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1 Introduction

In the recent theory of operator spaces (or non-
commutative Banach spaces) developed by [2] [3] [5] [6]
[7] [8] [9] [11] [12] [13]; bounded operator is replaced by
completely bounded operator, isomorphism by complete
isomorphism and Banach space by operator space.

Precisely, we view in this new category every Banach
space as a subspace of B(H) for some Hilbert space H
(B(H) is the Banach space of all bounded linear opera-
tors on H) which is non-commutative, instead of viewing
them as a subspace of C (K) (the space of all continuous
functions on a compact K) which is commutative.

The abstract characterization given in [13] signed the be-
ginning of this theory. In [10] Pisier constructed the op-
erator Hilbert space OH (i.e. the unique space verifying
OH? = OH completely isometrically as in the case of Ba-
nach spaces because there are Hilbert spaces in this cate-
gory which are non completely isometrically) and gener-
alized in [11] (also Junge [8] ) the notion of p−summing
operators to the non-commutative case.

Ms. T. Belaib & L. Mezrag, generalized in [4] the notion
of p−summing operators to the p−summing sublinear op-
erators.

In this paper, we generalize this concept (of p−summing
sublinear operators) in the non commutative case. We
characterize this type of operators by given the extension
of the Pietsch domination theorem. In the proof we us-
ing a deferent and necessary proposition concerning this
notion of operators.
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2 Preliminaries

In this section, we recall some basic definitions and prop-
erties concerning the notion of sublinear operators and
the theory of operator spaces (we consider that the reader
is familiarized with this category).

If H is a Hilbert space, we let B(H) denote the space of
all bounded operators on H and for every n in N we let
Mn denote the space of all n × n−matrices of complex
numbers, i.e., Mn = B(ln2 ).

If X is a subspace of some B(H) and n ∈ N, then Mn (X)
denotes the space of all n × n−matrices with X−valued
entries which we in the natural manner consider as a sub-
space of B(ln2 (X)).

Definition 2.1. An operator space X is a norm closed
subspace of some B (H) equipped with the distinguished
matrix norm inherited by the spaces Mn (X), n ∈ N.

An operator space which is a Banach lattice (resp. com-
plete Banach lattice) is called a quantum Banach lattice
(resp. quantum complete Banach lattice).

Let H be a Hilbert space. We denote by Sp (H) (1 ≤ p <
∞) the Banach space of all compact operators u : H −→
H such that Tr(|u|p) < ∞, equipped with the norm

‖u‖Sp(H) = (Tr(|u|p)) 1
p .

If H = l2 (resp. ln2 ), we denote simply Sp (l2) by Sp (resp.
Sp (ln2 ) by Sn

p ).

We denote also by S∞ (H) (resp. S∞) the Banach space
of all compact operators equipped with the induced norm
by B(H) (resp. B(l2)) (Sn

∞ = B(ln2 )). Recall that if
1
p = 1

q + 1
r (1 ≤ p, q, r < ∞), then u ∈ BSp(H) iff there

are u1 ∈ BSq(H), u2 ∈ BSr(H) such that u = u1u2.
Where BSp(H) is the closed unit ball of Sp (H) . We also
denote by S+

p (H) = {a ∈ Sp (H) : a ≥ 0}. Let H1,H2

be Hilbert spaces. Let X ⊂ B(H1) and Y ⊂ B (H2) be
operator spaces. A linear operator u : X −→ Y is called
completely bounded (in short c.b.) if the operators

un : Mn (X) −→ Mn (Y )
(xij)1≤i,j≤n 7−→ (u(xij))1≤i,j≤n

are uniformly bounded when n −→ ∞, i.e.,
sup {‖un‖ , n ≥ 1} < ∞. In this case we put, ‖u‖cb =
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sup {‖un‖ , n ≥ 1} and we denote by cb (X, Y ) the Ba-
nach space of all c.b. maps from X into Y which is also
an operator space (Mn(cb (X, Y )) = cb (X, Mn (Y ))) (see
[5] and [6]). We denote also by X ⊗min Y the subspace
of B (H ⊗2 K) with induced norm.
We continue our preliminaries by mentioning briefly some
properties concerning completely bounded operators.
Consider Y ⊂ A (a commutative C∗−algebra) ⊂ B (H)
and let X be an arbitrary operator space. Then,

B (X,Y ) = cb (X, Y )

and
‖u‖ = ‖u‖cb . (1)

Because Mn ⊗min Y ≡ Mn ⊗ε Y isometrically (Mn ⊗ε Y
is the injective tensor product of Mn by Y in the com-
mutative case ).
Let OH be the Hilbert operator space introduced by
Pisier in [12, Proposition 1.5, p. 18]. We recall that OH
is homogeneous, namely, every bounded linear operator
u : OH −→ OH is automatically c.b. and

‖u‖ = ‖u‖cb . (2)

Before continuing our notation we announce the following
properties. It will be needed in the sequel.

Let X ⊂ B(H) be an operator space. For all n in N and
1 ≤ p ≤ ∞, we have

‖v‖cb = sup
a,b∈B+

S2p(H)

(
n∑
1

‖axib‖p
Sp(H))

1
p

=

∥∥∥∥∥
n∑
1

ej ⊗ xj

∥∥∥∥∥
lnp⊗minX

(3)

if p is finite and

‖v‖cb =

∥∥∥∥∥
n∑
1

ej ⊗ xj

∥∥∥∥∥
ln∞⊗minX

=

∥∥∥∥∥
n∑
1

ej ⊗ xj

∥∥∥∥∥
ln∞⊗εX

= ‖v‖ (4)

if p = ∞. Where v : lnp∗ −→ X such that v (ei) = xi (p∗

is the conjugate of p i.e., 1
p + 1

p∗ = 1).
Let now X be an operator space. As usual we denote
by lp (X) (resp. lnp (X)) for 1 ≤ p < ∞ the space of se-
quences (x1, ..., xn, ...) (resp. finite sequences (x1, ..., xn))

in X equipped with the norm (
∞∑

n=1
‖xn‖p)

1
p < ∞ (resp.

(
n∑

i=1

‖xi‖p)
1
p ) which becomes an operator space. For more

informations on this the reader can consult [12].
For the convenience of the reader, we recall the definition
of sublinear operators and some propreties. For more
details see [1] ,[10].

Definition 2.2. An operator T from a Banach space X
into a Banach lattice Y is said to be sublinear if for all
x, y in X and λ in R+, we have

(i) T (λx) = λT (x) (i.e., positively homogeneous),
(ii) T (x + y) ≤ T (x) + T (y) (i.e., subadditive).

Note that the sum of two sublinear operators is a sublin-
ear operator and the multiplication of sublinear operator
by a positive number is also a sublinear operator.
Let us denote by

SL(X, Y ) = {sublinear operators T : X −→ Y }
and

L(X, Y ) = {linear operators U : X −→ Y } .

We equip the set SL(X, Y ) with the natural order in-
duced by Y

T1 ≤ T2 ⇐⇒ T1(x) ≤ T2(x), ∀x ∈ X (5)

and

∇T = {u ∈ L(X,Y ) : u ≤ T (i.e. ∀x ∈ X, u(x) ≤ T (x))} .

The set ∇T is not empty by Proposition 2.4 below. As a
consequence

u ≤ T ⇐⇒ −T (−x) ≤ u(x) ≤ T (x), ∀x ∈ X (6)

and
λT (x) ≤ T (λx). (7)

Now, we will give the following well-known fact and we
leave the details to the reader.
Let T be a sublinear operator from a Banach space X
into a (quasi-) Banach lattice Y .

T is continuous ⇔ ∃C > 0 : ∀x ∈ X, ‖T (x)‖ ≤ C ‖x‖ .

In this case we also say that T is bounded and we put

‖T‖ = sup{‖T (x)‖ : ‖x‖BX
= 1}.

We denote by

SB(X,Y ) = {bounded sublinear operators T : X −→ Y }
and by

B(X, Y ) = {bounded linear operators u : X −→ Y }.
We will need the following remark.

Remark 2.3. Let X be an arbitrary Banach space. Let
Y, Z be (quasi-) Banach lattices.

(i) Consider T in SL(X, Y ) and u in L(Y, Z). Assume
that u is positive. Then, u ◦ T ∈ SL(X, Z).

(ii) Consider u in L(X,Y ) and T in SL(Y, Z). Then,
T ◦ u ∈ SL(X, Z).
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The following proposition, will be useful in the sequel for
the proof of Corollary 2.5.

Proposition 2.4. Let X be a Banach space and let Y
be a complete (quasi-) Banach lattice.

Let T ∈ SL(X, Y ). Then, for all x in X there is ux ∈ ∇T
such that, T (x) = ux(x), (i.e. the supremum is attained,
T (x) = sup{u(x) : u ∈ ∇T}).
As an immediate consequence of Proposition 2.4 we have.

Corollary 2.5. Under the same conditions of the above
proposition, we have

(i) ∀x ∈ X, ‖T (x)‖ ≤ sup
u∈∇T

‖u(x)‖ ≤ ‖T (x)‖+ ‖T (−x)‖ .

(ii) ‖T‖ ≤ sup
u∈∇T

‖u‖ ≤ 2 ‖T‖ .

Proposition 2.6. Let X and Z be Banach spaces and let
Y be a Banach lattice. Let T ∈ SB(X, Y ), v ∈ B(X, Z)
and a positive constant C with v injective and

‖T (x)‖ ≤ C ‖v(x)‖

for all x ∈ X, Then, there is a bounded sublinear operator
T̃ ∈ SB(v(X), Y ) such that T = T̃ ov and

∥∥∥T̃
∥∥∥ ≤ C.

Proof. Take T̃ (z) = T (v−1(z)) extenced to v(X).

3 Main result

We introduce the concept of lp−summing sublinear oper-
ators in the non commutative case and characterize this
class of operators by giving the extension of the “Pietsch
domination theorem”. Some properties are shown.

We define the class of lp−summing sublinear operators
as follows.

Definition 3.1. Let H be a Hilbert space and let
X ⊂ B (H) be an operator space. Let T : X −→ Y
be a sublinear operator from X into a quantum Banach
lattice Y.

We will say that T is lp−summing (1 ≤ p < ∞) if there
is a positive constant C such that for all finite sequences
{xi}1≤i≤n in X, we have

(
n∑

i=1

‖T (xi)‖p)
1
p ≤ C sup

a,b∈B+
S2p

(
n∑

i=1

‖axib‖p
Sp(H))

1
p .

We denote by πlp (T ) the smallest constant C for which
this holds and πlp (X, Y ) the set of all sublinear lp-
summing operators.

We can show that

sup
a,b∈B+

S2p(H)

(
∞∑

n=1

‖axib‖p
Sp(H))

1
p = ‖{xi}‖lnp⊗minX

=

∥∥∥∥∥
n∑

i=1

ei ⊗ xi

∥∥∥∥∥
cb(lnq ,X)

= ‖u‖cb (8)

where q is the conjugate of p and {ei}1≤i≤n the canonical
basis of lnq . By (8) the definition 3.1 is equivalent to: For
all n in N, {xi}1≤i≤n in X and u in cb(lnq , X) such that
u(ei) = xi, we have

(
n∑

i=1

‖Tu (ei)‖p)
1
p ≤ C ‖u‖cb . (9)

As a consequence of (8) and (9) we have the following
proposition.

Proposition 3.2. Let E,X be Banach spaces and Y, F
be quantum Banach lattices. Let T ∈ SB(X, Y ), R ∈
B (Y, F ) and S ∈ B+ (E,X) (i.e., S (x) ≥ 0, ∀x ≥ 0).
(i) If T is lp−summing, then R ◦ T is lp−summing and
πlp(RT ) ≤ ‖R‖πlp(T ).
(ii) If T is lp−summing, then T ◦ S is lp−summing and
πlp(T ◦ S) ≤ πlp(T ) ‖S‖.
Proposition 3.3. Let E,X be operator spaces and let
Y, F be quantum Banach lattices. Let E

v−→ X
T−→

Y
w−→ F such that v is completely bounded linear op-

erator, T ∈ SB(X, Y ) is lp-summing and w is a positive
bounded linear operator. Then,

πlp (wTv) ≤ ‖w‖πlp (T ) ‖v‖cb .

Proof. Let the linear operator u : lnq −→ E. The operator
wTvu is a sublinear by the Remark 2.3.
We have

(
n∑

i=1

‖wTvu(ei)‖p

) 1
p

≤ ‖w‖
n∑

i=1

(‖Tvu(ei)‖p)
1
p

and
n∑

i=1

(‖Tvu(ei)‖p)
1
p ≤ πlp (T )

n∑
i=1

(‖vu(ei)‖p)
1
p

by (9) = πlp (T ) ‖vu‖cb

= πlp (T ) ‖v‖cb ‖u‖cb .

We deduce that
(

n∑
i=1

‖wTvu(ei)‖p

) 1
p

≤ ‖w‖πlp (T ) ‖v‖cb ‖u‖cb .

As a consequence

wTv ∈ πlp (X, Y )
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and
πlp(wTv) ≤ ‖w‖πlp (T ) ‖v‖cb .

This completes the proof.

Proposition 3.4. Let H be a Hilbert space and let
X ⊂ B (H) be an operator space. Let T : X −→ Y
be a sublinear operator from X into a quantum Banach
lattice Y.

If T is p−summing (1 ≤ p < ∞) then, T is lp−summing
or πp (X,Y ) ⊂ πlp (X, Y ) and

πlp (T ) ≤ πp (T ) . (10)

Proof. Let T ∈ πp (X,Y ) and πp (T ) ≤ C.

For all n in N and all v : lnp∗ −→ X, such that v (ei) = xi

we have (
n∑
1

‖Tv (ei)‖p

) 1
p

≤ C ‖v‖ .

We have by (3) that ‖v‖ ≤ ‖v‖cb. Hence that for all
n ∈ N and {x1, ..., xn} in X we have v is in cb(lnq , X) by
(9)

(
n∑

i=1

‖Tv (ei)‖p)
1
p ≤ C ‖v‖cb .

Hence T ∈ πlp (X, Y ) and

πlp (T ) ≤ πp (T ) .

This completes the proof.

Remark 3.5. Let X ⊂ A (a commutative C∗ algebras)
⊂ B(H) be an operator space and let Y be an operator
space. Then, by (1) and (9) we have

πlp (X,Y ) = πp (X,Y ) .

The main result of this paper is the following extension of
the Pietsch domination theorem for sublinear operators.

Theorem 3.6. Let X ⊂ B(H) be an operator space and
let Y be a Banach space. Let T : X −→ Y be a sublinear
operator.

Let 1 ≤ p < ∞. The following properties of a positive
constant C are equivalent.

(i) The operator T is lp−summing and πlp (T ) ≤ C.

(ii) There is a set I and families aα, bα in B+
S2p

and an
ultrafilter U on I such that

∀x ∈ X, ‖T (x)‖ ≤ C lim
U
‖aαxbα‖Sp(H) . (11)

(iii) T factors of the form T = T̃ (M/E∞)i and
∥∥∥T̃

∥∥∥ ≤ C

X
T−→ Y

i ↓ ↑ T̃

E∞
M/E∞−→ Ep

∩ ∩
B̂(H) M−→ Ŝp (H)

where
i(x) = {xα}α∈I with xα = x, ∀α ∈ I, E∞ = i(X) which
is a closed subspace of B̂(H) and ‖i‖cb = 1.

B̂(H) = (Bα(H))/U with Bα(H) = B(H), ∀α ∈ I.
M is the operator associated to {Mα}α∈I where Mα :
B(H) −→ Sp (H) defined by Mα (x) = aαxbα and
πlp (M) ≤ 1.
Ŝp(H) = (Sα(H))/U with Sα(H) = Sp(H), ∀α ∈ I and
Ep = M (E∞) which is a closed subspace of Ŝp(H).
B̂(H) and Ŝp(H) are operator spaces.
Proof. (i)⇒(ii).Let

S =
{
(a, b) ∈ BS2p(H) ×BS2p(H); a, b ≥ 0

}

and

F =
{
of all real functions on Sof the form

f{xi}1≤i≤n

(a, b) = Cp
n∑

i=1

‖axib‖p

−
n∑

i=1

‖T (xi)‖p
.
}

F is a convex cone. Indeed, let λ ≥ 0




λf{xi}1≤i≤n
= f{

λ
1
p xi

}

1≤i≤n

f{xi}1≤i≤n
+ f{yj}1≤j≤m

= f{zk}1≤k≤n+m
.

Where {zk}1≤k≤n+m = {x1, ..., xn, y1, ..., ym}. By hy-
pothesis we have

sup
(a,b)∈S

f{xi}1≤i≤n

(a, b) = Cp sup
(a,b)∈S

n∑
i=1

‖axib‖p

−
n∑

i=1

‖T (xi)‖p ≥ 0

and this for all f in the convex cone F which is in l∞(S),
hence there are a set I, an ultrafilter U on I and a family
{λα}α∈I of finitely supported probability on S such that

λα −→ λ
σ(l?∞(S), l∞(S))

{
λ probability on Ŝ / λ (f) ≥ 0

}

where Ŝ is the Stone Cech compactification of S and

∀f ∈ F,

∫

Ŝ

f (a, b) dλ (a, b) = lim
U

∫

Ŝ

f (a, b) dλα (a, b) ≥ 0.

Particularly if

f (a, b) = Cp ‖axb‖p − ‖T (x)‖p
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we have

lim
U

∫

Ŝ

f (a, b) dλα (a, b) =

Cplim
U

∫

Ŝ

(‖axb‖p
Sp(H) − ‖T (x)‖p)dλα (s) ≥ 0

(λα =
nα∑

j=1

λαj δ
(
aαj , bαj

)
with

nα∑

j=1

λαj = 1 and λαj ≥ 0).

Whence by Lemma 1.4 [12]

‖T (x)‖p ≤
Cp lim
U

nα∑
j=1

λαj

∥∥aαj xbαj

∥∥p

Sp(H)
(aαj , bαj ≥ 0) ≤

Cp lim
U

∥∥∥∥∥(
nα∑
j=1

λαj a
2p
αj

)
1
2p .x.(

nα∑
j=1

λαj b
2p
αj

)
1
2p

∥∥∥∥∥

p

Sp(H)

≤

Cp lim
U

‖aαxbα‖p
Sp(H) .

(ii)⇒(iii).

X
T−→ Y

i ↓ ↑ T̃

E∞
M/E∞−→ Ep

∩ ∩
B̂(H) M−→ Ŝp (H)

‖T (x)‖ ≤ C lim
U

‖aαxbα‖Sp(H) = C ‖M/E∞ ◦ i (x)‖Ep
,

by Proposition 2.6 hence there is T̃ : Ep → Y such that∥∥∥T̃
∥∥∥ ≤ C, T (x) = ũ ◦ (M/E∞) ◦ i (x) and πlp (M/E∞) ≤

1.
(iii)⇒(i).

Is obvious and this completes the proof.

Lemma 3.7. Let X ⊂ B(H) be an operator space. Let
a, b ∈ B+

S2p
and 1 ≤ p ≤ q < ∞. Then,

∀x ∈ X, ‖axb‖Sp(H) ≤
∥∥∥a

p
q xb

p
q

∥∥∥
Sq(H)

.

Proof. Let x in X and consider a, b in B+
S2p

.

We have

‖axb‖Sp(H) =
∥∥∥a1− p

q a
p
q xb

p
q b1− p

q

∥∥∥
Sp(H)

≤
∥∥∥a1− p

q

∥∥∥
S 2pq

q−p

∥∥∥a
p
q xb

p
q b1− p

q

∥∥∥
S 2pq

q−p

≤
∥∥∥a1− p

q

∥∥∥
S 2pq

q−p

∥∥∥a
p
q xb

p
q

∥∥∥
Sq(H)

∥∥∥b1− p
q

∥∥∥
1− p

q

S 2pq
q−p

≤
∥∥∥a

p
q xb

p
q

∥∥∥
Sq(H)

(because
∥∥∥a1− p

q

∥∥∥
S 2pq

q−p

= ‖a‖
q−p

q

S2p
≤ 1)

X
M(a,b)−→ Sp(H)

M(a
p
q , b

p
q ) ↘ ↗ M(a1− p

q , b1− p
q )

Sq(H)

This give the commutative diagram.

Proposition 3.8. Consider 1 ≤ p1, p2 < ∞ such that
p1 ≤ p2.

If T ∈ πlp2
(X,Y ) then T ∈ πlp1

(X, Y ) and πlp1
(T ) ≤

πlp2
(T ).

Proof. It is immediate by the inequality (11) and lemma
3.7.

As an immediate consequence of Proposition 2.4, Corol-
lary 2.5 and Theorem 3.6 we have the following corollary.

Corollary 3.9. Let T ∈ πlp(X,Y ) then for any u in
∇T we have u ∈ πlp(X,Y ).

Question: We do not know if the converse of the Corol-
lary 3.9 is true?
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linéaires p−sommants. Sci. Tech. 15 (2001), 7-11.

[5] D. Blecher and V. Paulsen. Tensor products of oper-
ator spaces. J. Funct. Anal. 99 (1991) 262-292.

[6] E. Effros and Z. J. Ruan. A new approch to operator
spaces. Canadian Math. Bull. 34 (1991) 329-337.

[7] E. Effros and Z. J. Ruan. On the abstract character-
ization of operator spaces. Proc. Amer. Math. Soc.
119 (1993) 579-584.

[8] M. Junge. Factorization theory for spaces of op-
erators. Habilatationsschrift, Kiel University (Ger-
many) (1996).

[9] C. Le Merdy. On the duality of operator spaces.
Canad. Math. Bull. Vol. 38 (3), 1995 pp. 334-346.

[10] L. Mezrag and A. Tiaiba, On the sublinear operators
factoring through Lp. Int. J. Math. Math. Sci. 50
(2004), 2695-2704.

IAENG International Journal of Applied Mathematics, 39:4, IJAM_39_4_03
______________________________________________________________________________________

(Advance online publication: 12 November 2009)



[11] G. Pisier. The operator Hilbert space OH, com-
plex interpolation and tensor norms. Memoirs Amer.
Math. Soc. Vol. 122, 585 (1996) 1-103.

[12] G. Pisier. Non-commutative vector valued Lp-spaces
and completely p-summing maps. Astérisque (Soc.
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