal to Lemma 5: Let f LB, be a function as described in

f,0f,0f, and by a, the Boolean function equal Construction 1. Thel () 2 k.

fl fz 0 fl f3 0 f2 fs Then we have Proof: We first show that the functioh[] f has not a nonzero

annihilator of degree less thkn
Write the possible annihilatohof the functiorl (] f of
Wfl +sz +Wf3 =Wa, + Wa, . 4 degree at mosk —1by means of indeterminate coefficients:

Lemma 4: Let k,n be any two positive integers such L
h=a, +za1xi + za'ij XXt +a, 1 XX Xy
i=0

I<i<j<n

to
f,+f,+ f, =a, +2a,. This implies

n .
thatk << | —|. Forl<i<k -1,
2 The function h is the annihilator ofl[] f if only if

K, (1, n)s K, (0, n). (5) 10 f(x) =1 follows h(x) =0. We obtain the system of
n homogeneous linear equations on the coefficientsthef
Proof: Note that K, (0, n) = ( J functionh:
' h(x) =0

K. (1. n) — n-1 _(n -1 For i =0 we have for all vectors X of Hamming weight less than or equkils 1.

' i ' ’ Since h(0,...0)=0 , we have a,=0 . Since
Ko(0,n)=K,@n)=1. Fori=1, K, (O,n)=n and h(x) = 0if wt(x) =1, we havea, =a, = 0. Applying the
K,1n)=n-2. induction on the weight of vectors we, obtain thalt

Suppose thatK, (1. n)s K, (0, n) rue forl<i<k—gp  coefficients ofhare zeros, hench,=0. i.e 10J f has not a

nonzero annihilator of degree less thkan

Kk—1(01 n):(n J By lemma 2 (Item 5), we have Now, we prove thatf has not annihilator of degree less
k-1 thank . Supposef has an annihilatoH of degree less thda.

K, 1(o,n):(” j:(n—lj{n—ljz That is,f (%) * H(X) =0, i.e., H(X) = Owhen f(x) =1.
) k-1 k-1) k-2 Note that, ifg(X) =1, we haveH (X) = Ofor every vector
(n —1} _(n—lj +(n —1] _(n —1J xOF,  such that wt(x)=k . Define
k-1) \k-2 k-2 k-3 H,asH, (X)) =H @O x), i.e,, H(X) =H, (1O x). This

n-1 n-1) (n-1 gives degH,)=degH)=<k . Hence, we
(k—3j2(k—1j_(k—2j =Ky(Ln). have (10 f(x))*H,@0x)=0 . So, 10 f has an

annihilator of degree less thkin which is a contradiction.

-(v2)-

Hence, the inequalities (5) true o< i < k —1.
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If =0, th =0f OF," such ek(n
g(x) =0, then H(X) _ Ofor every vectorx O F," suc Construction 1. Then. WVI(g) :iz M en f s
that wt(X) > n—Kk . Define H, asH,(X) =H @O X) , 2
ie., H(x)=H,@Ox) : This gives, balanced. Moreover
- n
degH,) =degH) <k . Hence,  we NfsNg _( j -
have (1D f(X))*H2(1D X)=0 . So,10 f has an k-1

annihilator of degree less thkn which is a contradiction. Proof: Relation (7) and the fact that for every vector
Lemma 6: Let f 0B, be a function as described in U= Qimplies refation
Construction 1. Then

k=1 n N k-1 n
e o Wi =we0 25| =2'-2m(e) 25 |
N EVGED (6) ) ! !
i= i= &=(n
° ° :Z( j—ZWt(g) Imply that Wf(0) =0 if only
=\
Lemma 7:Let f B, be a function as described in “ L (n
Construction 1. Then the value of the Walsh tramsfof f at ifWt(g) = —Z( j: f is balanced.
i=k
Relation (3), relation (7) and the fact that for every vecto
uOFR," implies relation

wgw -2 Y (-9 for even wt(u) maxwWi (u)| < rgg){Wg(u)| + angﬁKk-l(Wt(U)’nX- 9)

n

XOF,' [ wit(x)<k ulr,

every U [ F," equals:

Wf(u) = - From lemma 1, one has
Wou)+2 Y (-1)"" for odd wt(u) maxK . (wt(u),n) = max{K ., (2 n),|K,(n,n))
XOF' / wt (x)<k ulr,
(7) From proposition 1 (Item 4), we
e hae  K,(mn)=(-1)'K,(n-mn) : this
Proof: For every vector U , we have . _ k-1
Wi Z( 1)f(X)Du& 2 giveK,,(n,n) = (1)K, _,(0,n), we have
u) = - —
& EEzFazn){Kk_l(wt(u), n) = max(K,,(L.n},|K,,(0,n)). x0)
= Z(— 1) + Z(_ 1) 909Ul Z(_ 1)"™** By using relations (9) and (10), we have
xOF [ wt(x)<k XOF,' I kswt(x)<n-k XOF,' / wt(x)>-n-k
(x)0ulx
— Z(_ 1)0Du5t + Z(_ 1)g x)0u ruggﬁWf(u)\ < rurnga;{Wg(u)\ +2ma>{rurD12">{Kk_l(l n)\,rurnga;{Kk_l(O, n])
XDFZ"M(EM) aF ( )ou o ( )m , and relation (5) implies the relation
_ z —q)o0uz _ Z —1)°%uE 4 Z 1) n
XS 1wt (x)<k XS 1 Wi (x)>n—k XS [ wi(u)>n—k Eggﬁvvf (U)| = [E?{Wg(uﬂ +2 k-1l (11)
_ g(x)0ux udutx 10u0uX : 2
- Z (_ 1) - Z(_ 1) + Z(_ 1) Using relation (2), we deduce relation (8).
XOFZ XOFZ Twi(x)<k XOFZ Twi(x)<k In the following corollary 1, we will show that the
Wg(u) - 2 Z(_ 1)u5k for even wt(u) nonl|ne§r|ty of functionf D.Bn as d(jzscrlb.ed in construc.non 1
B YRS Tw(x)<k ganLagmeve [tlhse] best possible nonlinearity, latigen obtained
= . y Lobanov .
Wg(u) +2 Z(—l)m for odd wt(u) Corollary 1: Letnbe even integer. Lef [1B, be Boolean
XOFZ wit (x)<k function as described in construction 1. gfis bent and
1n—k n
IV. DEDUCEDBALANCED FUNCTIONS if Wt(g) = —Z . |. Then f is balanced function has
We use the result of Lemma 7 to study the nonliheand 2ix\l
balancedness for a class of functions based ont@atien 1. . . 1 21 (n
Theorem 1:Let k,n be any two positive integers suchnonlinearity atlea®" ™ —22 - K-1)

n
thatk << [E} . Let f 0B, be a function as defined by

(Advanced on line publication:1 August 2009)
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Note that in [15]
function f of even numbem of variables with the maximum

n
possible algebraic immuniky = [E} and nonlinearity

-1 n-1
=In . Our corollaryl proved that it is
2

possible to design class of balanced functions waitfebraic

n
2n—1 _

]

2

n
immunity k << [5} achieve nonlinearity at

n

least 2"t - 25_l —(
Kk —

:J ,  significantly  larger

n-1 n-1
than2"™" —| n 7D . We give in table 1, for
2 2

N =18 and even, the few values dif of bound of corollary
1 and

n-1 n-1 1
2 -In |-ln |=2""-=—— obtainedin[15].
oo Jom

The bound of corollary 1 is better than the bouhdl1&] for
every N> 22even and for every value @<k <5 (see
table 1 and table 2).

in table 2 we give the values of nonlinearity

it was constructed the balanceginction f of even numbem of variables is balanced has

n, n,
nonlinearity at least2"™* —22 —n=2"1-g 22 |, best
possible non linearity.

Lobanov’'s bound does not guarantee that having gl hi
resistance to the correlation attacks. Indeed, sasfstance
needs a high nonlinearity, from table 2, we seeabnob’s

n-1 n-1 el
bound 2" —| -l n =2"'-"— is not
e Jom

quite satisfactory. But the bound of corollary how that
having a reasonable high algebraic immunity andoitt@mt

nonlinearity. Moreover, for everp = 28even and for every

value of K =7, the algebraic immunitk = 7 is a strong
property, not only with respect to the resistanzelgebraic
attacks, but also with respect to the resistandgigber order
attacks.

V. CONSTRUCTIONBALANCED FUNCTIONS

WITHEOUT EXTENDING THEIR NUMBER OF
VARIABLES
We use now the results of Lemma 3 and lemma 7 laad t
construction [17] to construct Boolean functionghwbetter
cryptographic properties, which gives the guidafae the
design of balanced Boolean functions to resistlakgje attack,
and helps to design good cryptographic primitives o

Remark 1:The family of functions described by construction Xryptosystems.

is very general. It is easy to see that constrocfiomakes
possible to define a large class of Boolean funetiovith

n
algebraic immunity at least k << {E} and an important

n
nonlinearity. For example ik = [E} , we get class of Boolean

Theorem 2:Let K,n be any two positive integers such

n
thatk << {E} .Letd,,d, and g, be three Boolean functions

on F,' equals zero fowt(x) < kandwt(x) > n—k. we
denoted by, the Boolean function equal @y L1 g, U g,.

functions f of n -variable achieving the nonlinearity 0 if wt(x)<k
n
b}zn_l o  Let () =<19,(x) if kswt(x)<n-k :
Nf =2 Z _ giving in [15]. Thus, by choosing
i=0 \! 1 if wt(x) = n-k
suitable parameters, for evdm , bent functiong and
1n—k n .
Wit(g) = EZ( j we show that some infinite classes of 0 if wt(x) <k
i=k \|
balanced functions can have non linearity signifigalarger  f,(X) =<9,(x) if k<wt(x)<n-k and
n-1 n-1 )
than 2" - n 1 =l n For instance, for bent it wi(x) - n-k
2 2
. 13%(n
functiong, k=2 and Wt(Q) =§z _ | . Then, the
i=k \l

(Advanced on line publication:1 August 2009)
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0 if wt(x)<k

fo(X) =405(x) if k<wt(X)<n-k three balanced

1if wt(xX)>n-k

functions. Then the functior, = f, O f, [J f,is balanced if

only if the functiona, = f,f, 0 f f, O f,f;is balanced.
Moreover

Na >1 iNg +No, |-2" |-2m
272l g ! k-1

if the Walsh support off , f, and f,are pairwise disjoint,

) n
k-1)
Proof: Relation(4) and the fact that for every vectv~ O, we

haveWf (0) =0, for i =123 imply that Wa, (0) = O if
only if Wa, =0. Relations(4) and the fact that for every

(12)

thenNa, = 1(min Ng, + No;

2 \s<i<3 (13)

vector U J F," implies relation

1 3
e, ] = 5{ > matt (0 mawe )
UOF; 2\ 5\ R uoF;
and relation (11) implies
o< S o4 - mapo -4
(2),
1 3
2"-2Na, < E(4>< 2"-2> Ng -2Ng, +

i=1

we have

n
k-1
or equivalent relation (12).

If at most one valud/f (u) = 0, for i = 1,23is nonzero, then

using relation

relation 4) implies the relation
1

maxWa, (u)| < =| max maxWi (u)| | + maxWa,(u

uDF2">1VV o )| 2(195;{@,:51\/\/'( )0 uDF2">1VV i )0

, relation (11) implies

et (o)< 3{ pf matwa(al 4|+ matwo o)+, |

and relation (2) implies then relation (13).

Now, we study an algebraic immunity of Boolean

functionsar, . We will prove the functiorr, in theorem 2 can
have better algebraic immunity thaf, f,, f, anda; .
Given f [1B,, we denote byAN,(f) the set of non null
pUB, with lowest possible degree such thaf f =0
orpd(l0 f)=0.

Proposition 2:Let

0 if wt(x)<Kk

f,(x)=<9,(x) if kswt(x)<n-k,

1if wt(x)>n-k

0 if wt(x)<k
f,(X) =490,(x) if k<wt(x)<n-kand

1if wt(x)>n-k

0 if wt(x)<k

fo(x) = k < wt(X) < n—K be three

g5(x) if
1if wt(x)>n-k

Boolean functions ol=_r2n have respectively algebraic degree
r,r,andr, . Let
a,(X) = 1,09 F,(x) O £,(x) £3,(x) O £,(X) £3(x) be
Boolean function. Then

1) k< Al (a,) <k +min(r,r,,r;)

2)if r, =1, =r; =TI then
k<Al (a,)sk+r

Proof: From lemma 5, we have

k< AlL(f) = AlL(f,) = Al (f,)

Let 0,=0,0,000,00,0, Note
a,() = 1,09 1,09 0,00 3(x) 0 £,(9) f5,(3)

0 if wt(x)<Kk

that,

o,(x) if kswt(x)<n-k.

1if wt(x)>n-k

From lemma 5, we have

k<Al (a,) (14)

Let p, O AN, (f,) If f,0p, =0
then (f,0 f,)a,0p,=0 . 1f (10O f)0p, =0 ,
then(f, O f,)@0 a,) Op, = 0. This gives inequalities:

Al (a,) <k +min(r,,r,) (15)

(Advanced on line publication:1 August 2009)
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Let  p,0AN(f) . 1 f,0p,=0 VI. CONCLUSIONS

- — We presented a general method of Boolean functigrish
then (fl H f3)a2 Up, =0 . 1 @0 f,)0Up, =0 . can get a large class of Boolean functions witlseaably high
then( f, O f3)(1D a,)Up, = 0. This gives inequalities:  nonlinearity It is possible to specify the parametérsandg ,

Al (a,) <k +min(r,r,) (16) to define class of balanced functions of even nunibef
Let ps DA (f3) : If fy0p; =0 . variables with an algebraic immunity << [g} that achieves
then (f,0 f,)a,0p,=0 . 1t (@O f,)0p,=0
o o "1 (n
then( f, O fz)(]-D a,) Op; = 0. This gives inequalities:  nonlinearity at lea2"™* — 22 g K , significantly larger
Al (a,) <k+min(r,r,) 17)

than that obtained by Lobanov. Then, we study dooisdary
construction of Boolean functions without extenditigeir
number of variables, introduced recently by Carlétis gives
interesting cryptographic properties in terms ofaheedness,
nonlinearity and algebraic immunity. We prove thée

Equations (15), (16) and (17) give inequalitiegtonright.
Item 2 is direct consequence of item 1.

Table 1: The best lower bounds of balanced fundtion

n
for Ng=2"* —p2 algebraic immunity of the constructed functiondéiter than
n =3 m=4 m=5 among of the starting functions.
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