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Abstract— The present paper produces the sub-
sonic solution of linearized gasdynamic equation by
means of decomposition method which is divided into
four parts, such as, (i) regular or ordinary decomposi-
tion, (ii) double decompoisition, (iii) modified decom-
position and (iv) asymptotic decomposition. Out of
these four methods, regular and modified decomposi-
tion methods have been developed for inhomogeneous
partial differential equations and a few examples of
inviscid gasdynamics have been considered for clear
illustration of the theories. The regular decomposi-
tion method is used for linearized steady axisymmet-
ric subsonic flow past a corrugated circular cylinder
whereas the modified decomposition method is used
for linearized steady plane subsonic flow past a wave
shaped wall.
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1 Introduction

Decomposition method is a most powerful method in the
modern age for solving any type of differential equations.
This method developed by George Adomian [1, 2]. Kaya
[5-8] and Mamaloukas et. [9] provides approximate solu-
tions to linear and nonlinear ordinary and partial differ-
ential equations. The solutions obtained by this method
demands to be parallel to any modern super computer. It
is also used in the development of numerical techniques
for the solutions of nonlinear partial differential equa-
tions. The advantage of this method is to avoid restric-
tions which are used for simplifying the equations. The
details of the method are given in the references [1, 2].
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Decomposition method is divided into four parts, such
as, (i) Regular or ordinary decomposition method, (ii)
Double decomposition method, (iii) Modified decomposi-
tion method and (iv) Asymptotic decomposition method.
Here we develop the regular and modified decomposition
methods with the help of a few examples of inviscid gas-
dynamics. Regular decomposition method is developed
by considering the linearized steady axisymmetric sub-
sonic flow past a corrugated circular cylinder and the
modified decompoisition method is explained with the
help of linearized steady plane subsonic flow past a wave
shaped wall.

2 Regular Decomposition Method

Decomposition method prepares a single method which is
used for multidimensional linear and nonlinear problems.
This method has also been applied to different frontier
problems in the other disciplines. The method is used
in the development of numerical techniques in order to
get the solution of nonlinear partial differential equation.
For detail analysis of the theory we consider the inhomo-
geneous linear partial differential equation related to the
fluid flow problems.

y-Partial Solution : For the application of regular decom-
position method [2] we begin with the equation

∂2u

∂x2
+

∂2u

∂y2
+

1
y

∂u

∂y
= g(x, y) (1)

Let Lx =
∂2

∂x2
and Ly =

∂2

∂y2
+

1
y

∂

∂y
=

1
y

∂

∂y
(y

∂

∂y
). Then

the equation (1) becomes

Lxu + Lyu = g (2)

Solving for Lyu we write (2) as

Lyu = g − Lxu (3)
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Let L−1
y be the inverse operator of Ly and it is defined by

L−1
y = L−1

1

[
1
y
(L−1

1 y)
]

where L−1
1 =

∫
(·)dy. Operating

with this inverse operator on both sides of (3) we have
the y-partial solution as [2]

u = Φy − L−1
y (Lxu) (4)

where
Φy = ξ0(x) + ξ1(x) log y + L−1

y g (5)

Here ξ0(x) and ξ1(x) are the integration constants to be
determined from the boundary conditions.

We now decompose u into the following form

u =
∞∑

n=0

αnun (6)

Here α is not a perturbation parameter; it is used only
for grouping the terms. Then we write the parameterized
form of (4) as [1]

u = Φy − αL−1
y (Lxu) (7)

Putting (6) into (7) and equating the co-efficients of like-
power terms of λ from both sides of the resulting expres-
sion, we obtain

u0 = Φy

u1 = −L−1
y (Lxu0)

u2 = −L−1
y (Lxu1)

. . . . . . . . .

. . . . . . . . .
un+1 = −L−1

y (Lxun)

(8)

Thus we see that the components of u are determined and
the final solution (6) is, therefore, computable remember-
ing that α = 1.

x-Partial Solution : For x-partial solution [2] we write
the equation (2) in the form

Lxu = g − Lyu (9)

Operating with L−1
x defined by L−1

x =
∫ ∫

(·)dx dx we get

u = φx − L−1
x (Lyu) (10)

where
Φx = η0(y) + η1(y)x + L−1

x g (11)

can be determined from the boundary conditions.

We now decompose u into

u =
∞∑

n=0

αnun (12)

and the parameterized form [2] of [10] is

u = Φx − αL−1
x (Lyu) (13)

Putting (12) into (13) and then comparing the like power
terms from both sides of the resulting expression, we have

u0 = Φx

u1 = −L−1
x (Lyu0)

u2 = −L−1
x (Lyu1)

. . . . . . . . .

. . . . . . . . .
un+1 = −L−1

x (Lyun)

(14)

Thus the components of u are determined and the fi-
nal solution (12) is computable. The method is clearly
explained with the help of a few examples related to gas-
dynamics.

2.1 Example 1. Steady Axisymmetric Sub-
sonic Flow Past a Corrugated Circular
Cylinder

The geometry of the corrugated circular cylinder is de-
scribed by

h(x) = y1 + τ sinλx (15)

where y1 is the radius of the cylinder, τ is the roughness
parameter and 2π/λ is the wave length.

The axisymmetric subsonic flow past the cylinder (15) is
modelled by the partial differential equation

β2φxx + φyy +
1
y
φy = 0 (16)

subject to certain boundary conditions, where β2 = 1 −
M2
∞ and φ(x, y) is the perturbation velocity potential

In order to solve the equation (16) we write it in the form

1
y

∂

∂y
(yφy) = k2φxx (17)

where k2 = (iβ)2.
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Let L =
1
y

∂

∂y

(
y

∂

∂y

)
. Then the inverse of this operator

is L−1 = L−1
1

[
1
y
(L−1

1 y)
]

where L−1
1 =

∫
(·)dy. Now

operating on both sides of (17) with the inverse operator
L−1 we have

φ(x, y) = φ0(x, y) + k2L−1φxx (18)

where
φ0(x, y) = a0(x) + a1(x) log y. (19)

Here a0(x) and a1(x) are integration constants to be de-
termined by the boundary conditions.

Then we decompose φ(x,y) into

φ(x, y) =
∞∑

n=0

αnφn(x, y) (20)

and the parameterized form [2] of (18) is

φ(x, y) = φ0(x, y) + αk2L−1φxx (21)

Here α is not a perturbation parameter. It is used only
for grouping the terms of different orders.

Substituting (20) in (21) and then equating like-power
terms of α from both sides of the resulting expression we
obtain

φn+1(x, y) = k2L−1φn,xx (22)

where n = 0, 1, 2, etc. Putting n = 0, 1, 2, . . . in (22)
successively we have the following set of expressions for
the components of velocity potentials:-

φ1(x, y) = k2L−1

(
∂2φ0

∂x2

)

φ2(x, y) = k2L−1

(
∂2φ1

∂x2

)
. . . . . . . . .

. . . . . . . . .

φn+1(x, y) = k2L−1

(
∂2φn

∂x2

)
(23)

Using (19) in each of the expressions given in (23), we get

φ1(x, y) = a
(2)
0 (x)

(ky)2

22
+ a

(2)
1 (x)

[
log y

(ky)2

22
− (ky)2

22
(1)

]

φ2(x, y) = a
(4)
0 (x)

(ky)4

22.42
+ a

(4)
1 (x)

[
log y

(ky)4

22.42
− (ky)4

22.42
(1 +

1
2
)
]

. . . . . . . . . . . .

. . . . . . . . . . . .

φn(x, y) = a
(2n)
0 (x)

˙(ky)2n

22.42. . . . (2n)2

+a
(2n)
1 (x)

[
log y

(ky)2n

22.42 . . . (2n)2
− (ky)2n

22.42 . . . (2n)2

(
1 +

1
2

. . . +
1
n

)]
(24)

where a
(2n)
0 (x) and a

(2n)
1 (x) denote the derivatives of

a0(x) and a1(x) with respect to x indicating their dif-
ferent orders for n = 1, 2, 3, etc.

We now add the components φ0(x, y), φ1(x, y), etc. given
in (19) and (24), and then we use the expanded form of
(20) remembering that α = 1. Finally, we get

φ(x, y) =
[
a0(x) + a

(2)
0 (x)

(ky)2

22
+ a

(4)
0 (x)

(ky)4

22.42
+ . . .

]

+ log y

[
a1(x) + a

(2)
1 (x)

(ky)2

22
+ a

(4)
1 (x)

(ky)4

22.42
+ . . .

]

−
[
a2
1(x)

(ky)2

22
(1) + a

(4)
1 (x)

(ky)4

22.42
(1 +

1
2
) + . . .

]
(25)

The solution (25) contains two unknown functions a0(x)
and a1(x) which are to be determined now. For this pur-
pose we set the two functions in the following forms look-
ing at the boundary conditions :

a0(x) = k1 cos λx
a1(x) = k2 cos λx

(26)

Then we substitute (26) in (25) and write the expression
for φ(x, y) as
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φ(x, y) = k1

[
1− (λky)2

22
+

(λky)4

22.42
− . . .

]
cos λx

+k2

[
log y

{
1− (λky)2

22
− (λky)4

22.42
+ . . .

}
+

{
(λky)2

22
(1)− (λky)4

22.42
(1 +

1
2
) + . . .

}]
cos λx

= k1J0(iλβy) cos λx + k2 [log y.J0(iλβy)

+
{

(iλβy)2

22
(1)− (iλβy)4

22.42
(1 +

1
2
) + . . .

}]
cos λx

= k1J0(iλβy) cos λx + k2 [log y.J0(iλβy)

−
∞∑

r=1

(−1)r 1
r2

.

(
iλβy

2

)2r

(1 +
1
2

+ . . . +
1
r
)

]
cos λx

= [k1J0(iλβy) + k2Y0(iλβy)] cos λx

= [k1I0(λβy) + k2K0(λβy)] cos λx
(27)

where I0 and K0 are modified Bessel functions of order
zero and k1, k2 are arbitrary constants to be determined
according to the boundary conditions of the problems.
This solution is used in the following three different cases
:

Case I : Cylinder in an Unlimited Air Stream [10]

Consider flow past an infinitely long corrugated circular
cylinder in an unlimited air stream. The boundary con-
ditions in this case imposed on the perturbation velocity
potential φ(x, y)are

φ(x, y) = finite at y = ∞ (28)

and

φy(x, y) = U∞
dh

dx
= U∞τλ cos λx at y = y1 (29)

The boundary condition (28) shows that the velocity po-
tential φ(x, y) is finite at infinity. This means that the
asymptotic behavior of the function I0 requires that k1

should be zero and the relation (27) reduces to

φ(x, y) = k2K0(λβy) cos λx (30)

Then we satisfy the condition (29) by (30) to get k2 =

− τU∞
βK1(λβy1)

and the required expression for φ(x, y) is

given by

φ(x, y) = − τU∞√
l −M2

∞

K0(λβy)
K1(λβy1)

cos λx (31)

which is a closed form solution of the problem

Case II : Cylinder in an Open Throat Wind Tun-
nel[3]

If we consider flow past a corrugated circular cylinder in
symmetrical subsonic flow in an open throat wind tunnel,
then the boundary conditions on φ(x, y) are

φx(x, y) = 0 at y = H (32)

and

φy(x, y) = U∞
dh

dx
= U∞τλ cos λx at y = y1 (33)

where H is the distance of the wind tunnel wall from the
axis of the cylinder. Satisfying the boundary conditions
(32) and (33) by (27) we get

k1I0(λβH) + k2K0(λβH) = 0 (34)

and
k1I1(λβy1)− k2K1(λβy1) =

τU∞
β

(35)

which, on solving, give

k1 =
τU∞

β

K0(λβH)
I0(λβH)K1(λβy1) + I1(λβy1)K0(λβH)

k2 = −τU∞
β

I0(λβH)
I0(λβH)K1(λβy1) + I1(λβy1)K0(λβH)


(36)

And hence the expression for φ(x, y) is given by

φ(x, y) =
τU∞

β

K0(λβH)I0(λβy)− I0(λβH)K0(λβy)
K1(λβy1)I0(λβH) + I1(λβy1)K0(λβH)

cos λx

(37)
which is the exact solution of the problem.
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Case III : Cylinder in a Closed throat Wind Tun-
nel [4]

If we again consider flow past a corrugated circular cylin-
der in a closed throat wind tunnel, then the boundary
conditions in this case are

φy(x, y) = 0 at y = H (38)

and

φy(x, y) = U∞
dh

dx
= U∞τλ cos λx at y = y1 (39)

where H has its usual meaning. Satisfying the boundary
conditions (38) and (39) by (27) we have

k1I1(λβH)− k2K1(λβH) = 0 (40)

and
k1I1(λβy1)− k2K1(λβy1) =

τU∞
β

(41)

Then we solve (40) and (41) for k1 and k2 and get

k1 =
τU∞

β

K1(λβH)
I1(λβy1)K1(λβH)− I1(λβH)K1(λβy1)

k2 =
τU∞

β

I1(λβH)
I1(λβy1)K1(λβH)− I1(λβH)K1(λβy1)


(42)

Using (42) in (27) we write the expression for φ(x, y) as

φ =
τU∞

β

K1(λβH)I0(λβy) + I1(λβH)K0(λβy)
I1(λβy1)K1(λβH)− I1(λβH)K1(λβy1)

cos λx

(43)
which is the closed form solution of the problem.

3 Modified Decomposition Method

The method which produces a slight variation in the so-
lution of regular decomposition method [1] is called mod-
ified decomposition method [2]. This method can be ap-
plied to the gasdynamic equations of physical porblems.
We shall now discuss this method in details for the equa-
tion which is relevant to the real problems of gasdynam-
ics.

y-Partial Solution [2] : For the application of modified
decomposition method we consider the following inhomo-
geneous partial differential equation :

∂2u

∂x2
+

∂2u

∂y2
= g(x, y) (44)

Let Lx =
∂2

∂x2
and Ly =

∂2

∂y2
be two linear operators.

Then the equation (44) becomes

Lxu + Lyu = g(x, y) (45)

which, on solving for Lyu, gives

Lyu = g(x, y)− Lxu (46)

Let L−1
y be the inverse operator of Ly and it is defined by

L−1
y =

∫ ∫
(·)dy dy. Operating with L−1

y on both sides of
(46) we get the y-partial solution as [2]

u(x, y) = u0(x, y) + L−1
y [g(x, y)− Lxu] (47)

which is called regular decomposition solution.

Here
u0(x, y) = ξ0(x) + ξ1(x)y, (48)

ξ0(x) and ξ1(x) being the integration constants to be eval-
uated by the boundary conditions.

We now follow the modified decomposition procedure [2]
and write for this purpose

u(x, y) =
∞∑

m=0

am(x)ym (49)

g(x, y) =
∞∑

m=0

gm(x)ym (50)

Putting (49) and (50) into (47), we obtain

∞∑
m=0

am(x)ym = ξ0(x) + ξ1(x)y

+
∫ ∫ [ ∞∑

m=0

gm(x)ym − ∂2

∂x2

∞∑
m=0

am(x)ym

]
dxdy

= ξ0(x) + ξ1(x)y

+

[ ∞∑
m=0

gm(x)ym+2

(m + 1)(m + 2)
−

∞∑
m=0

∂2

∂x2
am(x)

ym+2

(m + 1)(m + 2)

]
Replacing m by (m − 2) on the right hand side of the
above relation, we get

∞∑
m=0

am(x)ym = ξ0(x) + ξ1(x)y

+
∞∑

m=2

[
gm−2(x)− ∂2

∂x2
am−2(x)

]
ym

m(m− 1)

(51)
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The co-efficients are identified by

ξ0(x) = a0(x)
ξ1(x) = a1(x) (52)

and for m ≥ 2 the recurrence relation is

am(x) =
gm−2(x)− ∂2

∂x2 am−2(x)
m(m− 1)

(53)

The relation (49) together with the relation (53) gives the
complete solution of the problem.

x-Partial Solution [2] : For x-partial solution we write
the equation (45) in the form

Lxu = g(x, y)− Lyu (54)

If L−1
x be the inverse operator of Lx defined by L−1

x =∫ ∫
(·)dxdx and if we operate both sides of (54) with L−1

x ,
then we have the x-partial solution as

u(x, y) = η0(y) + η1(y)x + L−1
x [g(x, y)− Lyu] (55)

where η0(y) and η1(y) are to be evaluated from the pre-
scribed boundary conditions.

We now follow the modified decomposition procedure [2]
and assume that

u(x, y) =
∞∑

m=0

am(y)xm (56)

and

g(x, y) =
∞∑

m=0

gm(y)xm (57)

Putting (56) and (57) into (55) and then integrating we
get after somewhat straight forward calculations

∞∑
m=0

am(y)xm = η0(y) + η1(y)x

+
∞∑

m=2

gm−2(y)− ∂2

∂y2 am−2(y)

m(m− 1)
(58)

Then we equate the co-efficients of like-power terms from
both sides of (58) and get

η0(y) = a0(y)
η1(y) = a1(y)

}
(59)

and the recurrence relation for m ≥ 2

am(y) =
gm−2(y)− ∂2

∂y2 am−2(y)

m(m− 1)
(60)

Thus the relation (56) together with the relation (60)
constitutes the solution of the problem.

We now consider a few examples of fluid flow problems
from gasdynamics in order to make the procedure clear
as far as possible.

3.1 Example 2. Steady Plane Subsonic Flow
Past a Wave Shaped Wall

The wavy wall is described by

h(x) = τ sinλx (61)

where τ is the roughness parameter and 2π/λ is the wave
length.

The steady plane subsonic flow past a wavy wall is for-
mulated by the partial differential equation

β2φxx + φyy = 0, (62)

where β2 = 1−M2
∞ together with certain boundary con-

ditions.

Let Lx =
∂2

∂x2
and Ly =

∂2

∂y2
be two linear differential

operators. Then the equation (62) takes the form

βLxφ + Lyφ = 0 (63)

which, on solving for Lyφ, gives

Lyφ = −β2Lxφ (64)

If L−1
y is the inverse operator of Ly and if it is defined by

L−1
y =

∫ ∫
(·)dy dy, then operating on both sides of (64)

with the operator L−1
y we have

φ(x, y) = a0(x) + a1(x)y − L−1
y (β2Lxφ), (65)

a0(x) and a1(x) being the integration constants to be
determined from the boundary conditions.
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We now proceed for modified decomposition procedure
and write φ(x, y) in the following form :

φ(x, y) =
∞∑

m=0

am(x)ym (66)

Substituting (66) in (65) we get

∞∑
m=0

am(x)ym = a0(x) + a1(x)y

−
∫ ∫ [

β2 ∂2

∂x2

∞∑
m=0

am(x)ym

]
dxdy

= a0(x) + a1(x)y

−
∞∑

m=0

∂2

∂x2
am(x)

β2

(m + 1)(m + 2)
ym+2

= a0(x) + a1(x)y

−
∞∑

m=2

∂2

∂x2
am−2(x)

β2

m(m− 1)
ym

(67)

which gives the recurrence relation for m ≥ 2 as

am(x) = − ∂2

∂x2
am−2(x)

β2

m(m− 1)
(68)

The relation (68) gives the other co-efficient for different
values of m. Putting m = 2, 3, 4, etc. in (68), we get

a2(x) = −a
(2)
0 (x)

β2

2!

a3(x) = −a
(2)
1 (x)

β2

3!

a4(x) = a
(4)
0 (x)

β4

4!

a5(x) = a
(4)
1 (x)

β4

5!
, etc.



(69)

where the numbers in the first bracket at the heads of
a0(x) and a1(x) indicate the orders of differentiation of
the functions with respect to x. By virtue of (69), the

solution (66) becomes

φ(x, y) =
[
a0(x)− a

(2)
0 (x)

(βy)2

2!
+ a

(4)
0 (x)

(βy)4

4!
. . .

]

+
1
β

[
a1(x)

(βy)
1!

− a
(2)
1 (x)

(βy)3

3!
+ a

(4)
1 (x)

(βy)5

5!
+ . . .

]
(70)

We now proceed to find out the unknown functions a0(x)
and a1(x) in order to complete the solution of the prob-
lem. For this purpose we set the functions a0(x) and
a1(x) in the following forms :

a0(x) = γ cos λx
a1(x) = δ cos λx

}
(71)

Using (71) in (70), we obtain

φ(x, y) =
1
2

[
(γ +

δ

λβ
) eλβy + (γ − δ

λβ
) e−λβy

]
cos λx

(72)
The relation (72) is the general solution of (62) involv-
ing the integration constants γ and δ. The determination
of these constants will depend upon the boundary condi-
tions and give the complete solution of the problem. We
shall use this solution in the following three cases :

Case I : Wavy Wall in an Unlimited Air Stream

Consider steady subsonic flow over an infinitely long wavy
wall given by (61) in an unlimited fluid. The correspond-
ing boundary conditions for this flow field are

φ(x, y) = finite at y = ∞ (73)

and

φy(x, y) = U∞
dh

dx
= U∞τλ cos λx at y = 0 (74)

By virtue of (73) we put

γ +
δ

λβ
= 0 (75)

and the expression (72) for φ(x, y) reduces to

φ(x, y) =
1
2
(γ − δ

λβ
) e−λβy cos λx (76)
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Again, satisfying the boundary condition (74), we get
1
2 (γ − δ

λβ ) = −U∞τ/β and (76) becomes

φ(x, y) = − U∞τ

β
e−λβy cos λx (77)

which is the exact solution of the mathematical model
described by the partial differential equation (62) subject
to the boundary conditions (73) and (74).

Case II : Wavy Wall in an Open Throat Wind
Tunnel

If we consider steady subsonic flow past a wave shaped
wall in an open throat wind tunnel, then the boundary
conditions in this case are

φx(x, y) = 0 at y = H (78)

and

φy(x, y) = U∞
dh

dx
= U∞τλ cos λx at y = 0 (79)

where H is the distance between the wavy wall and the
wall of the wind tunnel.

By virtue of the boundary condition (78), we have from
(72)

(γ +
δ

λβ
) eλβH + (γ − δ

λβ
) e−λβH = 0 (80)

Again, satisfying the condition (79) by (72), we get

δ = U∞τλ (81)

Solving (80) and (81), we have

γ = − U∞τ

β
.

eλβH − e−λβH

eλβH + e−λβH
(82)

Using (81) and (82) in ([72] we obtain the velocity poten-
tial as

φ(x, y) =
U∞τ

β
.

sinh[λβ(y −H)]
cosh[λβH]

(83)

which represents the closed form solution of the problem.

Case III : Wavy Wall in a Closed Throat Wind
Tunnel

For steady subsonic flow over the wavy wall in a closed
throat wind tunnel, we write the boundary conditions as

φy(x, y) = 0 at y = H (84)

and

φy(x, y) = U∞
dh

dx
= U∞τλ cos λx at y = 0 (85)

Satisfying the conditions (84) and (85) by (72) we have

(γ +
δ

λβ
) eλβH − (γ − δ

λβ
) e−λβH = 0

δ = U∞τλ

 (86)

which, on solving for γ, give

γ = − U∞τ

β
.

eλβH + e−λβH

eλβH − e−λβH
(87)

Putting the values of δ and γ from (86) and (87) in (72)
we get φ(x, y) as

φ(x, y) =
U∞τ

β

cosh[λβ(y −H)]
sinh[λβH]

(88)

which is an exact solution.

The example 2 can also be treated by means of regular
decomposition method and this is left to the readers.
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