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Abstract—In this paper we prove the existence
of solution to the periodic Boltzmann BGK model
(Bhatnagar-Gross-Krook) coupled with poisson’s
equation in one space dimension. BGK model is a
collision operator for the evolution of gases which
satisfies several fundamental properties. Different
collision operators for gas evolutions have been intro-
duced earlier but none of them could satisfy all the
basic physical properties : conservation, positivity,
correct exchange coefficients, entropy inequality.
However contrary to Boltzmann model which has a
quadratic form, the BGK model, presents a heavy
nonlinearity who explains the complexity of this
analysis.
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1 Introduction

We study the initial value problem of BGK model [1]
coupled with Poisson’s equation, which is a simple relax-
ation model introduced by Bhatnagar, Gross & Krook to
mimic Boltzmann flows, where f(x, v, t) is the density of
plasma particles at time t in the space of position x and
velocity v, and φ(x, t) is the potential of electric field of
the plasma.
The existence and uniqueness problem of BGK model
were proved by B.Perthame and M.Pulvirenti [5] but
without coupling with Poisson’s equation.
S.Ukay and T.Okabe [6] had proved the existence and
uniqueness of (f, φ) for the Vlasov-Poisson equation
(without collision term).
In this paper we are interested in the existence of a so-
lution of initial value BGK model coupled with Poisson’s
equation. In periodic case the dimensionless BGK model
coupled with Poisson’s equation in one space dimension
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is written as :




Lff = M [f ]− f, (x, v) ∈ Ω× R, t ≥ 0

f(t = 0) = f0(x, v), x ∈ Ω, v ∈ R
−φxx =

∫

R
f(x, v, t)dv, φ(0) = φ(L) = 0.

(1)

Ω = ]0, L[.

Where :
Lf = ∂t + v∂x + E(x, t)∂v (2)

E(x, t) = −1
2
φx (3)

M [f ] =
ρ

(2πT )1/2
exp(−|u− v|2

2T
) (4)

M [f ] is the Maxwellian associated to f , where :

(ρ, ρu, ρ(u2 + T )) =
∫

R
(1, v, v2)f(v)dv (5)

Remark 1.1 The notation Lf for the deferential opera-
tor in (2) is chosen to see that it depends on f according
to (3).

2 Existence of Solution

Let G be the fundamental solution of ∆x in R given as :

G(x, y) =





x(1− y

L
) 0 ≤ x ≤ y

(1− x

L
)y y ≤ x ≤ 1

(6)

and the potential of electric field, is given by :

φ(x, t) =
∫ L

0

G(x, y)(
∫

R
f(y, v, t)dv)dy

Using φ, we can solve the initial value problem of the first
order partial differential equation,

{
Lf + f = M [f ], (x, v) ∈ Ω× R, t ≥ 0

f(t = 0) = f0(x, v), x ∈ Ω, v ∈ R
(7)
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We can easily solve equation (7) using the characteristic
(X, V ) solution of :





dX

dt
= V (t), X(s) = x,

dV

dt
= E(X(t), t), V (s) = v.

(8)

Then the solution of equation (7) is given implicitly as

f(x, v, t) = e−tf0(X(0, x, v, t), V (0, x, v, t))

+
∫ t

0

e−(t−s)M [f ](X(s), V (s), s)ds

In this way we shall have assigned a function f to a given
function g which we will denote by f = Φ(g). So we shall
specify a set S of functions g in such a way that the map
Φ defined on S which can be shown to be a fixed point ,
with the aid of Schauder’s fixed point theorem and that
any fixed point of Φ in S is a classical solution of (1).

2.1 Class of functions

For any set Ξ ⊂ R2 × R+, we denote Bl+σ(Ξ) the set
of all continuous and bounded functions defined on Ξ
having continuous and bounded l-th derivatives which are
uniformly Holder continuous in Ξ with exponent σ, where
l is integer ≥ 0 and 0 ≤ σ ≤ 1.

2.2 Notations

For f ∈ L1(R), q ≥ 0, f ≥ 0 we denote :

Nq(f) = sup
v∈R

(|v|qf(v)) and Nq(f) = sup
v∈R

((1 + |v|q)f(v)

and for τ ≥ 0 we introduce :

Ωτ = Ω×]0, τ [ and Qτ = Ω× R×]0, τ [.

Lemma 2.1 For f ≥ 0 and f(v) ∈ L1(R, (1 + v2)dv),
we have :

i)
ρ

T 1/2
≤ N0(f), q > 3,

ii) ρ(T + u2)
(q−1)

2 ≤ CqNq(f), q > 3,

iii) sup
v∈R

{|v|qM [f ]} ≤ CqNq(f), q > 3.

(9)

where (ρ, u, T ) are given by (5).
Proof. We will prove the first assertion. For (ii) and
(iii) the proofs are essentially identical and will not be
repeated here. See [5].
For brevity, the variables x and t are considered as
parameters. For any R ≥ 0 we write :

ρ(x, t) =
∫

|v−u|>R

f(v)dv +
∫

|v−u|<R

f(v)dv

≤ 1
R2

∫

|v−u|>R

|v − u|qf(v)dv +
∫

|v−u|<R

f(v)dv

≤ ρT

R2
+ 2RN0(f).

We choose the value R = (
ρT

N0(f)
)1/3 corresponding to

the minimum of the right term. Thus, (i) was proved.

Proposition 2.2 Suppose that f is solution of (1) Then

Nq(f) ≤ Cq exp(Cqt) for q = 0 or q ≥ 3

Proof. i) We shall first prove the case q = 0,
From (9)(i) we have M [f ] ≤ CN0(f) where C is a
positive constant. From (1) we have,

d

dt
(etf(X(t), V (t), t)) ≤ Cet sup

x∈Ω
N0(f)(t),

⇒ etf(X(t), V (t), t)) ≤ f0(x, v) + C

∫ t

0

es sup
x∈Ω

N0(f)(s)ds,

⇒ etf(x, v, t)) ≤ f0(X(0, x, v, t), V (0, x, v, t))

+C

∫ t

0

es sup
x∈Ω

N0(f)(s)ds,

⇒ et sup
x∈Ω

N0(f)(t) ≤ ||f0||∞ + C

∫ t

0

es sup
x∈Ω

N0(f)(s)ds.

The Gronwall lemma ended the proof.

ii) case where q > 3
We denote fq = (1 + |v|q)f , writing the equation verified
by fq, we get :

Lffq = (1 + |v|q)M [f ]− fq + v|v|(q−2)Ef (10)

Where E can be written as :

E(x, t) =
∫

Ω

K(x, y)(
∫

R
g(y, v, t)dv)dy. (11)

K is a bounded kernel, can be easily deduced from (3)
and (6).
We can easily see that

|E(x, y)| ≤ sup
(x,y)∈Ω

|K(x, y)|||f0||L1(Ω×R) (12)

for the values of |v| ≥ 1 we have :

Lffq + fq ≤ CqNq(f) (13)

the Gronwall lemma applied to the map

t −→ et sup
x∈Ω

Nq(f)(t) gives the proof.

The case |v| < 1 is easy to prove from (i).

Lemma 2.3

i) We suppose that f0 is not depend on x,

ii) There is V1 ∈ R such that f0 is increasing as

]−∞, V1[ and decreasing as ]V1,+∞[,

iii) There exist C0 > 0 such that :
∫

|v−V1|>2τ

f0(v)dv ≥ C0.

(14)
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Then
ρ(t) ≥ C0e

−t.

Proof. We take ||f0||L1 = 1

Lff + f ≥ 0 ⇒ d

dt
(etf(X(t), V (t), t)) ≥ 0

⇒ etf(X(t), V (t), t) ≥ f0(v)

thus, according to the proprieties of
(X(t, x, y, s), V (t, x, y, s)), we can write :

etf(y, w, t)) ≥ f0(V (0, y, w, t))

⇒ etρ(y, t) ≥
∫

R
f0(V (0, y, w, t))dw (15)

We can see from (12) that −1 ≤ E(x, t) ≤ 1 this implies,
together with (8), that

v − t ≤ V (0, y, w, t) ≤ v + t

We divide the region of integration in (15) as :

D1 = {v, V (0, y, w, t) < V1}, D2 = {v, V (0, y, w, t) > V1}

⇒
∫

R
f0(V (0, y, w, t))dw =

∫

D1

f0(V (0, y, w, t))dw

+
∫

D2

f0(V (0, y, w, t))dw

≥
∫ V1−t

−∞
f0(w − t)dw +

∫ +∞

V1+t

f0(w + t)dw

≥
∫

|w−V1|>2τ

f0(w)dw

By virtue to (14) (iii) the prove follows.

Proposition 2.4 Let f0 ≥ 0 and f0 ∈ B1(Ω × R) we
suppose that there exist A0 > 0 verify,

sup
v∈R

{(1 + |v|q)f0(x, v)} = A0 < +∞, then

∀t ∈ [0, τ ], ∃A(t) < +∞, B(t) ∈ R∗+ verify

i) 0 < B(t) ≤ T (t) ≤ A(t),
ii) u(t) ≤ A(t).

(16)

Proof. From (9)(i), we get :

T 1/2 ≥ C
ρ

N0(f)
≥ C1(t),

and from (9)(ii) we get (16) (i) and (ii).
Indeed

ρ(T + u2)
q−1
2 ≤ CqNq(f),

Thus,

(T + u2) ≤ A(t).

Definition 2.5 We denote S as the class of functions
satisfying :

S = {g ∈ Bδ(Qτ ); ||g||Bδ(Qτ ) ≤ A1, sup
v

((1 + |v|q)g)

≤ A2,∀(x, t) ∈ Ω×]0, τ [}, where A1 and A2 are positive
constants.

For g ∈ S we consider f a solution of :





Lgf = M [g]− f, (x, v) ∈ Ω× R, t ≥ 0

f(t = 0) = f0(x, v), x ∈ Ω, v ∈ R
−φxx =

∫

R
f(x, v, t)dv, φ(0) = φ(L) = 0

(17)

and
E(x, t) =

∫

Ω

K(x, y)(
∫

R
g(y, v, t)dv)dy.

We denote :
f = Φ(g)

We have to prove that Φ is a continuous map from S to
itself, which will prove the existence of a solution in S.
The Solution of (17) is given by

f(x, v, t) = e−tf0(X(0, x, v, t), V (0, x, v, t))

+
∫ t

0

e−(t−s)M [g](X(s), V (s), s)ds
(18)

where we noted :

X(s) = X(s, x, v, t), V (s) = V (s, x, v, t)

From (9) (i), we get :

M [g] ≤ ρ(x, t)
T 1/2

≤ CN0(g)

by virtue of (18) and the condition imposed to f0 in
proposition (2.4), it’s easy to see that f ∈ S if g ∈ S.
We consider a sequence gn ∈ S and g∞ ∈ B0(Qτ ), verify
||gn − g∞||B0(Qτ ) −→ 0 when n −→ +∞.

Lemma 2.6 S is a compact convex subset of B0(Qτ )

Proof. The convexity is easy to see. We prove the
compactness.

For g ∈ S, we have, sup
v
{(1 + |v|q)g} ≤ A2, this imply

∀ε > ∃A(ε) > 0 ⇒ sup
{|v|>A(ε)}

g(v) ≤ ε

2
(19)

for ε > 0, we introduce the compact set Qε
τ

Qε
τ = [0, L]× [−A(ε), A(ε)]× [0, τ ]

and the corresponding functional space,

Sε = {gε ∈ Bδ(Qε
τ ); ||gε||Bδ(Qε

τ ) ≤ A1, sup
v∈R

{(1 + |v|q)g} ≤
A2, ∀(x, t) ∈ Ω×]0, τ [}.
Since ||gε||Bδ(Qε

τ ) ≤ A1 for gε ∈ Sε, it’s easily seen that
Sε is an equicontinuous subset to B0(Qτ ), thus, we can
apply the Ascoli theorem to prove that Sε is a relative
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compact subset to B0(Qτ ).
We should prove that from any open cover of S we can
extract a finite subcover.

Let (Ui)i∈N a family of open balls centred at gi with ra-
dius

ε

2
such that S ⊂

⋃

i∈N
Ui,

hence Sε ⊂ S, (Ui)i∈N cover Sε, and from Ascoli theorem
there is a finite set I such that Sε ⊂

⋃

i∈I

Ui.

Let g ∈ S, we introduce the decomposition g = gε + h
where gε = gχQε

τ
, χ is the characteristic function.

On one hand, from (19) we have ||h||B0(Qτ ) ≤
ε

2
.

On the other hand, hence gε ∈ Sε, there is a function
gi ∈ Ui (i ∈ I) such that ||gε − gi||B0(Qτ ) ≤

ε

2
Thus, ||g−gi||B0(Qτ ) ≤ ||gε−gi||B0(Qτ ) + ||h||B0(Qτ ) ≤ ε.
This prove that S ⊂

⋃

i∈N
Ũi where Ũi is a finite family of

open balls centred as gi with a radius
ε

2
.

2.3 Notation

For s ≥ 0, we introduce this notation :

Ns
n(X,V ) = max{|Xn(s)−X∞(s)|, |V n(s)− V∞(s)|}

where, (Xn(s), V n(s)) and (X∞(s), V∞(s)) are deduced
from (8) using gn and g∞ in (11).

Lemma 2.7

Ns
n(X, V ) ≤ (1 + τ)τe(Mτ |t−s|)||En − E∞||B0(Ωτ )

The proof is detailed in [6].

Lemma 2.8 ||En−E∞||B0(Ωτ ) −→ 0, when n −→ +∞
Proof.

|En − E∞| = |
∫

Ω

∫

R
K(x, y)(gn − g∞)(y, v, t)dvdy|

≤
∫

Ω

∫

R
K(x, y)|(gn − g∞)(y, v, t)|dvdy

≤ (
∫

Ω

∫

R
(K(x, y))2|(gn − g∞)(y, v, t)|)dvdy)1/2

(
∫

Ω

∫

R
|(gn − g∞)(y, v, t)|)dvdy)1/2

≤ (sup
y∈Ω

K(x, y)2)1/2

∫

Ω

∫

R
|(gn − g∞)(y, v, t)|)dvdy

This implies together with the hypotheses given to gn

and g∞ that,

|En − E∞| ≤ A.

the prove follows by the dominated convergence theorem.

Theorem 2.9 With the conditions of proposition (2.4)
for f0, the problem (1) haves one solution (f, φ).

Before the proof, we introduce these notations

2.4 Notations

First we denote :

fn = Φ(gn) and f∞ = Φ(g∞)

and for any function F ,

∆F = Fn −F∞.

finally, we change (X(s), V (s)) by (Xs, Vs).

Proof.

et∆f(x, v, t) = f0(Xn
0 , V n

0 )− f0(X∞
0 , V∞

0 )+∫ t

0

es[M [gn](Xn
s , V n

s , s)−M [g∞](X∞
s , V∞

s , s)]ds
(20)

On one hand, we have

f0(Xn
0 , V n

0 )− f0(X∞
0 , V∞

0 ) ≤ ||f0||B1(Ω×R)N
s
n(X, V )

On the other hand,

M [gn](Xn
s , V n

s , s)−M [g∞](X∞
s , V∞

s , s)

= (M [gn]−M [g∞])(Xn
s , V n

s , s)

+M [g∞](Xn
s , V n

s , s)−M [g∞](X∞
s , V∞

s , s)

By virtue of (16) (i), it is easily seen that M [g] has at
last the same regularity as g ∈ S then

|M [g∞](Xn
s , V n

s , s)−M [g∞](X∞
s , V∞

s , s)| ≤
||M [g∞]||Bδ(Qτ )N

s
n(X, V )δ

It remains then to estimate the term :

(M [gn]−M [g∞])(Xn
s , V n

s , s).

We pose for θ ∈ [0, 1],

(ρn
θ , un

θ , Tn
θ ) = θ(ρ∞, u∞, T∞) + (1− θ)(ρn, un, Tn)

We denote Mn
θ the maxwellian associated to (ρn

θ , un
θ , Tn

θ ).
We have :

|M [gn]−M [g∞]|(Xn
s , V n

s , s) ≤ |∆ρ(Xn
s , s)

∂Mn
θ

∂ρ
|

+|∆u(Xn
s , s)

∂Mn
θ

∂u
|+ |∆T (Xn

s , s)
∂Mn

θ

∂T
|

(21)

the derivatives of Mn
θ verify :

|∂Mn
θ

∂ρ
| ≤ C(Tn

θ )−1/2

|∂Mn
θ

∂u
| ≤ Cρn

θ (Tn
θ )−1

|∂Mn
θ

∂T
| ≤ Cρn

θ (Tn
θ )−3/2.

To conclude from (21) we shall need the estimates :

(i) : |∆ρ(Xn
s , s), (ii) : |∆u(Xn

s , s)|, (iii) : |∆T (Xn
s , s)|
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which can be estimated by :

(i) : |∆ρ(Xn
s , s)| = |

∫

R
(gn − g∞)(Xn

s , w, s)dw|
(ii) : |∆u(Xn

s , s)| ≤ C|∆u(Xn
s , s)ρ∞(Xn

s , s)|
≤ C|(∆(ρu)u∞)(Xn

s , s)|+ |un∆ρ(Xn
s , s)|

(iii) : |∆T (Xn
s , s)| ≤ C|∆T (Xn

s , s)ρ∞(Xn
s , s)|

≤ C|∆(ρT ))(Xn
s , s)|+ |Tn(∆ρ)(Xn

s , s)|.
Hence q > 3, the dominated convergence theorem
applied to (20) ended the proof.

We conclude that Φ is a continuous map in S, so
it has a fixed point in S, which is a solution of BGK-
Poisson’s equations (1).
The schauder’s point fixed theorem does not allow
to show the uniqueness of the solution, this question
remains open. Numerical tests were implemented to fill
this fault, and they gave reassuring results.

Remark 2.10 The conditions (ii) and (iii) imposed to
f0 in lemma (14) can be generalized as :

(ii)′ There is a finite sequence (Vn)n∈N such that f0 is
increasing as ]−∞, V0[ and decreasing as ]Vn, +∞[.

(iii)′ There exist C0 > 0 such that :∫ V0−2τ

−∞
f0(v)dv +

∫ +∞

Vn+2τ

f0(v)dv ≥ C0

Remark 2.11 It is interesting to know that the condi-
tion (ii) imposed to f0 is not excessive, the distributions
of particles has generally this shape, like Gaussian curves
for example.

3 Conclusion

We proved the existence of a solution of the complete
model, with the collision’s term and coupled with the
Poisson’s equation. It is a nonlinear problem, where the
nonlinearity appears twice, first in the electric field term
E and secondly in the collision term. BGK-collision’s
term, although it have an attractive shape, it presents a
special nonlinearity which gives the complicated calcula-
tions.
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