
 

 

  
Abstract—For  positive  integers  k  and l , the   Ramsey 

number R(k,l)  is the least positive integer n  such that 
for every graph G  of order n , either G  contains kK  as a 

subgraph or G  contains lK  as a subgraph.  In  this paper 
it is shown that Ramsey numbers  

     

 ≥R(k,l) 2kl - 3k - 3l + 6   when ≤ ≤3 k l , 
 and  

 ≥R(k,l) 2kl - 3k + 2l - 12  when ≤ ≤5 k l . 
 

Index Terms—Ramsey numbers, lower bounds, graph. 
.  

I. INTRODUCTION 
  For positive integers k   and  l , Ramsey number ( , )R k l  is 
the least positive integer n  such that for every graph  G of 
order n , either G  contains kK  as a subgraph or  G  contains 

lK  as a subgraph.  Some known ( , )R k l  are shown in the 
table [1]: 
 

Table 1: Some known ( , )R k l  
 
 
 
 
 
 
   
 
 For upper bounds, Erdos&&  and Szekeres [2]  have shown 
that 
 

2
( , )

k l
R k l

k l
+ −⎛ ⎞

≤ ⎜ ⎟−⎝ ⎠
,  for  1, 1k l≥ ≥ . 

 

Some know results of ( , ),R k l  in recurrence forms, are 
described in Lemma 1 and Lemma 2. 
 
 

This work was supported in part by the Graduate School, Chiang Mai 
University, Chiang Mai, Thailand 

Decha Samana and Vites Longani are with the Chiang Mai University, 
Department of Mathematics, Faculty of Science, Suthep Road, Muang, Chiang 
Mai, Thailand 5200, (e-mail: dechasamana@hotmail.com, 
vites@chiangmai.ac.th).  

 
Lemma 1: [3] For , 3,   k l ≥  
 

( , ) ( , 1) 2 3R k l R k l k≥ − + −  . 
 

Lemma 2: [4] For 5,  2,  l k≥ ≥  
 

(2 1, ) 4 ( , 1) 3R k l R k l− ≥ − − . 
 

II. LOWER BOUND OF ( , )R k l  

First, we define cycle-power d
nC  for the proof of Lemma 3 

from which the main results could be derived. 
The cycle-power d

nC is constructed by placing n  vertices 
on a circle and making each vertex adjacent to d  nearest 
vertices in each direction on the circle. See Figure 1 and 2, for 
the examples of 1

5C  and 2
8C . 
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    Figure 1: Cycle-power 1
5C  and 1

5C  

Lower Bounds of Ramsey Numbers ( , )R k l  

Decha Samana and Vites Longani 

        l   
k 

3 4 5 6 7 8 9 

3 6 9 14 18 23 28 36 

4  18 25     
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Figure 2: Cycle-power 2
8C  and 2

8C  
 
 

Lemma 3: For 3,k ≥  
 

(3, ) 3( 1)R k k≥ − . 
 

Proof: Let { }1, 2,3, ,3 4k −K  be the points of the cycle 3 4kC − . 

We say that the line { , }i j  has line distance ijl  if the distance 

of the two points i  and j  of 3 4kC −  is equal to ijl . For 

example, the line {1, 4}  in Figure 3 has line distance 3. From 

the definition of cycle-power 2
3 4
k
kC −

− , the point 1 is adjacent to 
the 2k −  nearest vertices in each direction on the circle. From 
the definitions, the 2( 2)k −  lines of 2

3 4
k
kC −

−  that are adjacent to 
1 have distances 1, 2, 3, …, or 2k − .  

 
Also, there are (3 4) 2( 2) 1 1k k k− − − − = −  consecutive 

points of 2
3 4
k
kC −

−  that are not adjacent to the point 1. We note 
that the lines that join each pair of these consecutive 1k −  
points have line distance 1, 2, 3, …, or 2k − , and so these 
lines are lines of 2

3 4
k
kC −

− . We shall use this note in the second 
part of the proof. For example when 5k = , see Figure 3 for 
the lines of 2

3 4
k
kC −

−  and 2
3 4
k
kC −

−  that are adjacent to 1. 
 

 
 

Figure 3: Cycle-power 2
3 4
k
kC −

−  , 5k =  
 
First, we want to show that there is no kK  in 2

3 4
k
kC −

− , and 

then we shall show that there is no 3K  in 2
3 4
k
kC −

− . Suppose 

there is kK  in 2
3 4
k
kC −

− . Due to the symmetry of 2
3 4
k
kC −

− , it is 
without lost of generality if we say that the point 1 is a point 
of a kK . Therefore, the k  points of this kK  are the point 1 
and some 1k −  points among the 2( 2)k −  points that are 
adjacent to 1. The k  points of kK  are on the circle 3 4kC −  and 
so some two of these points has line distance greater than 

2k − . This is a contradiction, since the line distances of lines 
in 2

3 4
k
kC −

−  are 1, 2, 3,…, or 2k − . Therefore, there is no kK  in 
2

3 4
k
kC −

− . 
 
Next, we show that there is no 3K  in 2

3 4
k
kC −

− . Suppose there 

is 3K  in 2
3 4
k
kC −

− . Again, it is without lost of generality if we say 

that 1 is a point of one of 3K  in 2
3 4
k
kC −

− . Since, in 2
3 4
k
kC −

− , 1 is 
adjacent to the 1k −  consecutive points, so the point 1 with 
some two points from these 1k −  points form a  3K . This is a 
contradiction, since we have noted that the lines formed by 
these 1k −  points are lines of 2

3 4
k
kC −

−  only. So, there is no 3K  

in 2
3 4
k
kC −

− . 

Hence, we have shown that there are no kK  in 2
3 4
k
kC −

− , and 

no 3K  in 2
3 4
k
kC −

− .  
Therefore                  ( ,3) 3 4R k k> −   
or                              (3, ) 3( 1)R k k≥ −  
 
 
Some lower bounds of (3, )R l , using Lemma 3, are shown 

in the following table: 
 
         Table 2: Some lower bounds of (3, )R l using Lemma 3 

 
 
 
 

      l    
k 

3 4 5 6 7 8 9 10 11 

3 6 9 12 15 18 21 24 27 30 
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Using Lemma 1 and Lemma 3, we can derive Theorem 1. 
 
Theorem 1: For 3 k l≤ ≤ , 

 

( , ) 2 3 3 6R k l kl k l≥ − − +  
 

Proof: From Lemma 1 and Lemma 3, and using 
( , ) ( , )R k l R l k= , we have 
 

 ( , ) ( , 1) 2 3R k l R l k l≥ − + −  
        ( , 2) 2 3 2 3R l k l l≥ − + + − + −  
   M  
      ( , ) (2 3),       1, 2,..., 3R l k i i l i k≥ − + − = −  
    M  
      ( ,3) ( 3)(2 3)R l k l= + − −  
      3( 1) ( 3)(2 3),       3l k l k l≥ − + − − ≤ ≤  

    2 3 3 6kl k l= − − + . 
 

Therefore  
( , ) 2 3 3 6R k l kl k l≥ − − +     for   3 k l≤ ≤ . 

 
 
Some lower bounds of ( , )R k l , using Theorem 1, are 

shown in the following table: 
 

Table 3: Some lower bounds of ( , )R k l using Theorem 1 
 
 
 
 

 
 
 

Also, using Lemma 1, Lemma 2, and Lemma 3, we can 
derive Theorem 2 
 
Theorem 2: For 5 k l≤ ≤  

 

( , ) 2 3 2 12R k l kl k l≥ − + −  
 

Proof: From Lemma 1, Lemma 2 and Lemma 3, we have 
 

( , ) ( , 1) 2 3R k l R l k l≥ − + −  
   ( , 2) 2 3 2 3R l k l l≥ − + + − + −  
 M  
   ( , ) (2 3),       1, 2,..., 5R l k i i l i k≥ − + − = −  
 M  
   ( ,5) ( 5)(2 3)R l k l≥ + − −  

         4 (3, 1) 3 ( 5)(2 3),   5R l k l k l≥ − − + − − ≤ ≤  
   2 3 2 12kl k l= − + − . 
 

Therefore   
( , ) 2 3 2 12,R k l kl k l≥ − + −    for  5 k l≤ ≤ . 

 

 
Some lower bounds of ( , )R k l , using Theorem 2, are 

shown 
 in the following table: 
 

Table 4: Some lower bounds of ( , )R k l using Theorem  2 
 

 
 
 
 
 
 
 
 
 
We note that Theorem 2 can generally give better results 

than those from Theorem 1 when 5 k l≤ ≤ . However, 
Theorem 1 could not provide results when 5k < or 5l < . 
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      l 
k 

3 4 5 6 7 8 9 10 11 12 13 14 15 

3 6 9 12 15 18 21 24 27 30 33 36 39 42 

4  14 19 24 29 34 39 44 49 54 59 64 69 

5   26 33 40 47 54 61 68 75 82 89 96 

l 
k 

5 6 7 8 9 10 11 12 13 14 15 

5 33 45 57 69 81 93 105 117 129 141 153 

6  54 68 82 96 110 124 138 152 166 180 

7   79 95 111 127 143 159 175 191 207 

8    108 126 144 162 180 198 216 234 

9     144 164 184 204 224 244 264 

10      178 200 222 244 266 288 
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