Lower Bounds of Ramsey Numbers R(k,l)

Decha Samana and Vites Longani

Abstract—For positive integers k and l, the Ramsey number R(k,l) is the least positive integer n such that for every graph G of order n, either G contains K_k as a subgraph or \overline{G} contains K_l as a subgraph. In this paper it is shown that Ramsey numbers

$$R(k,l) \ge 2kl - 3k + 2l - 12$$
 when $5 \le k \le l$.

 $R(k,l) \ge 2kl - 3k - 3l + 6$ when $3 \le k \le l$,

Index Terms—Ramsey numbers, lower bounds, graph.

I. INTRODUCTION

For positive integers k and l, Ramsey number R(k,l) is the least positive integer n such that for every graph G of order n, either G contains K_k as a subgraph or \overline{G} contains K_l as a subgraph. Some known R(k,l) are shown in the table [1]:

Table 1: Some known R(k,l)

1-	3	4	5	6	7	8	9
K							
3	6	9	14	18	23	28	36
4		18	25				

For upper bounds, Erdös and Szekeres [2] have shown that

$$R(k,l) \leq \binom{k+l-2}{k-l}, \text{ for } k \geq 1, l \geq 1.$$

Some know results of R(k,l), in recurrence forms, are described in Lemma 1 and Lemma 2.

This work was supported in part by the Graduate School, Chiang Mai University, Chiang Mai, Thailand

Lemma 1: [3] For $k, l \ge 3$,

$$R(k,l) \ge R(k,l-1) + 2k - 3$$
.

Lemma 2: [4] For $l \ge 5$, $k \ge 2$,

$$R(2k-1,l) \ge 4R(k,l-1)-3$$
.

II. LOWER BOUND OF R(k, l)

First, we define cycle-power C_n^d for the proof of Lemma 3 from which the main results could be derived.

The cycle-power C_n^d is constructed by placing *n* vertices on a circle and making each vertex adjacent to *d* nearest vertices in each direction on the circle. See Figure 1 and 2, for the examples of C_5^1 and C_8^2 .

Figure 1: Cycle-power C_5^1 and \overline{C}_5^1

Decha Samana and Vites Longani are with the Chiang Mai University, Department of Mathematics, Faculty of Science, Suthep Road, Muang, Chiang Mai, Thailand 5200, (e-mail: dechasamana@hotmail.com, vites@chiangmai.ac.th).

Figure 2: Cycle-power C_8^2 and \overline{C}_8^2

Lemma 3: For $k \ge 3$,

$$R(3,k) \ge 3(k-1)$$

Proof: Let $\{1, 2, 3, ..., 3k - 4\}$ be the points of the cycle C_{3k-4} . We say that the line $\{i, j\}$ has line distance l_{ij} if the distance of the two points *i* and *j* of C_{3k-4} is equal to l_{ij} . For example, the line $\{1, 4\}$ in Figure 3 has line distance 3. From the definition of cycle-power C_{3k-4}^{k-2} , the point 1 is adjacent to the k-2 nearest vertices in each direction on the circle. From the definitions, the 2(k-2) lines of C_{3k-4}^{k-2} that are adjacent to 1 have distances 1, 2, 3, ..., or k-2.

Also, there are (3k-4)-2(k-2)-1=k-1 consecutive points of C_{3k-4}^{k-2} that are not adjacent to the point 1. We note that the lines that join each pair of these consecutive k-1points have line distance 1, 2, 3, ..., or k-2, and so these lines are lines of C_{3k-4}^{k-2} . We shall use this note in the second part of the proof. For example when k = 5, see Figure 3 for the lines of C_{3k-4}^{k-2} and $\overline{C}_{3k-4}^{k-2}$ that are adjacent to 1.

Figure 3: Cycle-power C_{3k-4}^{k-2} , k = 5

First, we want to show that there is no K_k in C_{3k-4}^{k-2} , and then we shall show that there is no K_3 in $\overline{C}_{3k-4}^{k-2}$. Suppose there is K_k in C_{3k-4}^{k-2} . Due to the symmetry of C_{3k-4}^{k-2} , it is without lost of generality if we say that the point 1 is a point of a K_k . Therefore, the k points of this K_k are the point 1 and some k-1 points among the 2(k-2) points that are adjacent to 1. The k points of K_k are on the circle C_{3k-4} and so some two of these points has line distance greater than k-2. This is a contradiction, since the line distances of lines in C_{3k-4}^{k-2} are 1, 2, 3,..., or k-2. Therefore, there is no K_k in C_{3k-4}^{k-2} .

Next, we show that there is no K_3 in $\overline{C}_{3k-4}^{k-2}$. Suppose there is K_3 in $\overline{C}_{3k-4}^{k-2}$. Again, it is without lost of generality if we say that 1 is a point of one of K_3 in $\overline{C}_{3k-4}^{k-2}$. Since, in $\overline{C}_{3k-4}^{k-2}$, 1 is adjacent to the k-1 consecutive points, so the point 1 with some two points from these k-1 points form a K_3 . This is a contradiction, since we have noted that the lines formed by these k-1 points are lines of C_{3k-4}^{k-2} only. So, there is no K_3 in $\overline{C}_{3k-4}^{k-2}$.

Hence, we have shown that there are no K_k in C_{3k-4}^{k-2} , and no K_3 in $\overline{C}_{3k-4}^{k-2}$.

5 58 4	
Therefore	R(k,3) > 3k-4
or	$R(3,k) \ge 3(k-1)$

Some lower bounds of R(3,l), using Lemma 3, are shown in the following table:

Table 2: Some lower bounds of R(3, l) using Lemma 3

	1	3	4	5	6	7	8	9	10	11
k										
3		6	9	12	15	18	21	24	27	30

Using Lemma 1 and Lemma 3, we can derive Theorem 1.

Theorem 1: For $3 \le k \le l$,

$$R(k,l) \ge 2kl - 3k - 3l + 6$$

Proof: From Lemma 1 and Lemma 3, and using R(k,l) = R(l,k), we have

$$R(k,l) \ge R(l,k-1) + 2l - 3$$

$$\ge R(l,k-2) + +2l - 3 + 2l - 3$$

$$\vdots$$

$$\ge R(l,k-i) + i(2l - 3), \quad i = 1, 2, ..., k - 3$$

$$\vdots$$

$$= R(l,3) + (k - 3)(2l - 3)$$

$$\ge 3(l - 1) + (k - 3)(2l - 3), \quad 3 \le k \le l$$

$$= 2kl - 3k - 3l + 6.$$

Therefore

$$R(k,l) \ge 2kl - 3k - 3l + 6$$
 for $3 \le k \le l$.

Some lower bounds of R(k,l), using Theorem 1, are shown in the following table:

Table 3: Some lower bounds of R(k, l) using Theorem 1

1	3	4	5	6	7	8	9	10	11	12	13	14	15
k													
3	6	9	12	15	18	21	24	27	30	33	36	39	42
4		14	19	24	29	34	39	44	49	54	59	64	69
5			26	33	40	47	54	61	68	75	82	89	96

Also, using Lemma 1, Lemma 2, and Lemma 3, we can derive Theorem 2

Theorem 2: For $5 \le k \le l$

$$R(k,l) \ge 2kl - 3k + 2l - 12$$

Proof: From Lemma 1, Lemma 2 and Lemma 3, we have

$$R(k,l) \ge R(l,k-1) + 2l - 3$$

$$\ge R(l,k-2) + +2l - 3 + 2l - 3$$

$$\vdots$$

$$\ge R(l,k-i) + i(2l - 3), \quad i = 1, 2, ..., k - 5$$

$$\vdots$$

$$\ge R(l,5) + (k - 5)(2l - 3)$$

$$\ge 4R(3,l-1) - 3 + (k - 5)(2l - 3), \quad 5 \le k \le l$$

$$= 2kl - 3k + 2l - 12.$$

Therefore

$$R(k,l) \ge 2kl - 3k + 2l - 12$$
, for $5 \le k \le l$.

Some lower bounds of R(k,l), using Theorem 2, are shown

in the following table:

Table 4: Some lower bounds of R(k, l) using Theorem 2

1	5	6	7	8	9	10	11	12	13	14	15
k											
5	33	45	57	69	81	93	105	117	129	141	153
6		54	68	82	96	110	124	138	152	166	180
7			79	95	111	127	143	159	175	191	207
8				108	126	144	162	180	198	216	234
9					144	164	184	204	224	244	264
10						178	200	222	244	266	288

We note that Theorem 2 can generally give better results than those from Theorem 1 when $5 \le k \le l$. However, Theorem 1 could not provide results when k < 5 or l < 5.

ACKNOWLEDGMENT

The author would like to thank the Graduate School, Chiang

Mai University, Chiang Mai, Thailand for their financial support during the preparation of this paper.

REFERENCES

- S.P. Radziszowski, "Small Ramsey Numbers," *Electronic Journal of Combinatorics*, Dynamic Survey 1, revision#11, August 2006.
- [2] P. Erdos, G. Szekeres, "A combinatorial problem in geometry", Coposito Math. 2,(1935) 464-470.
- [3] S.A. Burr, P. Erdos, R.J. Faudree and R.H. Schelp, "On the Difference between Consecutive Ramsey Numbers," *Utilitas Mathematica*, 35 (1989) 115-118.
- [4] Xu Xiaodong, Xie Zheng, G. Exoo and S.P. Radziszowski, "Constructive Lower Bounds on Classical Multicolor Ramsey Numbers," *Electronic Journal of Combinatorics*, 11 (2004),24 pages.