
 
 

 

The Uncertainty Reduction for the Refined Sample Mean 
of Combined Quantities

 
Abstract—Sampling plans for middle or small sample size are 

often taken when the available data is not large enough. In this 
paper, a new quantile-based maximum likelihood estimation 
(QMLE) method for mean value estimation of a quasi-normal 
distribution is proposed. It takes the two endpoints of range as 
quasi-symmetric quantiles and fuses the concept of empirical 
and symmetric quantiles to define an objective function. It then 
follows the well-known “asymptotic minimax principle”, which 
is a robust statistical  method, to realize the optimization of the 
objective function. Simulation results confirmed that the 
proposed QMLE mean estimator outperforms the conventional 
sample mean estimator with about 40% uncertainty, or mean 
square error (MSE), reduction.  
 

Index Terms—sample mean, maximum likelihood estimation, 
quantile, combined quantities, asymptotic minimax principle  
 

I. INTRODUCTION 
There are some signals that are not strictly conforming to 

normal distribution, but still behaving like normal 
distribution.  We call them quasi-normal signals. A typical 
example of signal of this style is the hybrid output of 
combining several different quantities which are submitted to 
normal, rectangular, triangular or Student’s t-distributions. 
Up till now, it is convenient and popular to apply Law of 
Uncertainty of Propagation [1] to model the standard 
uncertainty for the combined quantities. But it still lacks a 
formulation to describe the mean value of the combined 
quantities except the sample mean. In this study, we are 
interested in the mean value estimation for combined 
quantities conditioned on middle or small sample size. We 
would like to use the normal estimator to estimate the mean 
value of quasi-normal data. 

A general form of hybrid signal of combined quantities can 
be expressed as  

1 1 2 2 n nx c z c z c z= + +LL   (1) 

where  is the i-th input quantity and  is the 
corresponding weight. Fotowicz [2,3] gave a brief 
description about the quantization of uncertainty of 
combined quantities for the case that there is at least one 
input quantity conforming to the rectangular distribution. The 
weighted sum output can be approximated by an R*N 
distribution, which is the convolution of a rectangular 
function and a normal distribution.  
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The shape of R*N distribution depends on the uncertainty 
ratio (UR) expressed by 
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where  is the standard uncertainty of the i-th input 
quantity which is rectangular distributed, and  is the 
combined standard uncertainty. An example of R*N pdf is 
given as  
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where  is a normalization constant. Fig.1 displays the 

R*N pdf for several values of UR.  is the shape parameter. 
cK

ur

 
Fig. 1: Zero mean of R*N distribution for different uncertainty ratio (UR) 
 

In the past, sample mean is widely used in the mean value 
estimation for any signal no matter what its original pdf is. 
The main reason of using sample mean is that it is not only a 
uniformly minimum variance unbiased estimator (UMVUE) 
but also the random variable of central limit theorem (CLT). 
Bowen [4] has pointed out that CLT may be explained as the 
sum of independent variables with the characteristic function 
formed by the product of the component characteristic 
functions. If we can discard the unbiased requirement, there 
exist some biased estimators that outperform sample mean. 
Stearls [5] and Gleser [6] discussed a new approach for the 
given coefficients of variation of sample mean. Ashok et al. 
[7] further proposed a realistic method to adjust the 
coefficients of variation of sample mean to improve its 
performance. 

Up till now, if we want to predict the mean value of 
combined quantities accurately, the only way is to take the 
sample mean on heavy observations. In practical applications 
of Measurement, the basic volume required for one digit 
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accuracy is  observations for 95% coverage interval [8]. 
Sometimes, there are not enough samples to support this rule 
so that the middle or small sample size sampling plans are 
also often taken. Besides, the good property of UMVUE for 
sample mean may be ineffective for the case of combined 
quantities which is of quasi-normal distribution. This is 
because the property of UMVUE is derived from the 
maximum likelihood estimation (MLE) basing on the normal 
pdf assumption. 

610

In this paper, a new method of mean value estimation, 
referred to as the quantile-based maximum likelihood 
estimator (QMLE), is proposed. The classical application of 
quantiles is the general usage of empirical quantiles. Koenker 
and Bassett [9] extended the empirical quantiles to the 
regression quantiles, which is specially useful for predicting 
the bounding information. Gilchrist [10] collected many 
studies about the estimation, validation, and statistical 
regression with quantile models. In the single quantile 
application, Giorgi and Narduzzi [11] gave the quantile 
estimation for the self-similar process. Heathcote, et al. [12] 
addressed the quantile maximum likelihood estimation of the 
response time distribution. But it involved a time-consuming 
numerical computation for the inverse of the quantile 
function, which is typical the cumulative distribution 
function (cdf) of normal pdf.  

In the proposed QMLE, the quantiles are determined by 
the maximum percentage of population, i.e. coverage, so that 
it is composed of a couple of quasi-symmetric quantiles 
(QSQ). According to the past studies, the 
coverage-constrained quantiles will obey the properties of 
symmetric quantiles whose variances asymptotically 
approach to the Cramer-Rao lower bound [13]. The 
symmetric quantiles were described with strict definition 
given in [13]. But we consider it with a more flexible 
operation as the ranked variables of the first order sample 1:nx  
and the last order sample :n nx . Hence the QSQ we considered 
are both empirical quantiles and quasi-symmetric quantiles. 
Lo and Chen [14,15] also derived good quantile-based 
estimators for the sparse data condition. In this study, we plan 
to derive the QMLE basing on the order statistics and expect 
that it can support not only the concept of empirical quantiles 
but also the quasi-symmetric quantiles. Otherwise, we would 
still need a quantile function defined below to link quantiles 
and MLE: 

( ) Pr( )pQ p X x p≡ ≤ =               (4) 

here, the value px  is called the p-quantile of population. 
 The paper is organized as follows. Section II presents the 
proposed QMLE. Section III establishes the minimax 
structure to realize the QMLE. Section IV suggests an 
advanced refinement of the QMLE to improve its 
performance. Some conclusions are given in the last section. 

II. THE PROPOSED QUANTILE-BASED MEAN 
ESTIMATOR 

We derive the QMLE by solving the problem of 
maximizing the objective function ( , )QMLE μ σ  defined by 
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where :p nx  is the minimum order (for p=1) or maximum 

order (for p=n) of samples ix , 1 ; i n≤ ≤ :p nξ  is a standard 

normal random variable normalized from :p nx ; and n  is the 
sample size. The solution derived in detail in Appendix is 
given below: 
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with the constraint , and * 0σ > x  is the sample mean. 

If we emulate the pdf of combined quantities as a 
quasi-normal distribution (see the example shown in Fig. 1), 
one of its two extreme shapes looks like a rectangular pdf for 
large UR. Examining the first order and last order random 
variables (i.e. QSQ) of the rectangular and normal pdfs with 
the same standard uncertainty, we find that the 
dispersion-areas of QSQ of the rectangular pdf are more 
concentrated than the normal pdf. 

 
Fig. 2: Standard normal pdf combined with its CLT pdf and QSQ pdf for 
sample size=11. We plot the QSQ of equal variance rectangular pdf  

[ 3, 3]−  as the blue solid line.  

 

III. ESTABLISH THE MINIMAX STRUCTURE 
We then follow the well-known robust statistical method 

“asymptotic minimax principle” to realize the QMLE. Huber 
[16] ever addressed the robust statistical method via the least 
possible variance searching algorithm given below:  

Asymptotic minimax results [16]: Let  be a convex 
compact set of distribution F on the real line. To find a 
sequence  of estimators of location which have a small 
asymptotic variance over the whole of ; more precisely, 
the supremum over 

κ

nT
κ

κ  of the asymptotic variance should 
be least possible. 

There are three components needed to establish a minimax 
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searching algorithm. They are the convex set, least variance 
and a minimax optimization objective function. We describe 
them in detail in the following: 

A. Convex set 
Eq.(5) is a quadratic equation so that its global extreme 

does exist. According to this property, we construct the 
convex set comprising the candidates of population mean. 
Using three normal pdfs, ,  and 

 as examples, we form their convex sets by using 
Eqs.(6) and (7). There are 1,000 trials with 15 samples in 
each trail. For each trial, the 15 samples are firstly sorted in 
the ascending order to find the two endpoints 

2(10,1 )N 2(2.3,0.8 )N
2(3.7,1.2 )N

1:nx  and :n nx . 
They are then transformed into the standard normal 
distributed versions, 1:nξ  and :n nξ , by using a pre-assumed 
pseudo mean psμ  and the true standard deviation σ  if it is 
known (or the samples’ standard deviation 

2

1

1 ( )
n

s i
i

x x
n

σ
=

= −∑ ). Then, the estimate *σ  is calculated 

by Eq.(7). We denote it as *
pσ . The final mean estimate is 

obtained by Eq.(6), i.e., * *
: :p p n p p nu x σ ξ= −  for . 1 or p n=

To evaluate the performance of the QMLE estimator, an 
averaged mean square error (MSE) defined by 

( )* 2 * 21000
1

1

( ( ) ) ( ( ) )1
1000 2

ps n ps

i

i i
MSE

μ μ μ μ

=

− + −
= ∑     (8)  

is calculated for each test. We take the error between the 
pseudo mean and real mean, ( ps )μ μ− , as the reference. We 

set the inspection interval of psμ  to be 

[ 2 / , 2 /nμ σ μ σ− + ]n

)

and take 50 pseudo means 
distributed uniformly over the interval as the candidates of 
population mean. Fig. 3 displays the average MSEs of QMLE 
versus ( psμ μ− . It can be clearly found from the figure that, 

for all the three test cases using different normal distributions, 
the average MSEs of QMLE are characterized as 
convergence curves to become smaller as the absolute value 
of the difference between psμ  and μ  decreases.  

 

 
Fig. 3: Average MSE of QMLE versus difference= ( ps )μ μ−  for three 

normal distributions. Note that 1:nξ  is calculated using true standard 
deviation σ . 

 

B. Asymptotic efficient near the minimal average of MSEs 
Fig. 3 shows that the three average MSE curves are convex 

functions of ( )psμ μ−  with their minima located at the zero 

of ( )psμ μ− . Basing on the observation, we therefore 

suggest letting the selection criterion of the pseudo mean, 
psμ , correspond to the minimal average MSE, and expect 

that the resulting QMLE has much higher efficiency than the 
sample mean. 

C. Minimax structure for the objective function 
Now, we add a punishment term to form a new objective 

function and find the optimal pseudo mean estimate by 
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 (9) 

The minimax operation is thus constructed completely. The 
corresponding criterion of optimization is a combination of 
maximum QMLE and MMSE on QSQ.  

Table 1 lists four possible conditions that we will 
encounter in setting the inspection area for searching the 
optimal psμ . They specify the conditions whether the 
population’s mean and population’s standard uncertainty are 
given or not. Basically, the inspection area is set as 
[ 2 / , 2 /nμ σ μ σ− + ]n . If the combined (population’s) 
mean is unknown, the best searching interval for determining 
the candidates is also unknown. In this case, we use the 
sample mean to determine the searching interval. Similarly, if 
the combined (population’s) standard uncertainty, σ , is 
unknown, we use the samples’ standard uncertainty, Sσ , for 
its substitution. 
 
Table 1:  Table of confusion for the conditions of combined 

mean and combined standard uncertainty 
Combined Mean 

(CLT searching interval)  
Known Unknown 

Known A B STU of 
combined 
quantities Unknown C D 

 
D. QMLE optimization on MMSE of only the two 
endpoints of range, (QSQ) 
In the proposed QMLE mean estimator, the quantiles are 

determined by the maximum percentage of its original 
population, i.e. coverage. Since the coverage-constrained 
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quantiles obey the properties of symmetric quantiles, the 
QMLE mean estimator may be efficient and robust with 
variance asymptotically approaching the Cramer-Rao lower 
bound [13]. It is worthy noting that since the QSQ usually 
occupies (covers) the most percent of variance, it is therefore 
popular to apply the double censoring scheme for the 
observations of small sample size, especially in the sport 
contest. We know that adopting such a strategy can avoid the 
large variation occurring in the mean estimation. Based on 
above discussions, we apply the above QMLE+MMSE 
optimization search only on QSQ, and call it the 
Q2MMSE-CLT scheme. 

We now examine the performance of Q2MMSE-CLT by 
simulations. Suppose that the combined quantity is composed 
of four independent random input quantities with two normal 
distributions,  and , and 
two rectangular distributions, 

2
1 ~ (0.1,1 )x N 2

2 ~ (2.15,1.5x N )

3 ~ [ 2 3 1.05, 2 3 1.05]x rect − − −  and 

4 ~ [ 10 3 1.45,10 3 1.45]x rect − + + . We perform 10,000 
trials to test Q2MMSE-CLT for each of the four conditions 
listed in Table 1. The testing sample size ranges from 11 to 40 
for each trial. Fig.4 and Fig. 5 display the experimental 
results. It can be found from these two figures that 
Q2MMSE-CLT significantly outperforms the sample mean 
for Conditions A and B, and is slightly better for Conditions 
C and D. In other words, Q2MMSE-CLT has much lower 
MSEs when the standard uncertainty is known. 

 
Fig. 4: Average MSEs for Conditions A and C. y axis is normalized to 

 2 ( ) /cu x n
 

 
Fig. 5:  Average MSEs for Conditions B and D. y axis normalized to 

  2 ( ) /cu x n
 

E. Test the robustness of Q2MMSE-CLT for different 
Uncertainty Ratio 
Here we test Q2MMSE-CLT for two different values of 

UR. As demonstrated in Fig. 1, the R*N distribution is more 
flat in its central part as UR increases. It is a general issue to 
study whether Q2MMSE-CLT performs better for larger UR. 
We perform 10,000 trials for two cases of combined 
quantities composing of four different distributions. One has 

, , 2(0.1,1 )N 2(0.2,1.5 )N [ 2 3 0.15,2 3 0.15]rec − + + , and 

[ 10 3 0.1,10 3 0.1]rec − − − . Its UR is equal to 3.7 evaluated 
according to Eq.(2). Another is the same as the first case 
except that [ 10 3 0.1,10 3 0.1]rec − − −  is changed to 

[ 28 3 0.1, 28 3 0.1]rec − − − . The UR is accordingly 
changed to 10.4. Fig. 6 displays the histograms of 50,000 
outputs of combined quantities for the two cases. It shows the 
property of quasi-normal distribution for the output of 
combined quantities. To compare the two cases of 
Q2MMSE-CLT, a robustness function of gain relative to 
sample mean is defined as  

 
2

  ( 2 _ )1  
  (   )

( )
       ( :  )c

Average MSEs of Q MMSE CLTG
Average MSEs of sample mean

u x
unit

n

= −
      (10) 

Fig. 7 displays the experimental results. It can be found from 
the figure that Q2MMSE-CLT outperforms sample mean for 
both cases of UR=3.7 and UR=10.4. Moreover, the 
performance is better for larger UR. 

 
Fig. 6: Histogram of 50,000 combined quantities for different URs. x-axis is 
the output of combined quantities and y-axis is the frequency count 

 
Fig. 7: Gain performance for the different URs. The unit is  2 ( ) /cu x n

IV. AN ADVANCED REFINEMENT OF THE QMLE 
Although Q2MMSE-CLT follows the paradigm of 

asymptotic minimax principle, there are only about 2%~3% 
gains, for Conditions C and D, over the sample mean in the 
mean estimation for the output of combined quantities. In 
view of practical applications, let us then only consider 
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Condition D. As was noted previously, the testing data of 
combined quantities are formed in the same manner and we 
execute 1,000 trials with 15 observations in each trial. We 
select 60 candidates of population mean and arrange them 
symmetric to the sample mean within the interval of 
[ 2 / , 2 / ]s sn x n xσ σ− + + . Then we evaluate the QMLE 
via the Q2MMSE-CLT scheme. In our maneuver, we first 
plot the convex curves according to the three different 
clusters of Z score (quantile of the signal transformed to 
standard normal pdf) of sample mean: 2Z < − , 

, and 0.5 0.5Z− ≤ ≤ 2Z > . We then define the cluster 
 as good sample mean and the other two 

clusters, 
0.5 0.5Z− ≤ ≤

2Z < −  and 2Z > , as the bad sample means. Fig. 8 
is the convex sets conditioned on the good sample mean. 
Here, the dot line is the convex set for the original signal of 
combined quantities and the green solid line represents the 
convex set due to enlarging standard uncertainty (ESU) to 4 
times of the original signal with the same reference 
candidates of population mean. We see from the figure that 
both the original and ESU signals take the Q2MMSE-CLT 
convergence near the symmetric location, the 30-th candidate 
in good sample mean, so that the good sample mean will 
guarantee the convergence to population mean on heavy 
observations.   

 
Fig. 8: Good sample mean tested with the convex sets, normalized by 

, sample size is 15, 4 combined quantities 2 ( ) /cu x n
 

Fig. 9 and Fig. 10 are, respectively, the results for the two 
cases of biased Z score less than -2 and greater than 2 when 
applying the Q2MMSE-CLT and enlarging standard 
uncertainty Q2MMSE-CLT (ESQ2MMSE-CLT). We plot 
the details shown as the double y-axes representation in 
which the dash line represents the original signal evaluated 
by Q2MMSE-CLT and the solid line represents the signal 
evaluated by ESQ2MMSE-CLT with 4 times of combined 
standard uncertainty. An important fact is found from the two 
figures that the original signal will be affected by the sample 
mean if it only takes the Q2MMSE-CLT operations. The 
resulting MSE curves converge to the near symmetric 
location which is the sample mean and we know it is the bad 
sample mean. We also found from these two figures that, as 
we apply the ESQ2MMSE-CLT algorithm with 4 times of 
combined standard uncertainty, the MSE curves converge to 
locations deviated away from the bad sample mean and 
toward the directions of population mean. Why does it act as 
the action? The reason is that the ESQ2MMSET-CLT 
enlarges the combined standard uncertainty to 4 times of the 

original signal. Thus the Z score of the general maximum 
bias sample mean will be reduced to 25% of that of the 
original signal. It means that the Z score of bias is constrained 
to 0.5 0.5Z− ≤ ≤ . The fact has been demonstrated in the 
green solid line of Fig. 8, that it will guarantee the 
convergence to the good sample mean, also the population 
mean. 

 
Fig. 9: Left biased of bad sample mean tested with the convex sets, double 

y-axes, normalized by , sample size is 15, 4 combined quantities 2 ( ) /cu x n

 
Fig. 10: Right biased of bad sample mean tested with the convex sets, double 

y-axes, normalized by , sample size is 15, 4 combined quantities 2 ( ) /cu x n
 
Fig. 11 displays the refined results of ESQ2MMSE-CLT 

for sample size from 11~40. We find from the figure that 
ESQ2MMSE-CLT significantly outperforms the sample 
mean by 40% MSE reduction. So it is a promising mean 
estimator. 

 
Fig. 11: Refined Q2MMSE-CLT with the enlarging standard uncertainty, 

y-axis is normalized by , 4 combined quantities 2 ( ) /cu x n
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V. CONCLUSIONS 
In this paper, the issue of applying quantile-based 

maximum likelihood estimation (QMLE) to mean value 
estimation of normal distribution in sparse data condition was 
addressed. It proposed to incorporate order statistics into 
QMLE to take the maximum coverage as quantiles so as to 
conform to the requirement of symmetric quantiles. 
Simulation results have confirmed that the new 
Q2MMSE-CLT performs very well to outperform the 
conventional sample mean estimator. We showed that the 
Q2MMSE-CLT earns the gain with the greatest utilities when 
the combined mean is known and obtains the least benefits if 
we take the sample mean to substitute for the combined mean. 
In spite of that fact, ESQ2MMSE-CLT can compensate this 
shortcoming. The robustness of ESQ2MMSE-CLT to its 
usage of sample mean makes it a promising mean estimator 
for practical applications. 

One thing must be paid attention that Q2MMSE-CLT is 
free to the standard uncertainty of population so that the 
combined standard uncertainty of combined quantities can be 
ignored and replaced with the samples’ standard uncertainty 
in the estimation process. 

 

APPENDIX: 
The Quantile-based mean estimator:  

By substituting : :p n p nxμ σξ= − , for 1 or p n= , into 
( , )QMLE μ σ  defined in Eq.(5), we obtain 

: 2
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: 2
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Taking the partial derivative of Eq.(11) with respect to σ  
and setting it to zero, we obtain 

2 2
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1 1
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n n

p n i p n i p n
i i

n x x x xσ ξ σ
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Solve Eq.(12) to obtain an estimate of the standard deviation 
of population: 
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σ σσ
± +
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