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A Subclass of Uniformly Convex Functions

Associated with Certain Fractional Calculus

Operator

S. M. Khairnar and Meena More *

AbstractIn this paper, we introduce a new class
K" (a, 3) of uniformly convex functions defined by
The class
has interesting subclasses like S-uniformly starlike, (G-

a certain fractional calculus operator.

uniformly convex and (-uniformly pre-starlike func-
tions. Properties like coefficient estimates, growth
and distortion theorems, modified Hadamard prod-
uct, inclusion property, extreme points, closure the-
orem and other properties of this class are studied.
Lastly, we discuss a class preserving integral oper-
ator, radius of starlikeness, convexity and close-to-
convexity and integral mean inequality for functions

in the class K*7"(a, 3).

Keywords and Phrases: Fractional derivative, Univa-
lent function, Uniformly convex function, Fractional
integral operator, Incomplete beta function, Modified
Hadamard product.

1 Introduction

Let S denote the class of functions of the form

f(z) :erZ(zkzk (1.1)
k=2

which are analytic and univalent in the unit disc U = {z :
|z| < 1}. Also denote by T the class of functions of the
form

fz)=2z— Zakzk (ap >0,z €U) (1.2)
k=2

which are analytic and univalent in U.

For g(z) = z — Y. b.2* the modified Hadamard product
k=2
of f(z) and g(z) is defined by

o0
k
(f*9)(2) :z—Zakbkz . (1.3)
k=2
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A function f(z) € S is said to be S-uniformly starlike of
order o, (-1 < o < 1),8 > 0 and (2 € U), denoted by
UST (a, B), if and only if

2f'(2)

2f'(2) }
Re —ap >
SERIEs e
A function f(z) € S is said to be S-uniformly convex of

order o, (-1 < a < 1), > 0 and (2 € U), denoted by
UCV(a, B), if and only if

21(2) 21"(2)

refi S -oh 2|
Notice that, UST(«,0) = S(a) and UCV (e, 0) = K(a),
where S(a) and K (o) are respectively the popular classes
of starlike and convex functions of order o (0 < o < 1).
The classes UST («, 8) and UCV (e, 3) were introduced
and studied by Goodman [4], Rgnning [13] and Minda
and Ma [8].

(1.4)

_1‘

(1.5)

Clearly f € UCV («, ) if and only if zf' € UST(«, 3).A

function f(z) is said to be close-to-convex of order r, 0 <

r < 1if Ref’(z) > r. Let ¢(a,c;z) be the incomplete

beta function defined by

dla,c;z) = erZ%zk (a#—-1,-2,-3,---
“ 2 (O R

and ¢#0,-1,—-2,-3,---) (1.6)

where (a)y is the Pochhammer symbol defined by

_ T(a+k) _
= )

1 k=20
{a(a+1)(a+2)---(a+k—1) ke N

We note that L(a,c)f(z) = ¢(a,b; z) * f(z), for f € S is
the Carlson-Shaffer operator [1], which is a special case
of the Dziok-Srivastava operator [2].

Following Saigo [15] the fractional integral and derivative
operators involving the Gauss’s hypergeometric function
oF (a,b; ¢; 2) are defined as follows.
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Definition 1 : Let ¢ > 0 and ,n € IR. Then the gen-

For real numbers u(—oco < p < 1),y(—o0 < v < 1),

eralized fractional integral operator I&g’” of a function n€ RT,a# —1,-2,---,and ¢ #0,—1,—2,--- we define
f(2) is defined by the operator My " : S — S by
Y umn _ . Wm
Ip""f(2) = %ﬂw) / (2= F(t) o F1 (7, —n;u;l—z)dt M= (2) = olasbiz) « U 27 (2) (1.10)
0

where f(z) is analytic in a simply-connected region of the
z-plane containing the origin, with order

f(z) = 0(]="),

where r > max{0, u —n} — 1 and the multiplicity of (z —
t)*~1 is removed by requiring log(z — t) to be real, when
(z —t) > 0 and is well defined in the unit disc.

(1.7)

Definition 2 : Let 0 < p < 1 and 7v,n € IR. Then
the generalized fractional derivative operator Jg""
function f(z) is defined by
d
T —
)

{zM/@—t) ( Fily— 1=t = D
0 V4

of a

where the function is analytic in the simply-connected
region of the z-plane containing the origin, with the order
as given in (1.7) and multiplicity of (z —t)~# is removed
by requiring log(z —t) to be real when (z —t) > 0 and is
well defined in the unit disc.

Notice that J§/""f(z) = Dg_f(2) which is the well
known fractional derivative operator by Owa [10].

The fractional operator is defined in terms of

J§ for convenience as follows

Hs7Ysm
UO,z

F2—-yT(2-p+n)

Uy f(z) = TN F(2) (1.8
0,z () F(2_’Y+77) 0,z f() ( )
(—oo<p<l;—co<y<lyneRT).
Thus,

A e ) [ (v S R
ug" = apz”.
" 22 N1 = p+mor

Note that @)
ol ptn BN (Y.
UEM F(5) = T I f(2); 0<p< ]
0,2 sz[ Haym,
T(2—+n)
for fractional differential operator J‘f o " and fractional

integral operator I, £"7"".

Let us now consider another operator Mj")"" defined us-
ing the operators Ug',"" and the incomplete beta function

@(a, b; z) as follows.

a)g—1(2 — ’V—H?)k 1(2)k—1 &
=z+ 4
Z )i—1(2—=V)-1(2—p+n)k—1 h

= z—i—Zh(k)akzk (1.11)
k=2
for
_ @k 2=y +m)e=1(2)k—1
h(k) = O = ea @ — i+ e (1.12)
Notice that,
s [ f(») if a=c=1; pu=v=0

Consider the subclass S, , »(a, 5) consisting of functions
f € S and satisfying

Mg f(2) | Mg (z)
(1.13)
(zelU—o0<pu<lij—co<y<line R;-1<ac<

L,8>0;a#—-1,-2,---;¢#£0,-1,-2,---).

Let K, (o, B) = Su~mla, ) NT.

It is also interesting to note that the class K, (o, 3) ex-
tends to the classes of starlike, convex, S-uniformly star-
like, G-uniformly convex and (-prestarlike functions for
suitable choice of the parameters a, ¢, 11,7y, 1, @ and 3. For
instance;

1. Fora =c= 1;p =
reduces to the class

0 the class K, ,(a,3)
S(e).

2. Fora = ¢c = 1;u = v = 1 the class reduces to
80— K(a).

V=
of f —
3. For a =2 — 2a;5¢ = 1; u = v = 0 the class reduces to

[B-pre-starlike functions.

Several other classes studied can be derived from

=00 < p < 0K, ~.n(a, ).

Definition 3. For two functions f and g analytic in
U, we say that the function f is subordinate to g in U,
denoted by f < g, if there exists a Schwarz function w(z),
analytic in U with w(0) = 0 and |w(2)| < |z| < 1 (2 € U),
such that f(z) = g(w(z)).
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2 Coeflicient Estimates

Theorem 2.1. A function f(z) defined by (1.2) is in the

class K, ~n(c, B), if and only if
D 1+ B) = (a+ B)h(k)ar <1 -« (2.1)
k=2

where 0 < a < 1;8>0,—c0 < p < 1,—00 < v < 1,
n€lR ", a# —1,-2,--- and c # 0, -1, -2,

Proof. Assume (1.2) holds, then we show that f(z) €
K, ~n(a,B). Thus, it is suffices to show that

A(MLDTF(2)) A(MLDf(2))
) ‘1‘&{ METTR(R) ‘“}<0
that is,

A(MEDTF(2)) A(MEDf(2))
M) ‘1‘Re{ METTI ) _l}gl‘“
We have

A(MEDf(2) A(MEDf(2))

M) ‘4‘Re{ M) ‘1}

A(MYDf(2))
<(1+p ‘MSLJW -1
(1+8) > (k — Dh(k)ax
S k=2

1_§zmm%

This expression is bounded above by (1 — «) if

D 1+ 8) = (a+ B)h(k)ar <1 -« (2:2)
k=2
Conversely, we show that a function f(z) € K, ~,(c,3)

satisfies inequality (2.1).

Let f(2) € Ky ~y(a,3) and z be real, then by relation
(1.11) and (1.13), we have

o0

> (k

k=2

— Dh(k)apz*1
i:: h(k)ayz*1

1- Z kh(k)agz*—

—a>p
1-— Z h(k)agzk=1
k=2

Allowing z — 1 along real axis, we obtain the desired
inequality (2.2).
The equality in (2.2) is attained for the extremal function

(1-o)
[E(1+ B) — (e + B)]h(k)

& (k> 2).

flz)=2— (2.3)

9.

Corollary 2.2. Let a function f defined by (1.2) be in
the class K, (o, 3). Then

(1—a)()r-12=Yr-1(2 = p+n)k—1

ar < — , k>2.

~ kA4 B) = (a+ Bl@)r-1(2 =7+ Mr-1(2)r—1

Next, we give the growth and distortion theorem for the
class K, »n(a, 8).

Theorem 2.3. Let the function f(z) defined by (1.2) be
in the class K, (o, 3). Then

14,751 C(l )(2 ’7)(2 w+ 77) 2

MG F G = < e g
(2.4)

1,7Y,M N C(l B O‘)( )(2 H + 77) Py

Note that for a = ¢ = 1; 8 = 1, we get the result obtained
by G. Murugusundaramoorthy, T. Rosy and M. Darus in
The bounds in (2.4) and (2.5
function

flz) =

), are attained for the

c1-a)2=7)2=-p+mn) »
2a(8—a+2)(2—~+n)

z —

3 Characterization Property

Theorem 3.1. Let p,v,n € IR such that pu(—oco <
p < 1),y(—cc < v < 1),n € R"ya # —1,-2,--- and
¢ #0,—1,-2,---. Also let the function f(z) given by
(1.2) satisfy

k(14 8) — (a+ B)) 1

< — .

> D= e < s G

k=2
for =1 <a<1,8>0. Then My f(2) € K, 4.q(c, B),
where h(k) is given by (1.12).
Proof. We have from (1.11)

My f(2) =2 — Z h(k)arz". (3.2)
k=2

Under the condition stated in the hypothesis of this theo-
rem, we observe that the function h(k) is a non-increasing
function of k for k£ > 2, and thus

2a(2 =~ +n)
c2=7)2-pn+n)
Therefore, (3.1) and (3.3) yields

0 < h(k) < h(2) = (3.3)

b+ 5) — (@t OUAE) o < )

NE

= (1-a)

Eod
Il
¥

(Advanced on line publication:1 August 2009)



TAENG International Journal of Applied Mathematics, 39:3, [JAM_39 07

Hence by Theorem 1, we conclude that

M&Q’" (2) € Kpyqynl(a, B).
Remark. The inequality in (3.1) is attained for the func-
tion f(z) defined by

Al-a)2-9)*2—p+n)? ,
1B -at2)2 -t

) =2 - (3.5)

4 Results on Modified Hadamard Prod-
uct

Theorem 4.1. For functions f(z) and g(z) defined by

(1.2), let f(z) € Ky~n(e,B) and g(z) € K, ~4(&, B).
Then

(f*9)(2) € Ky n(6,5)

where
i (14801 -a)1-9
B=a+2)(f-E+2)h(2) - (1-a)(1 =)
(4.1)
for h(2) defined by (3.3).
The result is sharp for
— 5 (1-a) 52
IO =2 Gar2m®
and i )
= e

Proof. In view of Theorem 2.1 it is sufficient to show that

i (1+p)— 56+ ONk)

k=2

(4.2)

for § defined by (4.1).

Now, f(z) and g¢g(z) belong to K, -,(c,f)
K, ~n(& B), respectively and so, we have

and

i (1+5) 1 _(0;+ OIhk) <1 s
k=2
i k(1 + ) - (s; k), (4.4)

k=2
By applying Cauchy-Schwarz inequality to (4.3) and
(4.4), we get

(a+ B[k +6) -
(1-a)(1-¢)

€+ 8]

i%[k(lw)—

In view of (4.2) it suffices to show that

o k(1 + B) — (6 + B)]h(k)
1-6

2
e
k’)\/ akbk

or equivalently

axby

]

k=

—(a+ Pk +5) -
(1-a)(1=¢)

€+ 9)]

IN

= o VI +5) — (0 + Ak +5) - €+ 5)]
= -9

19 for k> 2.

[k(1+5) = (6 +5)]
In view of (4.5) and (4.6

(1-a)(1-¢)
h(k)\/[k(1+ B) — (a + B)[k(1 + 5) — (€ + B)]
VIEA+8) — (o + B+ 5) — €+ B - 9)
(I=a)1=8kA+5)—(0+5)]
for k > 2 which simplifies to
§<1-{(1+3)(k—-11—-a)(1
{{k(1+8) = (e + B)][k(1 + ) —
(1-a)1-8}

where

(4.6)

) it is sufficient to show that

IA

-8}/
€+ B)]n(k)
(4.7)

(@)r-12 =7+ Mr-1(2)r-1

for k> 2.
(r—12=Mr-12 = p+ )1 -

h(k) =

Notice that h(k) is a decreasing function of k (k > 2),
and thus ¢ can be chosen as below.

1+/0-a)(1 =9
(B—a+2)(B-E5+2)h(2) - (1-a)(1-¢)

for h(2) defined by (3.3). This completes the proof.

§=1-

Theorem 4.2. Let the function f(z) and g(z) be defined
by (2.1) be in the class K, ~y(c, 3). Then (f * g)(z) €
K~ (0, 3), where

1+8)1-a)?
(6 —a+2)?h(2) - (1 - a)?

for h(2) given by (3.3).

0=1-

Proof. Substituting o = £ in the Theorem 4.1 above, the
result follows.

Theorem 4.3. Let the function f(z) defined by (1.2) be
in the class K, » n(a, 3). Consider

z)=z— Zbkzk for
k=2

Ibi] < 1.
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Then (f *g)(z) € Kyym(e, ).

Proof. Notice that

WK

[k(1+ 8) — (o + B)]h(k)|arby]

=~
||

=

[k(1+B) — (o + B)]h(k)ak by

b
[|
N

< k(A +8) = (a+ B)h(k)ax

IN
g

-« using Theorem 2.1.

Hence (f * g)(2) € Kpyn(a; ).

Corollary 4.4. Let the function f(z) defined by (1.2) be
in the class K, ~ (o, 8). Also let g(z) = z — § brz* for
0<br <1. Then (f *g)(z) € K, (e, B). =

Next we prove the following inclusion property for func-
tions in the class K, , ,(a, 3).

Theorem 4.5. Let the functions f(z) and g(z) defined
by (2.1) be in the class K, (o, 3). Then the function
h(z) defined by

oo

h(z)=z— Z(az +b2)2"

k=2

is in the class K, (0, 3) where

21+ p)(1 — a)?
(6 —a+2)2h(2) - 2(1 - a)?

0=1-

with h(2) given by (3.3).

Proof. In view of Theorem 2.1 it is sufficient to show that

— [k(1+5) = (0 + B)]h(k)
D -

k=2

(ak +b3) <1 (48)

Notice that, f(z) and g(z) belong to K,, » »(c, 5) and so

[ [E(L+5) = (a + A)Ak) ]

Z{ (1-a) ]

<[§: 1+51_<&)+5>H>ak] <1 o)
2

{ (1+0) - (a+6)]h(k)rb2

(1-a) 4§

(a + B)]h(k)
(1-a)

00 1+ﬁ
<[>

k=2

AN NMS

b% <1, (4.10)

Adding (4.9) and (4.10), we get

k=2
Thus (4.8) will hold if

(kA +8) = (0+D5)]

< Th(B)[E(A+B) — (a+ B
1-6 =3 '

(1—a)

That is, if
B 21+ 6)(k—1)(1 — a)?
O BT 0) (o + HIAE) — 20— a)?

Notice that, # can be further improved by using the fact
that h(k) < h(2) for k > 2. Therefore,

2(1+6)(1 — a)?
(8 —a+2)2h(2) — 2(1 — a)?

where h(2) is given by (3.3).

(4.12)

0=1-

5 Integral Transform of the Class

Ky, B)

For f(z) € K, ~n(c, B) we define the integral transform

[ A0se,,
0 t

LA(f)(z)

where A(t) is real valued, non-negative weight function
normalized such that

fol A(t)dt = 1. Note that, A(t) have several special inter-
esting definitions. For instance,

At) = (14 ¢)t®, ¢ > —1, for which Ly is known as the
Bernardi operator. For
AU)—AgLﬂb lﬁ—l §>0 (5.1)
TTE) 8 0= '

we get the integral operator introduced by Jung, Kim and
Srivastava [6].

Let us consider the function

c 5
A0 = 57

1)571

t(log .

L e>—1, 6>0. (52)

Notice that for ¢ = 1 we get the integral operator intro-
duced by Jung, Kim and Srivastava.

We next show that the class is closed under Ly (f) for
A(t) given by (5.2).

Theorem 5.1. Let f(z) €
La(f)(2) € Kpym(e, B).

Proof. By using the definition of Ly(f), we have
(c+1)° /1 t¢(log §)° " f(t2)
) Jo t

K, ~n(a,B). Then

Ly(f) = dt (5.3)
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— (CFJE;))é /1(10 Lyo- 1t0< Zaktk ! ’“) dt.
0

Simplifying by using the definition of gamma function,

o) é
Ly(f)=2z- Z (21}1) apz”.

k=2

we get

(5.4)

Now Lx(f) € K,uqn(a, B) if

o~ [k(1+8) — (a+ B)]hk) (c+1
kZ:Q (1-a) (c+k

)6% <1. (5.5)

Also by Theorem 2.1 we have f € K, 5 (o, () if and only

if -

3 [k(1+5) —

= (1-a)
Thus, in view of (5.5) and (5.6) and the fact that
() < 1for k > 2, (55) holds true,
Lx(f) € K, y5(c, 8) and the proof is complete.

(a+ B)]h(k)

ar < 1. (5.6)

Therefore,

6 Extreme Points of K, ., ,(a, 3)
Theorem 6.1. Let
filz) =z (6.1)
and
. (1-«a) Sk
&) == T — e F2 2 62

Then f(z) € K, ~n(a
pressed in the form

,B), if and only if f(2) can be ez-

=> Aefi(2)
h=1

where A\, > 0 and Y A\, = 1.
k=1

Proof. Let f(z) be expressible in the form

(2) = Mf(2)
h=1

Then
B > 1 —a) Lk
B D) i e O
Now,
> 1 — Oz))\k
kzg 1+ﬂ (o + B)|h(k)
[k(1+ﬁ)(1_(o;+6 Zkk—l—A1<1

Therefore, f(z) € K, n(a,3).

Conversely, suppose that f(z) € K, ,.,(a, 3). Thus,

(1—-a)
(a+ B)]h(k)

akﬁ[( (k>2).

E(1+3) —
Setting

k(1+0) —

A = (a + B)h(k)

(1—-a)

ag (kZQ)

o0
and A\; = 1— > A, we get
k=2

z) = Z Ak fr(2)
k=1
This completes the proof.

7 Closure Theorem

Theorem 7.1. Let the function f;(z) defined by (2.1) be
in the class K, ~y(c, 3). Then the function h(z) defined

by

h(z) =z — Zekzk belongs to K, .n(a, 5)
k=2
where fj(z) =2z — Y ax ;2% j=1,2,---,¢, and
k=2

Proof. Since f;(z) €
2.1, we have

K, ~n(a,B), in view of Theorem

Now,

j=1 j=1 k=2
oo
= Z—E ekzk
k=2

¢
where e, = § 3 ax ;.
i=1

Notice that,
oo
k=2

Thus, h(Z) € K,u,’y,n(avﬁ)'

k(14 B) = (a+ B)h(k)

(1-a)

1
ZZakJ <1, using (7.1).

Jj=1
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8 Radius of Starlikeness, Convexity and
Close-to-Convexity

Theorem 8.1. Let f(z) € K, n(a,0). Then
ME" f(2) is starlike of order 5,0 <'s < 1 in |2| < Ry
where

(1= 8)[k(1+5) — (a+B)]]®D
G

R1 = inf |:
k

Proof. Mg""" f(2) is said to be starlike of order 5,0 <
s < 1, if and only if
} >s

(Mg f(2))
Re{ — =20 (82)
{ Mél’vz%ﬁ (Z)
<1l-—s.

or equivalently

(M f(2)

—— 1
My f(2)

With fairly straight forward calculations, we get

1 U=9)kA+0) —(@+8]
2 I
Setting R; = |z|, the result follows.

Next, we state the radius of convexity using the fact that
f is convex, if and only if zf’ is starlike. We omit the
proof of the following theorems as the results can be easily
derived.

Theorem 8.2. Let f(z) € K, n(a,0). Then
ME " f(2) is conver of order ¢,0 < ¢ < 1 in |z| < Ry
where

(A= 9k(+B) (@t B)] T
re=igf (S
Theorem 8.3. Let f(z) € Kuqyn(a, ). Then

M f(z) is close-to-convex of order 7,0 < r < 1 in
|z| < Rs where

a—mwu+ﬂwwa+mqw“{

R3:inf[ R —a)

k

Thoerem 8.4. Let f(z) € K, ~ (o, 8). Then Lx(f) is
starlike of order p,0 < p <1 in |z| < R4 where
](kll)

[(1 —p)[k(1 + ) — (a + B)]h(k)(c + k)°
(I—a)(k—p)(c+1)°

Theorem 8.5. Let f(z) € K, ~y(c,3). Then Ly(f) is

convex of order q,0 < q < 1 in |z| < Rs where

(1—-q)k(1+8) — (a4 B)]h(k)(c+ k)‘5:| (=)
k(1 —a)(k—q)(c+1)° :

R4 = inf
k

Rs 12[

Theorem 8.6. Let f(z) € K, ~ (e, 5). Then Ly(f) is
close-to-convez of order m,0 < m <1 in |z| < Rg where

(1= m)[E(L + 8) — (a + B)hk)(c + k)P ] TD

k(1 — a)(c+ 1)

R¢ = 1]%f

9 Integral Mean Inequalities for the
Fractional Calculus Operator

Lemma 9.1. Let f and g be analytic in the unit disc,
and suppose g < f. Then for 0 < p < oo,

/ uwwwwo</ lg(rei®) P8

0
Strict inequality holds for 0 < r < 1 unless f is constant
orw(z) =az, |a]=1.
Theorem 9.2. Let f(z) €

(0<r<1,p>0).

K, ~n(a, B) and suppose that

- (1-a)
2l < onar s -@ra OV
Also let the function
i(z) =2z (1-a) 27 ]
M= - V220

If there exists an analytic function w(z) given by

(14 8) ~ (a+5) 53 Pt

w(z)! ! = 1=a)

then for z = re'® with 0 < r < 1,

2m
| agzsceas
G

2m
§/ |MET fi(2)IPd9 (0< A< 1,p>0).
0

Proof. By virtue of relation (1.11) and (9.2), we have

My f(2) =2+ Z h(k)agz". (9.3)
k=2

and

MUY fi(2) = 2+ (- a) 2. (94)

o (1 +B) = (a+ )]

For z =re?, 0 < r < 1, V\zr)e need to show that

27 oo

/ z+ Z h(k)ayz"
’ 2 k=2 p
i (1-0) I de

< |l G| @ @20 09

By applying Littlewood’s subordination theorem, it
would be sufficient to show that

(1-a)
((1+8) = (a+B)]

1+ " h(k)apz"" < 1+ . (9.6)
k=2
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Setting
= k—1 _ (1-a) w(z)i~1
1+};2h(k)akz =1+ AT (A (z)~ L.
We note that
(w(2))i~! = (1 +ﬁ)__0€)a +5)] Z h(k)arz*"L, (9.7)
k=2

and w(0) = 0. Moreover, we prove that the analytic
function w(z) satisfies |w(z)| < 1,z € U

P < [FEEA=l A > hlkjonst
((1+8) = (e+8)] « k—1
< = z:;h )la]|2|
< |z|[ (1+£)—04 oLy, Zlak|
< |2/ <1 by hypothesis (9.1).

This completes the proof of Theorem 9.2.

As a particular case of Theorem 9.2 we can derive the
result for the function f(z) by taking a = ¢ = 1 and
p = =0 and thus My f(2) = f(z) .
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