
 

 

  
Abstract— In this work, we first give a general method which 

can get a large class of balanced Boolean functions with 
reasonably high nonlinearity, larger than that obtained by 
Lobanov. Then, we study the secondary construction of Boolean 
functions without extending their number of variables, introduced 
recently by Carlet. This gives interesting cryptographic properties 
in terms of balancedness, nonlinearity and algebraic immunity. 
We conclude the paper by proving that the algebraic immunity of 
the constructed functions is better than among of the starting 
functions. 
 

Index Terms—Algebraic immunity, Boolean function, 
nonlinearity, resiliency. 

 

I. INTRODUCTION 

   Boolean functions, when used in stream cipher (combiner 
model or filter model), are required to have good cryptographic 
properties. Some of the important properties are balancedness, a 
high algebraic degree, a high non linearity and in the case of the 
combiner model,  a reasonably high correlation immunity. 
These properties ensure that the functions are resistant against 
correlation attacks [1] and linear cryptanalysis [2].  
 Recently, algebraic attacks [8], [9], [10], [11], [12], [13], [14] 
have been observed that a Boolean function f used as a 

cryptographic primitive, must have a high algebraic immunity. 
But not sufficient property for Boolean function used in stream 
ciphers. It is an important topic to construct Boolean 
functions with optimum algebraic immunity. But these 
functions must also satisfy the other criteria recalled 
above for being likely to be used in stream ciphers.  
 Non linearity is the most important property among those 
cryptographic properties on Boolean function used in stream 
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for every n -variable Boolean functions. Moreover, by 
constructing a family of Boolean function achieving the 
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bound cannot be improved further. The result of [15] and 
theorem 2 of [16] give a new reason why one should not use 

functions f  with low nonlinearity, since in that case )( fAI n  
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The object of this work is double. In the first time, it is a 
question of studying the non linearity and the algebraic 
immunity of a n -variable function. General method which can 
get a large class of Boolean functions are considered. All these 
functions have algebraic immunity at leastk , where 
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
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n
k pp is any integer. We study their Walsh transforms. 

Furthermore, by choosing suitable parameters, we show that 
some infinite classes of balanced functions can have non 

linearity significantly larger than














 −
−
















−

−
−−

2

1

1
2

1
2 1

n

n

n

n
n .  

Thus, we use Carlet's construction [17] to construct Boolean 
functions with better cryptographic properties, which gives the 
guidance for the design of balanced Boolean functions to resist 
algebraic attack, and helps to design good cryptographic 
primitives of cryptosystems. 
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The paper is organized as follows. Section 2 gives 
preliminaries. In section 3, we give a general methode to get a 
large numerous Boolean functions with algebraic immunity at  




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

2

n
k pp and have important nonlinearity. In section 4 we 

deduce balanced functions with nonlinearity, larger than that 
obtained by Lobanov. In section 5, we use construction 
introduced by Carlet [17] to derive construction of balanced 
functions with reasonably high nonlinearity and we show that, 
the algebraic immunity of the constructed functions is better 
than among of the starting functions. Section 6 concludes the 
study. 
 

II.  PRELIMINARIES 

A Boolean function on n -variable may be viewed as a 

mapping from nF2 in to 2F . The set of all n -variable Boolean 

functions is denoted bynB . By ⊕  we denote sum modulo 2. 

The Hamming weight )( fwt  of a Boolean function f  on 
nF2 is the size of its support{ }1)(;2 =∈ xfFx n . The 

Hamming distance ),( gfd between two Boolean functions 

f  and g is the Hamming weight of their difference gf ⊕ , 

)(),( gfwtgfd ⊕= . An n -variable Boolean function 

f has unique algebraic normal form (A.N.F): 
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Where the coefficients0a , ia , ija ,.., na ...12 belong to 2F . 

The algebraic degree of Boolean functionf , denoted 

by )( fd° , is defined as the number of variables in the highest 

order term with nonzero coefficient. If algebraic degree of f is 

smaller than or equal to one thenf is called affine function. An 

affine function with a constant term equal to zero is called a 
linear function. Many properties of Boolean functions can be 
described by the Walsh-Hadamard transform. Let f be 

Boolean function on nF2 . Then the Walsh-Hadamard transform 

of f is defined as: 
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Where nn uxuxux ...... 11 ++= denotes the usual scalar 

product of vectors u andx . 

The nonlinearity Nf of a n -variable function f is the 

minimum distance from the set of all n -variable affine 
functions, it equal to: 
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Boolean functions used in cipher system must have high 
nonlinearity to prevent correlation and linear attacks [18], [19], 

[20], [1]. A Boolean function f on nF2 is balanced 

if )1()( ⊕= fwtfwt . In other words, f  is balanced if and 

only if 12)( −= nfwt . Correlation immune functions and 

resilient functions are two important classes of Boolean 
functions. Xiao and Massey [21] provided a spectral 
characterization of correlation immune and t -th order resilient 

functions. A function f  is t -th order correlation immune if 

and only if its Walsh transform satisfies: 0)( =uWf , for 

tuwt ≤≤ )(1 , where )(uwt denotes the Hamming weight of 

u, and f is t -resilient if moreover 0)0( =Wf . ,2
nFu∈∀   

tuwt ≤≤ )(0 .  

The algebraic immunity of a Boolean function f is the 

smaller degree of non null function g such that 

0* =gf or 0*)1( =⊕ gf . Otherwise, the minimum 

value of d  such thatf or f⊕1 admits an annihilator of 

degreed . We denoted by )( fAI n  the algebraic immunity of 

a Boolean functionf . It is shown in [13] and [10] that algebraic 

immunity of a Boolean function f is at most[ ]2
n .  

Notation: ( )nn yxyxyxyx ⊕⊕⊕=⊕ ,...,, 2211 , 

where ( )nxxxx ,...,, 21= , ( )nyyyy ,...,, 21= nF2∈ ; 

( )nxxxx ⊕⊕⊕=⊕ 1,...,1,11 21  is the bitwise 

complement of ( )nxxxx ,...,, 21= . 

It is known that for a fixed every vector nFu 2∈ such 
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Where ( )nxK i , is the Krawtchouk polynomial [22]. 

Proposition 1: 

1) ( ) 1,0 =nmK , ( ) mnnmK 2,1 −= ; 

2) ( ) ( ) ( ) ( ) −−=+ + nmKmnnmKi ii ,2,1 1

( ) ( )nmkin i ,1 1−+− ; 

 

3) ( ) ( ) ( ) ( )−−=+− nmKinnmKmn ii ,2,1

( )nmmki ,1− ; 

4) ( ) ( ) ( )nmnKnmK in
i

i ,1, −−= − . 

The following lemmas will be used to prove the results in the 
paper. 

Lemma 1: [23] For 
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11 −≤≤ nm , ( ) ( )nKnmK ii ,1, ≤ . 
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Lemma 2: For every two integers n  and 0≥m : we have 
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Lemma 3: [17] Let 21, ff  and 3f  be three Boolean functions 

on nF2 . We denoted by 1α  the Boolean function equal to 

321 fff ⊕⊕  and by 2α  the Boolean function equal 

to 323121 ffffff ⊕⊕ . Then we have 

21321 2αα +=++ fff . This implies 

21321 2 αα WWWfWfWf +=++ .                                 (4) 
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Hence, the inequalities (5) true for 11 −≤≤ ki . 
 

III.  CONSTRUCTION OF BOOLEAN FUNCTIONS 

The idea of our construction comes from the following. 
Construction 1: Let nk, be any two positive integers such 

that 
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n
k pp . Let g and f  be two Booleans functions of 

nB with the following conditions. 
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Then we have the following important result. 

Lemma 5: Let nBf ∈  be a function as described in 

Construction 1. Then kfAI n ≥)( . 

Proof: We first show that the function f⊕1 has not a nonzero 

annihilator of degree less thank . 
Write the possible annihilator hof the function f⊕1 of 

degree at most k −1by means of indeterminate coefficients: 
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The function h  is the annihilator of f⊕1  if only if 

1)(1 =⊕ xf follows 0)( =xh . We obtain the system of 

homogeneous linear equations on the coefficients of the 
functionh : 

0)( =xh  

for all vectors xof Hamming weight less than or equals 1−k .  

Since 0)0,...,0( =h , we have 00 =a . Since 

0)( =xh if 1)( =xwt , we have 00 == aai . Applying the 

induction on the weight of vectors we, obtain that all 
coefficients of hare zeros, hence, 0≡h . i.e f⊕1 has not a 

nonzero annihilator of degree less thank . 

Now, we prove that f  has not annihilator of degree less 

thank . Suppose f has an annihilator H  of degree less thank . 

That is, 0)(*)( =xHxf , i.e., 0)( =xH when 1)( =xf . 

Note that, if 1)( =xg , we have 0)( =xH for every vector 
nFx 2∈ such that kxwt ≥)( . Define 

1H as )1()(1 xHxH ⊕= , i.e.,  )1()( 1 xHxH ⊕= . This 

gives kHH p)deg()deg( 1 = . Hence, we 

have ( ) 0)1(*)(1 1 =⊕⊕ xHxf . So, f⊕1  has an 

annihilator of degree less thank , which is a contradiction. 
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If 0)( =xg , then 0)( =xH for every vector nFx 2∈ such 

that knxwt −f)( . Define 2H  as )1()(2 xHxH ⊕= , 

i.e., )1()( 2 xHxH ⊕= . This gives, 

kHH p)deg()deg( 2 = . Hence, we 

have ( ) 0)1(*)(1 2 =⊕⊕ xHxf . So, f⊕1  has an 

annihilator of degree less thank , which is a contradiction. 
Lemma 6:  Let f ∈ Bn  be a function as described in 
Construction 1. Then 
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Lemma 7: Let nBf ∈  be a function as described in 

Construction 1. Then the value of the Walsh transform of f  at 

every nFu 2∈ equals: 
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IV. DEDUCED BALANCED FUNCTIONS 

We use the result of Lemma 7 to study the nonlinearity and 
balancedness for a class of functions based on Construction 1. 
Theorem 1: Let k,n be any two positive integers such 
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Using relation (2), we deduce relation (8). 
In the following corollary 1, we will show that the 

nonlinearity of function nBf ∈  as described in construction 1 

can achieve the best possible nonlinearity, larger than obtained 
by Lobanov [15]. 

Corollary 1: Let n be even integer. Let nBf ∈  be Boolean 

function as described in construction 1. If g is bent and 
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The bound of corollary 1 is better than the bound of [15] for 
every 22≥n even and for every value of 52 ≤≤ k  (see 
table 1 and table 2).   
Remark 1: The family of functions described by construction 1 
is very general. It is easy to see that construction 1 makes 
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needs a high nonlinearity, from table 2, we see Lobanov’s 
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nonlinearity. Moreover, for every 28≥n even and for every 

value of 7≥k , the algebraic immunity 7≥k is a strong 
property, not only with respect to the resistance to algebraic 
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V. CONSTRUCTION BALANCED FUNCTIONS 

WITHEOUT EXTENDING THEIR NUMBER OF 
VARIABLES 

We use now the results of Lemma 3 and lemma 7 and the 
construction [17] to construct Boolean functions with better 
cryptographic properties, which gives the guidance for the 
design of balanced Boolean functions to resist algebraic attack, 
and helps to design good cryptographic primitives of 
cryptosystems. 
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Now, we study an algebraic immunity of Boolean 

functions 2α . We will prove the function 2α  in theorem 2 can 

have better algebraic immunity than 321 ,, fff  and 1α . 

Given nBf ∈ , we denote by )( fANn  the set of non null 

nBp∈  with lowest possible degree such that 0=∗ fp  
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Boolean functions on nF2 have respectively algebraic degree 

21, rr and 3r  . Let 
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Boolean function. Then 
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Proof: From lemma 5, we have 
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Let )( 11 fANp n∈ . If 011 =∗ pf , 

then ( ) 01232 =∗⊕ pff α . If 0)1( 11 =∗⊕ pf , 

then( ) 0)1( 1232 =∗⊕⊕ pff α . This gives inequalities: 

     ),min()( 322 rrkAIn +≤α                                          (15) 
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Let )( 22 fANp n∈ . If 022 =∗ pf , 

then ( ) 02231 =∗⊕ pff α . If 0)1( 22 =∗⊕ pf , 

then( ) 0)1( 2231 =∗⊕⊕ pff α . This gives inequalities: 
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Let )( 33 fAp n∈ . If 033 =∗ pf , 
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then( ) 0)1( 3221 =∗⊕⊕ pff α . This gives inequalities: 
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Equations (15), (16) and (17) give inequalities on the right.  
Item 2 is direct consequence of item 1.   
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

VI.  CONCLUSIONS 

We presented a general method of Boolean functions which 
can get a large class of Boolean functions with reasonably high 
nonlinearity. It is possible to specify the parameters n  andg , 

to define class of balanced functions of even number n of 

variables with an algebraic immunity 






2

n
k pp that achieves 

nonlinearity at least 








−
−−

−−

1
22

1
21

k

nn
n , significantly larger 

than that obtained by Lobanov. Then, we study the secondary 
construction of Boolean functions without extending their 
number of variables, introduced recently by Carlet. This gives 
interesting cryptographic properties in terms of balancedness, 
nonlinearity and algebraic immunity. We prove that, the 
algebraic immunity of the constructed functions is better than 
among of the starting functions. 
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