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Abstract —For the crew rescheduling problem
(CRP) and the vehicle rescheduling problem (VRP),
we propose a 0-1 integer programming formulation
based on a network flow model and a solution method
that uses a heuristic flow modification and a local
search technique. The proposed formulation is able
to represent the “differences between the new and
original schedules”, which is a significant criterion
for the CRP/VRP, though taking these differences
into account is difficult for other related formula-
tions based on the set partitioning/covering mod-
els. Implementation of a prototype system for ve-
hicle rescheduling showed that the model is also ef-
fective for designing interactive operations between
users and the computer system. The results of numer-
ical experiments with real-world vehicle rescheduling
data showed that the proposed method generated fea-
sible solutions within a practical amount of time, and
on the basis of a two-phase solution approach, the
proposed method improved the evaluation values of
the solution. This work could lead to practical com-
puter systems which would effectively support train
recovery operations under strict time limitations.

Keywords: crew/vehicle rescheduling, network flow

model, heuristics, local search, railway, train operation

1 Introduction

The crew rescheduling problem (CRP) and the vehi-
cle rescheduling problem (VRP) involve assigning crews
(drivers and conductors) or vehicles to trains while they
are running whenever disruption occurs and timetables
are changed.

For instance, most Japanese railway lines are known for
congested train networks. In addition, they form a huge
and complicated traffic network because of their intercon-
nectedness. Therefore, once some minor disruption oc-
curs to one train schedule, it spreads over such a wide area
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of the network that other trains are delayed and thus sig-
nificantly lowers passenger transportation efficiency. To
prevent delays from escalating, train operators, who are
typically veteran experts, try to immediately change the
timetable. They make time alterations, change departure
orders, cancel train services, and set up extra trains. To
ensure the availability of these changes, they also have to
coordinate the schedules for vehicles and crews according
to the changed timetable under strict time limitations.
It is increasingly difficult to secure skilled operators be-
cause of the complicatedness of the task and a shortage
of human resources.

The CRP/VRP can be viewed as special cases of the
crew scheduling problem (CSP) and the vehicle schedul-
ing problem (VSP) that must be solved under dy-
namic circumstances. These problems have been widely
investigated[1]-[6]. For example, Cacchiani et al.[3] have
proposed an integer linear programming (ILP) formula-
tion for VSP with seat constraints, which means deciding
on the combination of vehicles required for each train to
satisfy passenger seating, and developed a heuristic so-
lution method. Caprara et al.[4] have proposed an ap-
proximation method for solving the CSP by modeling it
as a set covering problem (SCP) and using an enumera-
tion algorithm with Lagrangian relaxation. Fischetti et
al.[5] have considered a simplified but still NP-hard case
in which several depots are specified, and they proposed a
0-1 linear programming formulation that can be applied
to both crew and vehicle scheduling. They devised an
exact method based on a polyhedral approach.

Almost all the studies for the CSP/VSP have focused
on making a schedule from scratch, with the assump-
tion that there is enough time for scheduling because the
schedule will not be used right away but in the future.
However, these approaches appear to be inappropriate
for the CRP/VRP because of the strict time limitations.

In this study, we developed a 0-1 integer programming
formulation for the CRP/VRP on the basis of a network
flow model. and a solution method with the concept of
two-phase modification of temporary solutions using a
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heuristic flow modification and a local search technique.
Implementation of a prototype system and computational
results of real-world data from a Japanese railway line for
vehicle rescheduling are described. They indicate that
our network-oriented modeling and solution approach is
suitable for handling several significant requirements for
developing a computer system for the CRP/VRP, such as
processing time, differences between the new and original
schedules, and interactive operations between users and
the system.

2 Problem Description and Model

2.1 Multi-Commodity Flow Network

A timetable for one train can be partitioned into several
trips. Each trip starts and ends at stations at which
crews can be changed or transferred. A crew schedule
can be represented as a sequence of several trips, which
is called pairing. This is similar to the one described
above for a vehicle. Trips are segments of a timetable
partitioned by stations where entering a depot or turning
back is possible. A sequence of several trips represents a
schedule for a vehicle, which is also called pairing in this
paper.

Hereafter, the word resource refers to a vehicle or crew.
By associating a node with each trip, and a directed link
with each possible trip transition, we can represent sched-
ules as flows of the resources on a network with the ver-
tices and the links described above (Figure 1). In Figure
1, a solid arrow represents a resource flow, namely, the
allocation of resources to both the nodes from which the
arrow departs and arrives, in this order. Therefore, a
series of solid arrows is a schedule, or pairing, for one
resource.

When disruption occurs and the timetable is thus
changed, the network should also be changed. This may
cause problems with schedule feasibility. Suppose there
are two trips, a and b, a is going to end before b accord-
ing to the schedule, then there is a link from the node
of a to the node of b, and there is also a flow of a re-
source on the link. Under these circumstances, if a’s end
time (i.e., the station arrival time) comes after b’s start
time because of some delay or a change of a’s end time,
the link from a to b vanishes because the sequence of a
ending before b is no longer available. Consequently, the
flow from a to b with the meaning of executing a first
and then b is no longer physically available.

It is important in the CRP/VRP that we should not only
make a feasible schedule, but also satisfy various crite-
ria derived from union contracts and/or company regu-
lations. Examples of the criteria for the vehicle are du-
ration of waiting at stations and number of vehicles with
the final destination changed and for the crew, number of
transfers, number of rides without driving or conducting,
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Figure 1: Multi-commodity Flow Network for
Crew/Vehicle Schedules

amount of overtime work, and of meal or break time.

In addition to the criteria derived from specific prob-
lem instances, there is also a criterion common to the
CRP/VRP, which is the differences between the new and
original schedules. If there are only a few differences,
train operators are able to rapidly understand and con-
firm the new schedule. Additionally, a schedule with only
a few differences is helpful for the field staff at train oper-
ation areas such as stations or depots, because the fewer
differences there are, the more easily the staff can make
necessary arrangements for the new schedule, such as no-
tifications to crews or preparations for reserved vehicles,
within strict time limitations. As static scheduling like
the CSP/VSP is done from scratch with no time restric-
tions, minimizing differences between the new and origi-
nal schedules is an inherent criterion for dynamic schedul-
ing like the CRP/VRP.

2.2 Mathematical Formulation

2.2.1 Notation

V : Set of nodes {1, · · · , n}. It consists of trips and
dummy nodes that are described later.

E : Set of directed links {aij ≡ (i, j) | i, j ∈ V }. If (i’s
end time) < (j’s start time) and (i’s end location)
= (j’s start location), then the directed link (i, j)
is an element of E.

R : Set of resources {1, · · · ,m}.　　　　　　　
s, t : Dummy nodes denoting start (s) and end (t) of

the schedule. All the directed links from s to the
other nodes are elements of E. Similarly, all the
directed links from nodes except t to t are ele-
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ments of E. The links that end at s are not in-
cluded in E. The links that start from t are also
not included in E. For notational convenience,
node 1(∈ V ) and node n(∈ V ) represent s and t,
respectively.

xk
ij : 0-1 variable denoting the amount of resource rk on

the directed link (i, j) ∈ E. It is 1 when resource
rk flows from i to j, in other words rk is scheduled
to be allocated to i and j in this order.

Xk : n × n matrix of which (i,j) element is a variable
xk

ij .

Xk =




xk
11 xk

12 . . . xk
1n

...
...

. . .
...

xk
n1 xk

n2 . . . xk
nn




But, if (i, j) /∈ E, then (i, j) element of Xk is 0.

The schedule for resource k is represented as a sequence
of nodes that can be constructed by tracing directed links
with xk

ij = 1 from nodes 1 to n.

X : n× n matrix of summation of Xk

X ≡ X1 + X2 · · ·+ Xm =
m∑

k=1

Xk

Each element in X is the total sum of flows on each
directed link. That is, let xij be (i,j) element of X, then
xij =

∑m
k=1 xk

ij for the directed links in E, and xij = 0
for the others.

ek
ij : flow feasibility (k ∈ R, i, j ∈ V )

ek
ij =

{ 1 k is able to flow from i to j
0 otherwise

It should be mentioned that if (i, j) /∈ E, then ek
ij

is always set to 0.

Because E is constructed so as not to include links that
are inconsistent with time and location, tracing the links
results in physically valid allocations to the trips for
any resource. However, since there are certain resources
which cannot be allocated to certain trips for some rea-
son, such as vehicle type, we define the feasibility for each
resource by ek

ij .

di : the number of resources required for node i. Each
di is greater than or equal to 1, that is, di ≥ 1.

Though di generally takes 1, there are some cases in which
di is greater than 1, such as when a train needs multiple
vehicles joined together to meet passenger demands, or
multiple crews to handle a lot of duties.

bk
ij : flow of resource k in the original schedule. If re-

source k was scheduled to be allocated to trip i
and j in this order, then it takes 1; otherwise it
takes 0.

Where both i and j are elements of V , but the directed
link (i, j) is not always in E because the network is
changed due to disruption and timetable changes.

ck
ij : cost of a resource k’s flow on link (i, j). The defi-

nition is further explained in 2.2.2.

c(Xk) : cost function of the schedule for resource k.

c(X) : cost function of the whole schedule.

c(Xk) corresponds to a criterion that is independent of
the other resources’ schedules. For instance, it could
stand for the suitability of meal time, that is, whether
the schedule for crew k has meal time with appropriate
timing and length from the point of view of maintaining
reasonable working conditions.

On the other hand, if there is a criterion over several
resources, it should be represented as a form of c(X). An
example of c(X) is the deviation of duration of waiting
at stations.

Both c(Xk) and c(X) are weighted sums of these stan-
dardized costs if there are multiple criteria to be consid-
ered.

2.2.2 0-1 Integer Programming Formulation

The CRP/VRP can be defined as the following 0-1 integer
programming problem.

Minimize

w1c(X) + w2

m∑

k=1

c(Xk) + w3

m∑

k=1

∑

(i,j)∈E

ck
ijx

k
ij (1)

Subject to
∑

(1,j)∈E

xk
1j = 1 ∀k ∈ R (2)

∑

(i,n)∈E

xk
in = 1 ∀k ∈ R (3)

xk
ij ≤ ek

ij ∀(i, j) ∈ E, ∀k ∈ R (4)
∑

(q,i)∈E

xk
qi =

∑

(i,q)∈E

xk
iq ∀i ∈ V \ {1, n}, ∀k ∈ R (5)

m∑

k=1

∑

(q,i)∈E

xk
qi = di ∀i ∈ V \ {1, n} (6)
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Figure 2: Partial Schedule Exchange

xk
ij ∈ {0, 1} ∀(i, j) ∈ E, ∀k ∈ R (7)

In objective function (1), w1, w2 and w3 are non-negative
constants, and mean weights of the three different cost
functions.

The meanings of the above constraints are as follows.
Constraint (2): each schedule starts from node 1. Con-
straint (3): each schedule ends at node n. Constraint (4):
each resource flows only on the directed links that are fea-
sible for the resource. Constraint (5): flow conservation
constraint except for the start and end nodes. Constraint
(6): each node except for nodes 1 and n is covered by d
resources, that is, d resources must be allocated to trip
i. Constraint (7): the amount of flow of each resource on
each link is 0 or 1.

Each instance of constraints (2)-(5) is related to only one
resource. On the other hand, each instance of constraint
(6) is related to multiple resources.

When crews are able to ride on trains in the crew schedul-
ing without driving or conducting, (6) is replaced by the
following inequality version, which allows an arbitrary
number of resources more than di to be allocated to a
trip.

m∑

k=1

∑

(q,i)∈E

xk
qi ≥ di ∀i ∈ V \ {1, n}, k ∈ R (8)

In objective function (1), the term
∑m

k=1

∑
(i,j)∈E ck

ijx
k
ij ,

which is called cost function (A) here, is the sum of all
the flow costs, that is, the sum of ck

ijs with the link (i, j)
on which some resource flows. The value of each ck

ij is set
according to one of these two definitions.

Definition (1)

ck
ij =

{
1 if bk

ij = 1
0 otherwise

Definition (2)

ck
ij =

{ 1 if br
ij = 1, ∃r ∈ R

0 otherwise

According to definition (1), the cost function (A) returns
the sum of different parts of each resource k’s solution
from its original schedule. As for definition (2), the cost
function (A) represents the sum of different parts of each
resource k’s solution from the original schedule for all
resources.

Figure 2 shows an example of modifying schedules for two
resources, in that two partial schedules, both of which
have two trips, are exchanged, so the number of changed
trips is four. In this case, the value of the cost func-
tion (A) is six and two, according to definitions (1) and
(2), respectively. The value in definition (1) represents
the number of trips that are not included in the origi-
nal schedule for a resource (the number plus 2, strictly),
whereas the value in definition (2) means the number of
switches on the way to the original schedule for the other
resource. The major differences between these two defi-
nitions is that, for one exchange, the value in (1) depends
on the number of trips involved in the partial schedules
exchanged, while the value in (2) is always constant, that
is, two.

For the train operator, who usually changes a resource’s
schedule by switching it to another schedule in the mid-
dle of the flow, it is not the number of changed trips, but
the number of switches that is more significant. Also,
the field staff needs to specify when and where the sched-
ule will be switched to another schedule in order to make
necessary arrangements before the train reaches the point
where the schedule is switched. Therefore, it seems more
effective from both the viewpoints of decision support for
operators and work support for field staff, to use defini-
tion (2) as the cost ck

ij of the differences between the new
and original schedules.

2.3 Discussion of the Model

It is well known that the CSP/VSP, which are similar
problems to the CRP/VRP, can be modeled as a kind of
set partitioning problem (SPP) or set covering problem
(SCP). The CSP or VSP is formulated as a problem of
deciding an optimal pairing combination that involves all
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trips and satisfies several predefined conditions, where
pairing is a sequence of trips that means a schedule for
a resource. An example of the SCP formulation is as
follows.

[Minimize] ∑

j∈N

cjxj (9)

[Subject to]

n∑

j=1

aijxj ≥ 1 ∀i ∈ M (10)

xj ∈ {0, 1} (11)

where N is a set of pairings, j is an element of N , M is
a set of trips, i is an element of M , and cj is the cost of
pairing j. Also, aij takes 1 if pairing j involves trip i and
0 otherwise, and xi is a decision variable that takes 1 if
pairing j is selected and 0 otherwise.

A variety of methods have been proposed to find opti-
mal or near-optimal solutions for the set-partitioning-or-
covering-modeled CSP/VSP. Most of them can be classi-
fied into one of two approaches. One approach is prepar-
ing a subset of pairings in advance in which each element
is reasonable as a schedule for a resource and deciding an
optimal or near-optimal combination of pairings within
the subset. For instance, Caprara et al. [4] have pro-
posed a method for solving the crew scheduling prob-
lem that consists of an enumeration algorithm for con-
structing the subset of reasonable pairings and a heuristic
search method based on Lagrangian relaxation[7].

Another approach is more exact but even less suitable for
larger instances, that is, searching an optimal or near-
optimal pairing combination while generating additional
pairings as needed. For instance, Haase et al.[6] have pro-
posed an exact solution approach for solving a simultane-
ous vehicle and crew scheduling problem in urban mass
transit systems. Their approach incorporates a column
generation process[8] into a branch-and-bound scheme, a
combination that is generally referred to as branch and
price[9].

Table 1 shows a comparison between the SPP/SCP model
for the related CSP/VSP and the proposed network flow
model for the CRP/VSP.

There is a fundamental premise in the SPP/SCP model
that a set of pairings is given from outside, which means,
in terms of the implementation of computer scheduling
systems, that we have to develop a process of generating
the pairing set on the basis of a different framework out-
side the model. In other words, as the SPP/SCP model is
unable to provide any guidelines or principles for gener-
ating adequate pairings, a quite different model is needed

for it. Therefore, the proposed model, which has no pre-
conditions about the given pairing set and thus can han-
dle wider problems, seems to be more useful from the
point of view of engineering the computer systems. For
instance, we are able to naturally implement user inter-
active functions for operating the solution, as they can be
regarded as operations of the network flow model. This
is explained further in the next section.

The resources available for rescheduling in CRP/VRP are
limited to those that are on hand at the moment, whereas
in static scheduling from scratch, the number of resources
available is not limited in theory. This is equivalent to the
number of pairings selected as a solution in the SPP/SCP
model. Suppose we regard each trip itself as a pairing and
select all of the pairings as a solution. Then, the solution
is one of the feasible solutions of the SPP/SCP model.
Of course, such a solution is unpractical because a lot of
resources are needed. However, there is no doubt that
allowing a lot of resources in the SPP/SCP model makes
it easier to generate a feasible solution. On the other
hand, it is difficult to find a feasible solution with the
proposed model because available resources are specified
in advance as elements of the resource set R.

As resources are treated as class in the SPP/SCP model,
the model is unable to identify individual resources. For
example, in a case where q pairings are selected as a fea-
sible solution of the SPP/SCP model, although the solu-
tion tells us there are q resources needed, it is unknown
how each pairing in the solution is associated with each
instance of the q resources. Therefore, the SPP/SCP
model cannot represent the differences between the new
and original schedules because it is impossible to identify
the new and original schedules without associating them
with individual resources.

The objective function of the proposed model is a form
of the weighted sum of the three kinds of cost functions.
Two of the three functions, which use c(X) and c(Xk),
could become non-linear functions depending on the cri-
teria treated. On the other hand, the objective function
of the SPP/SCP model is linear, which means that it is
relatively easy to apply relaxation techniques, such as a
continuous relaxation and a Lagrangian relaxation. A so-
lution of a relaxed problem serves as a lower bound of the
optimal solution of the original problem. The SPP/SCP
model has an advantage in that there are several stan-
dard approaches for designing the solution method based
on the lower bound information. One is a branch-and-
bound method with pruning by the lower bound and an-
other is a heuristics approach that proceeds towards the
direction for an estimated optimum value using the gap
between the value of the temporal solution and the lower
bound.

In the objective function of the proposed model, the most
significant criterion for rescheduling, namely, the differ-
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Table 1: Comparison of Two ModelsSet partitioning/covering modelfor the CSP/VSP Network flow modelfor the CRP/VRPPairings given not givenResources not specified specifiedDifferencesbetweennew and original unable to treat able to treatObjectivefunction linear only both non-linear and linearSize medium(depends on the pairing set) large
ences between the new and original schedules, is separated
as a linear function. Thus, if only considering this crite-
rion, that is, setting the weights w1 and w2 in the model
to 0, then the standards for designing the solution method
based on the relaxation techniques also could be applied
to the proposed model.

If an objective function has non-linear terms, it is practi-
cal for the design of the solution method to resort the
native heuristics for the problem and/or the generate
and test method, in which the evaluation and update
of temporal solutions are repeated. The proposed solu-
tion method described in the next section is one instance
based on these approaches. Moreover, the objective func-
tion of the SPP/SCP has a limitation of handling only the
criterion associated with each pairing, which corresponds
to the cost function c(Xk) in the proposed model. If the
cost function c(X), meaning a criterion that has to be
evaluated over multiple pairings at a time, is needed, the
SPP/SCP model would also have the non-linear term in
the objective function, which results in using the above
mentioned solution approaches for finding the solution.

Even if it is a small problem to be solved, the size of
the proposed model becomes relatively larger due to the
large number of flow variables to all combinations of the
directed links in E and the resources. On the other hand,
as the decision variable xj is given to each pairing, the
size of the SPP/SCP model depends on the pairing sub-
set. Considering both the large model size and the strict
time limitations, it is essential to design an effective so-
lution method for the proposed model, which finds an
acceptable solution within a practical amount of time.

3 Solution Method

Because the CRP/VRP are dynamic problems that are
expected to be solved iteratively during train operation,
the solution method should be highly responsive. Keep-
ing this in mind, we propose the following two-phase so-
lution approach (Figure 3). Phase 1 generates a feasi-

ble solution by modifying the original schedule, and then
Phase 2 continues to search for alternatives that improve
the evaluation value while maintaining schedule feasibil-
ity until the time limit expires. With this approach, it
becomes possible to reschedule adapting to the time re-
maining for train recovery, which depends on the situa-
tion.

Phase 1: Partial Exchange Heuristics

We define a heuristic method for Phase 1, assuming that
some instances of constraint (4) in the model have been
violated because of the changes of the network. The viola-
tion of constraint (4) means that some flows have become
infeasible because of transport disruption and timetable
changes.

In such a situation, train operators generally try to cor-
rect the violations by exchanging a part of the schedule
with another one. An example of this partial schedule
exchange is shown in Figure 2. We use the partial ex-
change as a heuristic flow modification to make a feasible
schedule in Phase 1. Phase 1 consists of the following
steps.

Step 1 select the earliest violated flow (a).

Step 2 select a flow (b) from any other schedule that
does not include a.

Step 3 exchange the partial schedule after a with the
partial schedule after b (see Fig 2).

Step 4 return to Step 1 if there are unselected violated
flows, otherwise, confirm whether the temporal so-
lution still has some violated flows. If there are no
violated flows, then finish because the temporal so-
lution is feasible, otherwise, set all the violated flows
as unselected and execute from Step 1 again as long
as the total number of iterations does not exceed the
regulated frequency. If the loop count exceeds the
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Phase 2Phase 2 Output the best solution

Seek alternatives until the time limit expires

(1) Generate a feasible solution quickly by modifying the original schedule.

Phase 1Phase 1

Original
Schedule

(2) Seek alternative solutions by improving the temporal solution                              
while maintaining feasibility.

Phase 2Phase 2 Output the best solution

Seek alternatives until the time limit expires

(1) Generate a feasible solution quickly by modifying the original schedule.

Phase 1Phase 1

Original
Schedule

(2) Seek alternative solutions by improving the temporal solution                              
while maintaining feasibility.

Figure 3: Two Phase Solution Approach

limitation, then finish. If this happens, the tempo-
ral solution is not feasible because violated flows are
remained.

At Step 2, flow b is at first tried to be one of the flows
with which the exchange corrects a’s violation and that
generates no new violations. This type of exchange is
called normal exchange. With this exchange, flow a is
removed and instead a new flow starting from the same
trip as a is generated (flow c, as shown in Figure 2). If
there are several candidates for b, select the one with
which the exchange generates a new flow that has the
shortest time.

A normal exchange is not always possible. If so, select b
under the relaxed condition that allows a new violation
to occur to b. This type of exchange is called forced
exchange. The basis for selecting b from several candi-
dates is almost the same as a normal exchange, but the
candidates with which an exchange results in some old
status with violations, are excluded by referring to the
exchange history.

If a forced exchange is also impossible, cut the violated
link a and split the schedule with a into two partial sched-
ules, then allocate a resource with no schedule (i.e. re-
served crew or vehicle) to either of the two partial sched-
ules. If there are no reserved resources, try to generate a
new reserved resource by combining two schedules.

If the timetable has been changed to set up extra trains,
in the preparation step before Phase 1, decompose the
extra trains into trips and insert them into arbitrary po-
sitions of arbitrary resources’ schedules. Though new vi-
olations of constraint (4) may occur in this step, it can be
expected that they will be corrected through the above

heuristic method.

Phase 2: Local Search for Alternative Solu-
tions

After setting the solution generated in Phase 1 as an ini-
tial solution, the solution method searches for alterna-
tives by a local search[10] in Phase 2. Local search is a
kind of generate-and-test method in which a neighborhood
of the temporal solution is generated at each iteration
step. This gives a set of solutions similar to the temporal
solution, and the solution with the best evaluation value
is selected as the improved temporal solution.

We define the neighborhood as a set of solutions gener-
ated by normal exchanges, that is, we generate a set of
solutions by executing normal exchanges for all available
flow combinations.

The terminate condition of the iteration is as follows. Ei-
ther the number of iterations reaches a predefined upper
limit, or there exist no solutions better than the temporal
solution in the neighborhood.

4 Application to a Train Operation

4.1 Prototype System

We developed a prototype system of vehicle rescheduling
for a Japanese railway line. The line has about 200 ve-
hicles, and approximately 800 trains are operated on the
line everyday.

Figure 4 is a display screen of the prototype system, show-
ing a solution as a diagram with the time scale horizon-
tally and station labels vertically. Each trip is represented
as an oblique line and each connection between trips is
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represented as a horizontal line.

The system consists of the following three main software
components: (a) a graphical user interface (GUI), (b)
a database and network, and (c) a rescheduling engine
that implements the proposed solution method. The GUI
provides several interactive functions: while the system
shows solutions and evaluation values to the user, the
user can change the scenario or settings for rescheduling,
such as delay of trains, train service cancellations, extra
trains, and time windows available for rescheduling. The
user can also modify or fix parts of the on-screen schedule
simply by pointing and clicking with a mouse.

Most of the above interactive functions can be derived
naturally from the proposed model, that is, they can be
regarded as changing the network flow model itself. Thus
they were relatively easily designed and implemented as
operations of the model in the prototype system. Exam-
ples of the correspondence between those functions and
operations are as follows. (a)Delay of trains corresponds
to changing the starting and/or arriving time of the re-
lated trips and deleting invalid links if violations occur.
(b)Train service cancellations correspond to deleting the
related trips and links. (c)Modifications of the sched-
ule correspond to changing flows of the schedule, where
the flows are displayed as lines between trips. (d)Fixing
parts of the schedule corresponds to setting flow feasibil-
ity ek

ij of all links connected with the nodes of the fixed
parts to 0, except those links with fixed flows, where
k is a resource of the schedule. If using the set parti-
tioning/covering model instead of the proposed model,
we should design those functions thoroughly outside the
model, which would leads to increasing complexity of the
system, and thus decreasing flexibility for adding or im-
proving the interactive functions.

Figure 4: Prototype System

4.2 Computational Results of Real-World
Data

Using real-world data from the Japanese railway line, we
conducted numerical experiments for vehicle reschedul-
ing. In the data, there were 786 trains and 185 vehicles.
We set up a scenario in which a vehicle assigned to a train
broke down between stations for two hours, resulting in
large-scale disruption and several timetable changes, such
as canceled train services and extra trains.

For the evaluation, we defined three criteria: (1) the stan-
dard deviation of the waiting duration at stations, (2)the
number of vehicles with changed final destinations, and
(3) differences between the new and original schedules.
Items (1), (2), and (3) correspond to the first, second,
and third terms of the objective function in our model.
In the third term, definition (2) was selected as the cost
ck
ij . The total evaluation value is the sum of these three

values, with all the weights w1, w2 and w3 set to 1. The
PC used for the experiments was a Pentium 4 3.6 GHz
CPU with a 2 GB memory.

As a result, we were able to find a feasible solution with
no violations. The total processing time was 422.5 sec, of
which the time for Phase 1 was 9.4 sec and the time for
Phase 2 was 413.1 sec. There were 83 local search itera-
tions in Phase 2, and the average size of the neighborhood
in each iteration was 2099 (Units).
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Figure 5: Evaluation Values of the Solution

Figure 5 shows the evaluation values of the solution.
Though there are differences in degree of the improve-
ment, all the evaluation values were improved in Phase
2 compared with Phase 1. Thus, we confirmed that by
executing a local search using the initial solution from
Phase 1, the proposed method clearly improved upon the
solution found in Phase 1 and generated a better solution
in Phase 2.
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5 Conclusion

A basic study of modeling and solution frameworks for
the crew rescheduling problem (CRP) and the vehicle
rescheduling problem (VRP) was conducted. We defined
a 0-1 integer programming formulation on the basis of
a network flow model and designed a solution method
with the concept of a two-phase modification of tempo-
rary solutions using a heuristic flow modification and lo-
cal search technique.

The proposed formulation is able to represent the dif-
ferences between the new and original schedules, which
is a significant criterion for the CRP/VRP, though tak-
ing these differences into account is difficult for other re-
lated formulations based on the set partitioning/covering
models. Implementation of a prototype system of vehi-
cle rescheduling for a Japanese railway line showed that
the proposed model had an advantage for designing in-
teractive operations between users and the system, as
those operations can be associated naturally to opera-
tions of the network model. Also, computational results
of real-world vehicle rescheduling data from the railway
line indicated that the proposed method generated a fea-
sible solution within a practical amount of time, and on
the basis of a two-phase solution approach, the proposed
method improved the evaluation values of the solution.

We believe that our network-oriented modeling and so-
lution approach is promising for developing a practical
computer system for the CRP/VRP that would effec-
tively support train recovery operations under strict time
limitations. Incidentally, a software package based on the
proposed formulation and method is being developed and
tested for a railway line.

For future work, there are several conditions to be con-
sidered according to each situation, which have not been
covered by the proposed solution method. These in-
clude rides that crews take without driving or conduct-
ing, and track limitations at stations for vehicles. We
will incorporate these factors into the proposed solution
method while improving the search efficiency to handle
larger disruptions. It is also important to design a math-
ematical solution method based on the relaxation tech-
niques. Because the mathematical method provides such
a good lower bound of the optimal solution, we are able
to numerically evaluate the capabilities of the proposed
method, and the mathematical method itself has the po-
tential to be more suitable for the crew/vehicle reschedul-
ing.
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