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Abstract

We analyze a single-product continuous review hs, Si
inventory system in which the stock-on-hand decays
over time, and the demand stream occurs in a Pois-
son process. Our model allows for the ordering cost
to depend on whether an order is initiated by decay
to the order point level s, or by a demand that causes
the stock-on-hand to jump below level s. We ob-
tain the steady-state probability distribution of the
stock- on-hand, develop a cost function, and deter-
mine related quantities.

Keywords: hs, Si inventory with decay, probability
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1. Introduction

Inventory models with decay have attracted atten-
tion recently (e.g., [4]). In the present paper we
consider an hs, Si inventory system with continuous
stock decay. Our model allows the replenishment
cost (order cost) to depend on the order size. For
exposition, we assume that demands are satisfied im-
mediately, and replenishment orders are received im-
mediately. The order-up-to-S policy implies that an
order initiated by decay to level s is smaller than an
order initiated by a demand that causes a deficit be-
low level s. Each order caused by decay will be of size
S − s. Each order initiated by a demand will be of
size S−s+γ where γ is the deficit below level s. We
obtain the steady-state probability density function
(pdf) of the stock-on-hand, develop a cost function,
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and compute related quantities. For exposition, we
do not incorporate lead time, backlogging, lost sales,
etc., into the present model. However, such general-
izations can be analyzed using the method presented
(see, e.g., [1], [2]).

2. Model Description

Assume demands occur at a Poisson rate λ. Denote
the demand sizes by Di, i = 1, 2, ..., which are iid
(independent and identically distributed) with com-
mon cdf (cumulative distribution function) B(x).
Let B̄(x) = 1 − B(x), x ≥ 0. Denote the stock-
on-hand at time t by I(t), t ≥ 0. The decay rate de-
pends on the current inventory level. Thus dI(t)

dt =
−r(I(t)) < 0, I(t) ∈ (s, S]. If the stock decays to
level s, or jumps downward to, or below level s due
to a demand, then an order is placed with the sup-
plier and is received immediately, replenishing the
stock up to level S. A sample path of {I(t)} is de-
picted in Fig. 1. The leading point of the sample
path is called the system point ( SP). The SP is con-
venient for describing the motion of the sample path
as it evolves over time.
The limiting distribution of I(t) as t→∞ exists,

since {I(t)} is a bounded Markov process. Let F (x),
x ≤ S, denote the steady-state cdf; f(x) = dF (x)

dx ,
s < x < S, is the pdf, wherever the derivative ex-
ists. We assume the decay rate is r(x) = kx > 0, x ∈
(s, S]. This choice of r(x) results in a negative expo-
nential decay pattern for the sample path, and gen-
eralizes the hs, Si model with constant decay rate
(e.g., [1], [3]). We illustrate the solution technique
by taking B̄(x) = e−μx, x > 0, μ > 0.

3. Integral Equation for PDF of Inventory
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Figure 1: Sample path of stock-on-hand in hs, Si
inventory model with continuous decay of stock.

A sample path of {I(t)} is similar to Fig. 1, with
negative exponential decay curves between jumps.
Fix level x ∈ (s, S). Let Dc

t (x) = number of con-
tinuous downcrossings of x during the time interval
(0, t). Let Dj

t (x) = number of jump downcrossings
of x during (0, t). The SP decays into level x ∈ (s, S)
at rate

lim
t→∞

E (Dc
t (x))

t
= r(x)f(x) = kxf(x),

and into level s at rate

lim
t→∞

E (Dc
t (s))

t
= r(s)f(s) = ksf(s)

(see, e.g., [3]). The SP jumps over level x, to a level
below x ∈ [s, S) due to demands at rate

lim
t→∞

E
³
Dj
t (x)

´
t

= λ

Z S

y=x
B̄(y − x)f(y)dy

= λ

Z S

y=x
e−μ(y−x)f(y)dy

(jumps start at y > x and span a distance greater
than y−x). The total SP downcrossing rate of level
x ∈ (s, S) is

lim
t→∞

E (Dc
t (x))

t
+ lim

t→∞

E
³
Dj
t (x)

´
t

= r(x)f(x) + λ

Z S

y=x
B̄(y − x)f(y)dy

= kxf(x) + λ

Z S

y=x
e−μ(y−x)f(y)dy. (1)

The total "downcrossing" rate of the reorder point s
is the constant

lim
t→∞

E(Dt(s))

t

= r(s)f(s) + λ

Z S

y=s
B(y − s)f(y)dy = r(S)f(S);

thus ksf(s) + λ

Z S

y=s
e−μ(y−s)f(y)dy = kSf(S).

(2)

The SP downcrossing rate of level s is equal to the
SP egress rate out of level S, due to the one-to-one
correspondence between orders up to S and down-
crossings of the order point level s. Rate balance
into and out of state {S} yields the second and third
equalities in (2).

An important feature of the sample path structure
is that the total SP upcrossing rate of every level
x ∈ (s, S] is equal to the total downcrossing rate of
level s = the total ordering rate. Applying sample-
path rate balance across level x by equating (1) and
(2) yields an integral equation for f(x), namely

kxf(x) + λ

Z S

y=x
e−μ(y−x)f(y)dy

= ksf(s) + λ

Z S

y=s
e−μ(y−s)f(y)dy

= kSf(S), x ∈ (s, S]. (3)

The normalizing condition isZ S

x=s
f(x)dx = 1. (4)

4. The PDF of Inventory

In (3) differentiation with respect to x and some al-
gebra yields a first order differential equation with
non-constant coefficients,

kxf 0(x) + (k − μkx− λ) f(x) + μkSf(S) = 0. (5)

As an illustration of the analysis, we solve (5) for
arbitrary parameter values k = 3.9, μ = 1.5, λ = 1.2,
s = 0.25, S = 4. The solution is (with the aid of
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Figure 2: Steady-state pdf of stock-on-hand: k =
3.9, μ = 1.5, λ = 1.2, s = 0.25, S = 4

Maple software), for s < x < S,

f(x) = .224467 · 10−19(−.206059 · 1020 · x(9/26)

·WhittakerM(.346154, .846154, 1.5x)

−.401260 · 1020 · e(−.75x) · x(9/13)

+.274942 · 1020 · e(.75x)) · e(.75x)/x(9/13),
(6)

where the function WhittakerM(β, ν, z) solves the
differential equation

y00 +

Ã
−1
4
+

β

z
+

1
4 − ν2

z2

!
y = 0.

A plot of f(x) is given in Fig. 2. It can be shown
that in (6) f(x) is convex since f́ 00(x) > 0, x ∈ (s, S).

Figure 2 shows that the probability accumulates
near level s. A factor contributing to this effect is
that the decay rate kx is small for values of x near
s. Thus the inventory spends a relatively large pro-
portion of time at levels near s. Assigning differ-
ent parameter values will give different shapes to the
pdf. The ordering policy orders up to S and tends to
maintain the inventory level near S. This interplay
between opposing tendencies differs from the case
when the decay rate is constant for all x ∈ (s, S)
(see, e.g., [1], [3]).

5. Model Characteristics

We present several model characteristics based on
the foregoing analysis.

5.1. Expected Duration of an Order Cycle

An order cycle (replenishment cycle) is the time
between two successive instants when an order is re-
ceived. Let d(i)S = the duration of the ith order cycle.

Then d
(i)
S is the time between successive SP hits of

level S (see Fig. 1). The sequence
n
d
(i)
S

o
is a re-

newal process due to the Poisson demand stream.
Let d(i)S ≡

dist
dS. The total ordering rate is equal to

the rate at which the SP downcrosses level s and con-
sequently hits level S from below. It is equal to the
egress rate out of level S, namely kSf(S), the right
side of (3). By the elementary renewal theorem (e.g.,
[5]),

E(dS) =
1

kSf(S)
=

1

1.621253

= .6168069 time units, (7)

where the total order rate is kSf(S) = 1.621253 or-
ders per unit time. With the given parameter val-
ues, the order rate turns out to be faster than the
demand rate. A plausible explanation is the rela-
tively fast decline in inventory due to decay when
the stock-on-hand is in the range (1, 4) (discussed
further on Subsection 5.2).

5.2. Two Types of Orders

A type-c order occurs when the SP decays contin-
uously into level s. A type-j order occurs when the
SP jumps downward and ends at or below s due to
a demand. An order initiating a cycle of duration
dS is either type-c or type-j. Let Pc = P (the order
initiating a cycle is type-c). Let Pj = P (the order
initiating a cycle is type-j). Then Pc + Pj = 1.

We now determine Pc and Pj . The long-run order-

ing rate due to decay into level s is limt→∞
E(Dc

t (s))
t =

ksf(s). Since there is exactly one order in a cycle,

E(number of type-c orders in a cycle)

= 1 · Pc + 0 · Pj = Pc.
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By the theory of regenerative processes,

E(number of type-c orders in a cycle)
E(duration of a cycle )

=
Pc

E(dS)

= lim
t→∞

E(Dc
t (s))

t
= ksf(s).

Solving for Pc gives

Pc = ksf(s) ·E(dS) =
ksf(s)

kSf(S)
=

sf(s)

Sf(S)
. (8)

In (8) the numerator of ksf(s)
kSf(S) is the rate of type-c

orders; the denominator is the overall rate of orders.
The ratio is the proportion of orders that are type-c.

Similarly,

E(number of type-j orders in a cycle)
E(duration of a cycle)

=
1.Pj + 0 · Pc

E(dS)
= lim

t→∞
E(Dj

t (s))

t
.

Thus

Pj = lim
t→∞

E(Dj
t (s))

t
·E(dS) =

λ
R S
y=s e

−μ(y−s)f(y)dy

kSf(S)
.

(9)
In (9) the numerator is the rate of type-j orders; the
denominator is the overall rate of orders. The ratio
is the proportion of orders that are type-j. In our
example we obtain Pc =.729743 and Pj =.270257.
These values bolster the explanation of why the or-
der rate is less than the demand rate. That is, ap-
proximately 73% of orders are initiated by decay,
and only 27% by demands.

5.3. Expected Order Size

Denote the order size by R (Fig. 1). If an order is
caused by decay into level s, then R = S − s. If an
order is caused by a downward jump ending below
level s, then R = S − s + γ. Due to exponentially
distributed demand sizes with mean 1

μ , the expected
order size is (Pj is given in (9))

E(R) = (S − s)Pc +

µ
S − s+

1

μ

¶
Pj

= S − s+ Pj ·
1

μ
= 3.930171 units. (10)

5.4. Cost Rate

Since there is no backlogging or lead-time costs in
the model considered here, the cost function includes
only the setup cost of placing orders, and the holding
cost of inventory. Let C be the total average cost
rate, COc the setup cost per order when initiated by
continuous product decay to level s, and COj the
setup cost per order when initiated by a demand.
Let CH be the holding cost per unit per unit time.
Using f(x) in (6), we obtain

C = COcksf(s) + COjλ
Z S

x=s
e−(x−s)μf(x)dx

+CH
Z S

x=s
xf(x)dx,

= 1.183099COc + .438154COj + 3.930171CH
(11)

6. Future Work

Potential future work includes: a sensitivity analysis
for the effect of varying the model parameter values,
on the analytical properties of the pdf f(x); a com-
parison of the characteristics of f(x) when the decay
rate is r(x) = kx versus r(x) = m (a constant); de-
termination of the expected number of orders in an
order cycle.
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