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Abstract—In this paper, we construct, by Bochner
subordination, a new model (an extension of the
Sparre-Andersen model with investments that is per-
turbed by diffusion). For this risk process, we derive
a general integro-differential equation for the Laplace
transform of the time of ruin with positive surplus ini-
tial via the elementary properties of the classical con-
ditional expectation. The special cases, for different
inter-arrival time distributions, are given in some de-
tails. We also deduce a comparison for Laplace trans-
forms of the time of ruin, for different inter-arrival
time distributions.
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1 Introduction

The classical risk model perturbed by a diffusion was
introduced by Gerber (1970) and has been further
studied by many authors during the last few years; such
as Dufresne and Gerber (1991), Furrer and Schmidli
(1994), Gerber and Landry (1998), Wang and Wu (2000),
Tsai and Willmot (2002a), Li and Garrido (2005) and
the references therein.

The purpose of the paper are twice. At first time, we
consider a generalization of the perturbed risk model
of Li and Garrido (2005). We substitute the Brownian
motion by a subordinated process in the sense of Bochner
by unspecified subordinator. This substitution yields a
new model given by equation (3.6) (see Section 3 for
more details). At second time, for the above risk process,
we derive an integro-differential equation for the Laplace
transform of the time of ruin with positive surplus initial
via the elementary properties of the classical conditional
expectation.

The organization of this paper is as follows. The next
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Section starts with a brief description of the classical risk
model, and some attention is payed to the quantities:
the Laplace transform of the time of ruin, the elemen-
tary properties of the classical conditional expectation
and the infinitesimal generator. In Section 3, we con-
struct a new model, Sparre-Andersen model with invest-
ments perturbed by diffusion under subordination, and
we end this section by a particular case of subordination
which shows the coincidence of the results in the Sparre-
Andersen model with investments perturbed by diffusion
(2.1) and in our model (3.6). In Section 4, for the new
model, we start by deriving an integro-differential equa-
tion for the Laplace transform of the time of ruin with
positive surplus initial under very general conditions re-
garding the claim sizes, the claim arrivals and the re-
turns from investments, via the elementary properties of
the classical conditional expectation, and we end this sec-
tion by giving several examples of the integro-differential
equation satisfied by the Laplace transform of the time
of ruin, for different inter-arrival time distributions. Fi-
nally, in Section 5, we present a comparison of Laplace
transforms of the time of ruin, for different inter-arrival
time distributions.

2 Model Description and Notations

We will assume that all processes and random
variables are defined on a filtered complete probability
space (Ω,F ,P, (Ft)t≥ 0). The filtration (Ft)t≥ 0 is right
continuous and all the stochastic processes to be defined
in this paper are adapted.

Consider a time-continuous Sparre-Andersen surplus pro-
cess perturbed by a diffusion

U(t) = u+ ct−
N(t)∑
k=1

ξk + λB(t), t ≥ 0, (2.1)

where u ≥ 0 is the initial capital and c > 0 is the
incoming premium rate. The claim sizes (ξk)k∈N are
positive i.i.d. random variables with common proba-
bility distribution function Fξ and density function fξ,
representing the k-th claim amount, with finite mean
µ = E[ξ1], and variance σ2 = V ar(ξ1) < ∞.
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The ordinary renewal process {N(t), t ≥ 0} de-
notes the number of claims up to time t, with
N(t) = sup{n ≥ 1 : Tn ≤ t}, t ≥ 0, with, by
convention, sup ∅ = 0, where the (Tn)n∈N denotes the
claim times, with T0 = 0 < T1 < T2 < ...
The inter-arrival times: τ1 = T1, τk = Tk − Tk−1, k =
2, 3, ... are i.i.d. distributed with finite mean.
Finally, {B(t) : t ≥ 0} is a standard Wiener process
that is independent of the compound ordinary renewal
process S(t) =

∑N(t)
k=1 ξk and the dispersion parameter

λ > 0. Further assume that the sequences ξk and τk are
independent of each other.

Next, we denote by fτ the density for the time in between
claims (τk)k∈N that is satisfies an ordinary differential
equation of order n ≥ 1 and with constant coefficients,
formally denoted by

L(
d

dt
)fτ (t) = 0, (2.2)

with L? denoting the formal adjoint of the linear operator
L. In general, the linear operator L is defined by

L(
d

dt
)fτ (t) =

n∑
j=0

αj
dj

dtj
fτ (t), (2.3)

with the adjoint L?,

L?( d
dt

)fτ (t) =
n∑
j=0

(−1)jαj
dj

dtj
fτ (t). (2.4)

If the investment price is modeled by geometric Brownian
motion with drift a and volatility σ2, then the equation
of the surplus model is expressible as:

U(t) = u+ ct+ a

∫ t

0

U(s) ds+ σ

∫ t

0

U(s) dB(s)

−
N(t)∑
k=1

ξk + λB(t), t ≥ 0, (2.5)

where B(.) is a standard Brownian motion.

Remark 1:
If N(t) is Poisson distributed, the process (2.1) is a
compound Poisson process and refers to the classical
Cramér-Lundberg model perturbed by a diffusion (see
e.g. Furrer and Schmidli 1994: [7]). But if N(t) is
renewal process, then the process (2.1) is called the
Sparre-Andersen model perturbed by a diffusion (see
e.g. Li and Garrido 2005: [9]) and consequently (2.5) is
referred to as the Sparre-Andersen model perturbed by
a diffusion with investments.

Now define

Tu = inf{t ≥ 0 ; U(t) < 0 | U(0) = u} (∞, otherwise),

to be the time of ruin of (2.1) and

Ψ(u) = P(Tu <∞ | U(0) = u)
= P[ inf{t ≥ 0 ; U(t) < 0 | U(0) = u}], (2.6)

to be the ultimate ruin probability with an initial surplus
u.
Next, for δ ≥ 0 define

Φδ(u) = E(e−δTu1{Tu<∞} | U(0) = u), (2.7)

where 1{.} is the usual indicator function, to be the
Laplace transform of the time of ruin with an initial
surplus u.
The loading of security is defined by r = c − µE[N(t)].
If r > 0, then the activity is known as profitable.
Indeed, the Law of Large Numbers ensures that, in this
case, the process U(t) −→ +∞ almost surely (a.s.) as
t −→ +∞, and consequently Ψ(u) 6= 1. If r < 0, then
U(t) −→ −∞ a. s. as t −→ +∞. Generally, we will
make the assumption that the activity is profitable.

Recall that the transition operator Kt of a Markov pro-
cess U(t) is given by: Ktf(u) = E(f(U(t)) | U(0) = u),
and the infinitesimal generator of {Kt, t > 0}, is the lin-
ear operator A defined by: Af(x) = limt−→0

Ktf(x)−f(x)
t

for all real-valued, bounded, Borel measurable function f
defined on a metric space S. The domain of A is denoted
by DA. Using Itô’s formula we find that the infinitesimal
generator of (2.5)

A = (
σ2

2
u2 +

λ2

2
)
d2

du2
+ (au+ c)

d

du
. (2.8)

Paulsen and Gjessing (1997) (see [12]) introduce a
relationship between the infinitesimal generator of the
risk process and the two quantities of ruin (probability
of ruin, Laplace transform of the time of ruin). Ac-
tually, for example, they show that a function qδ(u)
that satisfies the equation Aqδ(u) = δqδ(u) with some
boundary conditions, is the Laplace transform of the
time of ruin. The following theorem is an adapted form
of their theorem to the Cramér-Lundberg case with no
investments. Our Theorem 4.2 (see Section 4) is based
on the theorem given below.

Theorem 1: (See [12])
Assume that on the event {Tu = ∞}, Ut −→ ∞ a. s.
as t −→ ∞. Then with the above notation we have the
following.
1)Assume that g(u) is a bounded and twice continuously
differentiable function on u ≥ 0 with a bounded first
derivative there, where we at u = 0 mean the right-hand
derivative. If g(u) solves

Ag(u) = 0 on u > 0,

together with the boundary conditions:

IAENG International Journal of Applied Mathematics, 39:4, IJAM_39_4_05
______________________________________________________________________________________

(Advance online publication: 12 November 2009)



a) g(u) = 1 on u < 0,

b) g(0) = 1 if λ2 > 0,

c) limu−→∞ g(u) = 0,

then
g(u) = P(Tu <∞ | U(0) = u).

2) Assume that qδ, δ ≥ 0 is a bounded and twice contin-
uously differentiable function on u ≥ 0 with a bounded
first derivative there, where we at u = 0 mean the right-
hand derivative. If qδ(u) solves

Aqδ(u) = δqδ(u) on u > 0,

together with the boundary conditions:

a) qδ(u) = 1 on u < 0,

b) qδ(0) = 1 if λ2 > 0,

c) limu−→∞ qδ(u) = 0,

then
qδ(u) = E(e−δTu1{Tu<∞} | U(0) = u).

3 Model Construction

3.1 Subordination of Brownian motion

For the following classical notions, we refer the reader
to [10] and [13].
Let (E, E) be a measurable space and let m be a σ-finite
positive measure on (E, E). Let B = (Bt)t≥0 be a Brown-
ian motion on R. The associated semigroup P = (Pt)t≥0

is defined by Pt = gt ∗ f for t > 0 ; f ∈ L2(λ) and
gt(x) = 1√

2Πt
exp{−x

2

2t } is the function of Gauss on R.
The associated L2(m)- generator (or generator) M is de-
fined by Mf(x) = limt−→0

Ptf(x)−f(x)
t = 1

2∆, where ∆ is
the Laplacian operator, on its domain D(M) which is the
set of all functions f ∈ L2(m) for which this limit exists
in L2(m).
Let Z = (Zt)t≥0 a unspecified Bochner subordinator, i.e.
Z = (Zt)t≥0 is a convolution semigroup of probability
measures on R such that, for each t > 0, we have Zt 6= ε0

and Zt is supported by [0,∞[.
The associated Bernstein function h is defined by its
Laplace transform LZt(r) = exp(−th(r)) for all r, t > 0.
It is known that h admits the representation

h(r) = kr +
∫ ∞

0

(1− exp(−rs)) ν(ds), r > 0, (3.1)

where k ≥ 0 and ν is a measure on ]0,∞[ verifying∫∞
0

(1∧s) ν(ds) <∞. Moreover, k ≥ 0 and ν are uniquely
determined, they are called parameters of the Bernstein

function of Z.
Then Y = (Yt)t≥0, where Yt = BZt is called the sub-
ordinated process of the Brownian motion Bt by means
of the subordinator Zt. The associated semigroup PZ =
(PZt )t≥0 be the (Bochner) subordinated semigroup of P
by means Z is given by:

PZt =
∫ ∞

0

Ps Zt(ds) for every t > 0.

The associated generator is denoted by MZ on its domain
D(MZ). Moreover, it is known that D(M) ⊂ D(MZ) and

MZu = kMu+
∫ ∞

0

(Ptu− u) ν(dt), u ∈ D(M), (3.2)

where k and ν are given in (3.1).

3.2 Examples of subordinators

Case 1: Dirac subordinator
Let ε = (εt)t≥0 the dirac subordinator. Then in the case,
the subordinated process Y of the Brownian motion B by
means of the dirac subordinator ε coincide to the original
Brownian motion i.e. ( Yt = Bεt = Bt for every t > 0 ).
Consequently P ε = P and

Mε = M =
1
2

∆, (3.3)

where ∆ is the Laplacian operator.

Case 2: One-sided stable subordinator
Let ηα ”fractional powers” be the one-sided stable sub-
ordinator of order α ∈]0, 1[, i.e. the unique convolution
semigroup ηα := ηαt>0 on [0,∞[ such that for each t > 0,
the Laplace transform L(ηαt )(x) = exp(−txα), x > 0.
It is well known that the associated Bernstein function
h(r) = rα admits the representation

h(r) =
α

Γ(1− α)

∫ ∞
0

(1− exp(−rs)) ds

sα+1
. (3.4)

In the case, the subordinated process Y of the Brownian
motion B by means of ηα is expressible as: Yt = Bη

α

t , for
each t ≥ 0. The associated semigroup P η

α

= (P η
α

t )t>0

be the (Bochner) subordinated semigroup of P by means
ηα (i.e. P η

α

t =
∫∞

0
Ps η

α
t (ds) for every t > 0).

Hence, (see [13] for more details) the infinitesimal gen-
erator Mηα of Yt on its domain D(Mηα) is expressible
as:

Mηα = −2−αc′(−∆ )α, c′ > 0, (3.5)

where ∆ is the closure of the Laplacian operator.

3.3 The model

Now, we construct, by a Bochner subordination, a new
model in the following way: we take the model (2.1) and
we substitute the Brownian motion: Bt by the subordi-
nated process of Bt in the sense of Bochner by means of
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Zt that is denoted by Yt.
In this way the model (2.1), (see Section 2), is expressible
as:

U(t) = u+ ct−
N(t)∑
k=1

ξk + λY (t), t ≥ 0, (3.6)

where u ≥ 0 is the initial capital and c > 0 is the
incoming premium rate. The claim sizes (ξk)k∈N are
positive i.i.d. random variables with common proba-
bility distribution function Fξ and density function fξ,
representing the k-th claim amount, with finite mean
µ = E[ξ1], and variance σ2 = V ar(ξ1) < ∞.
The ordinary renewal process {N(t), t ≥ 0} de-
notes the number of claims up to time t, with
N(t) = sup{n ≥ 1 : Tn ≤ t}, t ≥ 0, with, by
convention, sup ∅ = 0, where the (Tn)n∈N denotes the
claim times, with T0 = 0 < T1 < T2 < ...
The inter-arrival times: τ1 = T1, τk = Tk − Tk−1, k =
2, 3, ... are i.i.d. distributed with finite mean.
Finally, {Y (t) = BZt : t ≥ 0} is a subordinated process
of the standard Wiener process {B(t) : t ≥ 0} in the
sense of Bochner by means of Z that is independent of
the compound ordinary renewal process S(t) =

∑N(t)
k=1 ξk

and the dispersion parameter λ > 0. Further assume
that the sequences ξk and τk are independent of each
other.

In this paper, a particular case is considered, namely the
investment price is modeled by geometric Brownian mo-
tion with drift a and volatility σ2, then the equation of
the surplus model is given by:

U(t) = u+ ct+ a

∫ t

0

U(s) ds+ σ

∫ t

0

U(s) dB(s)

−
N(t)∑
k=1

ξk + λY (t), t ≥ 0, (3.7)

where B(.) is a standard Brownian motion and Y (.) is
subordinated process of B(.) in the sense of Bochner by
means of subordinator Z(.).
Hence, by the equation (3.2) and Itô’s formula, the in-
finitesimal generator of (3.7) is expressible as:

AZ = (
σ2

2
u2+

kλ2

2
)
d2

du2
+(au+c)

d

du
+λ

∫ ∞
0

(Pt−I) ν(dt),

(3.8)
where I denoted the identity operator.

Since the ruin may occur only at the claim times, Tk, the
surplus process (3.6) may be discredited. The discrete
version

Uk = U(Tk) = u+ cTk −
N(Tk)∑
k=1

ξk + λY (Tk), (3.9)

is a discrete time Markov process (Markov chain). The
process Uk may be written immediately after the payment
of the k−th claim ξk.

Uk = V Uk−1
τk

− ξk, (3.10)

where V Uk−1
τk represents the worth of a portfolio that re-

sults from investing the capital Uk−1 (immediately after
the payment of the k − 1 claim) and the premiums col-
lected over the time τk, into a risky asset. Recall that for
the discrete time Markov process {(Uk)k∈N | U(0) = u},
on the set of all real-valued, bounded, Borel-measurable
functions ϕ, define the transition operator Pϕ : R −→ R,
Ph(u) := E(h(U1) | U(0) = u) =∫ ∞

0

∫ ∞
0

fτ (t)E(h(Zut −x) | U(0) = u)fX(x) dx dt , (3.11)

the generator of the time discrete Markov process is
given by: AUϕ(u) = (P − I)ϕ(u), where I denoted the
identity operator, and DAU denoted the domain of the
operator AU .

Remark 2:
For the president trivial case of subordination (Dirac
subordinator), if the investment price is modeled by
geometric Brownian motion with drift a and volatility
σ2, then the equation of the surplus model is given by:

U(t) = u+ ct+ a

∫ t

0

U(s) ds+ σ

∫ t

0

U(s) dB(s)

−
N(t)∑
k=1

ξk + λY (t), t ≥ 0, (3.12)

where B(.) is a standard Brownian motion and Y (.) is a
subordinated process of B(.) in the sense of Bochner by
means of subordinator ε.
Hence, by the equation (3.3) and the Itô’s formula, the
infinitesimal generator of (3.12) is expressible as:

Aε = (
σ2

2
u2 +

λ2

2
)
d2

du2
+ (au+ c)

d

du
. (3.13)

We remark that the equation (2.5) and the equation
(3.12) possess the same infinitesimal generator. This ex-
plains a coincidence between the Sparre-Andersen model
perturbed by diffusion given by the equation (2.1) and
the subordinated Sparre-Andersen model perturbed by
diffusion in the sense of Bochner by means of ε given by
the equation (3.6).

4 The integro-differential equation of the
Laplace transform of the time of ruin

The classical approach in deriving equations satisfied
by the Laplace transform of the time of ruin is condition-
ing on the time of the first claim and its size, followed
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by differentiation [Dickson and Hipp (1998), Jun Cai
(2004) in the classical risk model without perturbation]
and [Dufresne and Gerber (1991), Furrer and Schmidli
(1994), Gerber and Landry (1998), Wang and Wu (2000),
Li and Garrido (2005) and the references therein in the
classical risk model with perturbation]. In contrast, the
uniform approach of this paper (see [6] for the classical
risk model without perturbation) consists in deriving a
general equation for the classical conditional expecta-
tion that relates to the Laplace transform of the time
of ruin via our Theorem 4.1 and Theorem 4.2 given below.

Theorem 4.1 Let qδ ∈ DAZ , δ ≥ 0 with
Pqδ(u, 0) = qδ(u, 0). If fτ satisfies the ordinary
differential equation with constant coefficients

L(
d

dt
)fτ (t) = 0

and

1) f
(k)
τ (0) = 0, for k = 0, ..., n− 2,

2) limx−→∞ f
(k)
τ (x) = 0, for k = 0, ..., n− 1,

then

L?(AZ − δI)Pqδ(u, 0) = f (n−1)
τ (0) E[qδ(u, ξ1)]. (4.1)

Proof.
For δ 6= 0, we take the same technical of the proof of
the theorem 3 in thesis of Corina D. Constantinescu (see
page 31-33).

Theorem 4.2 Assume that on the event {Tu =
∞}, Ut −→ ∞ as t −→ ∞. Assume that Φδ is P in-
variant. Then the following axiom are equivalent:

1) Any bounded function qδ ∈ DAU such that qδ(u) =
e−δTug(u); δ ≥ 0 satisfies

AUqδ(u) = (P − I)qδ(u) = 0,

together with the boundary conditions for the func-
tion g:

a) g(u) = 1 on u < 0,

b) g(0) = 1 if λ2 > 0,

c) limu−→∞ g(u) = 0,

2) qδ(u) is the Laplace transform of the time of ruin, in
other words

qδ(u) = Φδ(u).

Proof.
First part ”1) =⇒ 2)”.
Let

Eu[qδ(Uk)] := Eu[qδ(U(Tk))]
= E(qδ(U(Tk)) | U(0) = u).

It is known that for any n ≥ 1

Mn = qδ(Un)−
n−1∑
k=0

AUqδ(Uk)

= qδ(Un)−
n−1∑
k=0

(P − I)qδ(Uk)

is a martingale. Indeed

E(Mn+1 | F(U0, ..., Un)) = E(qδ(Un+1) | U0, ..., Un)

−
n∑
k=0

(P − I)qδ(Uk)

= Pqδ(Un)− Pqδ(Un)
+qδ(Un)

−
n−1∑
k=0

(P − I)qδ(Uk)

= Mn.

The assumption: AUqδ(u) = 0 implies that qδ(Uk) is a
martingale, i.e. for any k,

qδ(u) = Eu[qδ(U(Tk))] = Eu[e−δTkg(U(Tk))].

The time of ruin Tu is a stopping time, thus qδ(u) =
Eu[qδ(U(Tu))] = Eu[e−δTug(U(Tu))] and moreover

qδ(u) = Eu[qδ(U(Tu ∧ Tk))]
= Eu[e−δ(Tu∧Tk)g(U(Tu ∧ Tk))]
= Eu[e−δ(Tu∧Tk)g(U(Tu ∧ Tk))1{Tu<Tk}]

+Eu[e−δ(Tu∧Tk)g(U(Tu ∧ Tk))1{Tu>Tk}]

= Eu[g(U(Tu))] Eu[e−δTu1{Tu<Tk}]

+Eu[g(U(Tk))] Eu[e−δTk1{Tu>Tk}].

The result thus follows by letting Tk −→ ∞ and using
the boundary conditions for the function g,

qδ(u) = 1×Eu[e−δTu1{Tu<∞}] + 0× 0

= Eu[e−δTu1{Tu<∞}]
= Φδ(u).

When λ2 > 0 the process starting from 0 will immedi-
ately assume a negative value, hence the extra boundary
condition qδ(0) = g(0) = 1 in the case. This proves part
(i).
Second part ”2) =⇒ 1)”.
Since the process Uk is a renewal process and since ruin
cannot occur in the interval (0, T1), where T1 represents

IAENG International Journal of Applied Mathematics, 39:4, IJAM_39_4_05
______________________________________________________________________________________

(Advance online publication: 12 November 2009)



the time of the first claim, then the Laplace transform of
the time of ruin satisfies the renewal equation,

qδ(u) = E(qδ(U1) | U(0) = u) = Pqδ(u).

It is proved in the previous Theorem that Pqδ satisfies
the equation for any qδ ∈ DAZ . Since, Pqδ = qδ it
follows that qδ satisfies the equation. Since qδ is the
Laplace transform of the time of ruin, it also satisfies the
boundary conditions.

Combining Theorem 4.1 with Theorem 4.2 above, we get
that the Laplace transform of the time of ruin satisfies
the following integro-differential equation:

L?(AZ − δI)Φδ(u) = f (n−1)
τ (0)

∫ ∞
0

Φδ(u− x)fξ(x) dx,

(4.2)
together with the boundary conditions:

a) limu−→∞Φδ(u) = 0,

b) Φδ(0) = 1 if λ2 > 0,

c) (BC),

where (BC) stands for boundary conditions and n rep-
resents the degree of the ordinary differential equation
satisfied by the density of the inter-arrival times. The
boundary conditions (BC) may be derived from ”compat-
ibility” conditions assuming that the integro-differential
equation and its derivatives hold at zero. For instance, if
the investment is a geometric Brownian motion then the
equation has order ”2n”.

4.1 Applications

Many well-known equations are a particular form of
the equation (4.2). For instance, in the subordinated
Sparre-Andersen model with investments perturbed by
diffusion given by (3.7), the equations and their bound-
ary conditions can be derived for different inter-arrival
times.

Example 1: Erlang(2, β)
Consider that the surplus model (3.7) has inter-arrival
times τk that are Erlang(2, β), distributed with the den-
sity function

fτ (t) = β2t exp{−βt}, t ≥ 0.

Then for an Erlang(2, β) distribution, L( ddt ) = ( ddt + β)2,

and L?( ddt ) = (− d
dt + β)2. Hence, the equation (4.2) is

specifically:

(−AZ + δI +βI)2Φδ(u) = f (1)
τ (0)

∫ ∞
0

Φδ(u−x)fξ(x) dx,

(4.3)
with the boundary conditions:

a) limu−→∞Φδ(u) = 0,

b) Φδ(0) = 1 if λ2 > 0,

c) AZAZΦδ(0)−2(β+δ)AZΦδ(0)+(β+δ)2Φδ(0) = β2,

d) the first two derivatives of the equation (4.3) evalu-
ated at zero.

The equation (4.3) is equivalent to

AZAZΦδ(u)− 2(β + δ)AZΦδ(u) + (β + δ)2Φδ(u)

= β2

∫ u

0

Φδ(u− x)fξ(x) dx+ β2

∫ ∞
u

fξ(x) dx, (4.4)

where

AZ = (
σ2

2
u2+

kλ2

2
)
d2

du2
+(au+c)

d

du
+λ

∫ ∞
0

(Pt−I) ν(dt)

and

AZAZ = (
σ2

2
u2 +

kλ2

2
)A′′Z + (au+ c)A′Z

+λ
∫ ∞

0

(PtAZ −AZ) ν(dt)

with (by taking account of derivation theorem under in-
tegral sign)

A′ZΦδ(u) = (
σ2

2
u2 +

kλ2

2
)Φ(3)

δ (u)

+(σ2u+ au+ c)Φ(2)
δ (u) + aΦ(1)

δ (u)

+λ
∫ ∞

0

(PtΦ
(1)
δ (u)− Φ(1)

δ (u)) ν(dt)

and

A′′ZΦδ(u) = (
σ2

2
u2 +

kλ2

2
)Φ(4)

δ (u)

+(2σ2u+ au+ c)Φ(3)
δ (u)

+(2a+ σ2)Φ(2)
δ (u)

+λ
∫ ∞

0

(PtΦ
(2)
δ (u)− Φ(2)

δ (u)) ν(dt).

With the boundary conditions obtained from the fact
that the equation holds at zero and so do the first two
derivatives of the equation.

Example 2: Erlang(n, β)
Consider that the surplus model (3.7) has inter-arrival
times τk that are Erlang(n, β), distributed with the den-
sity function

fτ (t) =
βn

Γ(n)
tn−1 exp{−βt}, t ≥ 0 and n ∈ N.

Then for an Erlang(n, β) distribution, L( ddt ) = ( ddt +β)n,
and L?( ddt ) = (− d

dt + β)n. Hence, the equation (4.2) is
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specifically:

n∑
k=0

(−1)k
n!

k!(n− k)!
AkZ(δ + β)n−kΦδ(u) =

βn
∫ u

0

Φδ(u− x)fξ(x) dx+ βn
∫ ∞
u

fξ(x) dx, (4.5)

with the boundary conditions:

a) limu−→∞Φδ(u) = 0,

b) Φδ(0) = 1 if λ2 > 0,

c)
∑n
k=0(−1)k n!

k!(n−k)!A
k
Z(δ + β)n−kΦδ(0) = βn,

d) the first ”2n − 2” derivatives of the equation (4.5)
evaluated at zero.

Example 3: Sum of two exponentials
Consider that the surplus model (3.7) has inter-arrival
times τk that are sum of two exponentials, with the den-
sity function

fτ (t) =
β1β2

β2 − β1
[exp{−β1t} − exp{−β2t}],

t ≥ 0 and β1 6= β2.
In the case of inter-arrival times distributed as a mix-
ture of exponentials, the density fτ satisfies an ordinary
differential equation of order 2, the linear operator L is

L(
d

dt
)fτ (t) = (

d

dt
+ β1)(

d

dt
+ β2)fτ (t) = 0,

and the adjoint linear operator L? is expressible as:

L?( d
dt

)fτ (t) = (− d

dt
+ β1)(− d

dt
+ β2)fτ (t).

Assume that

H(u) := β1β2

∫ u

0

Φδ(u− x)fξ(x) dx+ β1β2

∫ ∞
u

fξ(x) dx.

Thus the equation (4.2) is specifically:

H(u) = AZAZΦδ(u)− (β1 + β2 + 2δ)AZΦδ(u)
+[β1β2 + (β1 + β2)δ + δ2]Φδ(u), (4.6)

with the boundary conditions:

a) limu−→∞Φδ(u) = 0,

b) Φδ(0) = 1 if λ2 > 0,

c) AZAZΦδ(0)− (β1 +β2 +2δ)AZΦδ(0)+ [β1β2 +(β1 +
β2)δ + δ2]Φδ(0) = β1β2,

d) the first two derivatives of the equation (4.6) evalu-
ated at zero.

Thus, the explicit equation for the Laplace transform of
the time of ruin in case on investments in a geomet-
ric Brownian motion with inter-arrival times distributed
as a sum of two exponentials is a forth order integro-
differential equation:

H(u) = [
σ2

2
u2 +

kλ2

2
]2Φ(4)

δ (u)

+ (σ2u2 + kλ2)(au+ σ2u+ c)Φ(3)
δ (u)

+ [(σ2u2 + kλ2)×

(a+
σ2

2
− (

β1 + β2

2
)u− δu)]Φ(2)

δ (u)

+ (au+ c)(σ2u+ au+ c)Φ(2)
δ (u)

+ (au+ c)(a− β1 − β2 − 2δ)Φ(1)
δ (u)

+λ
∫ ∞

0

(PtAZΦδ(u)−AZΦδ(u)) ν(dt)

+λ(
σ2

2
u2 +

kλ2

2
)×∫ ∞

0

(PtΦ
(2)
δ (u)− Φ(2)

δ (u)) ν(dt)

+λ(au+ c)
∫ ∞

0

(PtΦ
(1)
δ (u)− Φ(1)

δ (u)) ν(dt)

−λ(β1 + β2 + 2δ)×∫ ∞
0

(PtΦδ(u)− Φδ(u)) ν(dt)

+ [β1β2 + (β1 + β2)δ + δ2]Φδ(u), (3.7)

with the boundary conditions obtained from the fact that
the equation holds at zero and so do the first two deriva-
tives of the equation.

5 Ordering of the Laplace transform of
the time of ruin

Since the Laplace transform of the time of ruin are
solutions of the newly introduced integro-differential
equations, a new comparison of the Laplace transforms
of the time of ruin when only the inter-arrival times
distributions are different is possible.

Let

U (1)(t) = u+ ct+ a

∫ t

0

U (1)(s) ds+ σ

∫ t

0

U (1)(s)dB(s)

−
N(1)(t)∑
k=1

ξk + λY (t), t ≥ 0, (5.1)

be a subordinated Cramér-Lundberg risk model with in-
vestments perturbed by diffusion in the sense of Bochner
in risky asset with a price which follows a geometric
Brownian motion. The inter-arrival times {τ (1)

k }k∈N are
independent, exp(β) distributed random variables. The
claims arrival process N (1)(t) is a Poisson process. The
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Laplace transform of the time of ruin for this process will
be denoted by

Φ1
δ(u) = E(e−δT

(1)
u 1{T (1)

u <∞} | U
(1)(0) = u),

where

T
(1)
u = inf{t ≥ 0 ; U (1)(t) < 0 | U (1)(0) =
u} (∞, otherwise), is the time of ruin of (5.1).

Let

U (2)(t) = u+ ct+ a

∫ t

0

U (2)(s) ds+ σ

∫ t

0

U (2)(s)dB(s)

−
N(2)(t)∑
k=1

ξk + λY (t), t ≥ 0, (5.2)

be a subordinated Sparre-Andersen risk model with in-
vestments perturbed by diffusion in the sense of Bochner
in risky asset as in (5.1), but with inter-arrival times
{τ (2)
k }k∈N are independent, Erlang(2, β) distributed ran-

dom variables. The claims arrival process N (2)(t) is a
renewal process. The corresponding Laplace transform
of the time of ruin is

Φ2
δ(u) = E(e−δT

(2)
u 1{T (2)

u <∞} | U
(2)(0) = u),

where

T
(2)
u = inf{t ≥ 0 ; U (2)(t) < 0 | U (2)(0) =
u} (∞, otherwise), is the time of ruin of (5.2).
The comparison of the surplus processes under these dif-
ferent inter-arrival times distributions may be achieved
by a coupling of both processes derived from the common
underlying Brownian motion. To be precise, one uses

X(t) = X(0) exp{(a− σ2

2
)t+ σBt}

+(c− λσ)
∫ t

0

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] du

+λ
∫ t

0

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] dY (u),
(5.3)

the explicit representation in terms of the Brownian mo-
tion of the solution of the stochastic differential equation
governing the investment process

dXt = (aXt + c) dt+ σXt dBt + λ dYt, (5.4)

this can be verified using Itô lemma.

Lemma 5.1If X(t) satisfies the equation (5.3), then for

any 0 ≤ s ≤ t,

X(t) = X(s) exp{(a− σ2

2
)(t− s) + σ(Bt −Bs)}

+(c− λσ)
∫ t

s

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] du

+λ
∫ t

s

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] dY (u).

Proof.
As X(t) satisfies the equation (5.3) one has

X(t) = X(0) exp{(a− σ2

2
)t+ σBt}

+(c− λσ)
∫ t

0

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] du

+λ
∫ t

0

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] dY (u).

Then for any 0 ≤ s ≤ t, one has

X(t) = X(0)[exp{(a− σ2

2
)(t− s+ s)

+σ(Bt −Bs +Bs)}]

+(c− λσ)
∫ s

0

[exp{(a− σ2

2
)[(t− s) + (s− u)]

+σ[(Bt −Bs) + (Bs −Bu)]}] du

+(c− λσ)
∫ t

s

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] du

+λ
∫ s

0

[exp{(a− σ2

2
)[(t− s) + (s− u)]

+σ[(Bt −Bs) + (Bs −Bu)]}] dY (u)

+λ
∫ t

s

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] dY (u)

= X(s) exp{(a− σ2

2
)(t− s) + σ(Bt −Bs)}

+(c− λσ)
∫ t

s

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] du

+λ
∫ t

s

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] dY (u).

Proposition 5.2 For the processes U (1) and U (2) defined
above, the Laplace transform of the time of ruin have the
following order:

Φ1
δ(u) ≥ Φ2

δ(u). (5.5)
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Proof.
In order to compare the two Laplace transforms of the
time of ruin: Φ1

δ(u) and Φ2
δ(u), one compares the two

surplus processes U (1) and U (2) along each sample path
of the Brownian motion. Both start with the same initial
surplus u and have the same underling Brownian motion.
Let T (1)

1 denote the time of the first claim in the surplus
process U (1).

Then for any 0 ≤ t ≤ T
(1)
1 , according to the equation

(5.3) one has

U (2)(t) = u exp{(a− σ2

2
)t+ σBt}

+(c− λσ)
∫ t

0

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] du

+λ
∫ t

0

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] dY (u)
= U (1)(t).

For t = T
(1)
1 , one has

U (2)(T (1)
1 ) = u exp{(a− σ2

2
)T (1)

1 + σB
T

(1)
1
}

+ (c− λσ)
∫ T

(1)
1

0

[exp{(a− σ2

2
)(T (1)

1 − u)

+σ(B
T

(1)
1
−Bu)}] du

+ λ

∫ T
(1)
1

0

[exp{(a− σ2

2
)(T (1)

1 − u)

+σ(B
T

(1)
1
−Bu)}] dY (u)

≥ u exp{(a− σ2

2
)T (1)

1 + σB
T

(1)
1
}

+ (c− λσ)
∫ T

(1)
1

0

[exp{(a− σ2

2
)(T (1)

1 − u)

+σ(B
T

(1)
1
−Bu)}] du

+ λ

∫ T
(1)
1

0

[exp{(a− σ2

2
)(T (1)

1 − u)

+σ(B
T

(1)
1
−Bu)}] dY (u)

− ξ
(1)
1

= U (1)(T (1)
1 ).

For T (1)
1 ≤ t ≤ T (2)

1 , according to lemma 5.1

U (2)(t) = U (2)(T (1)
1 )[exp{(a− σ2

2
)(t− T (1)

1 )

+σ(Bt −BT (1)
1

)}]

+(c− λσ)
∫ t

T
(1)
1

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] du

+λ
∫ t

T
(1)
1

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] dY (u)

≥ U (1)(T (1)
1 )[exp{(a− σ2

2
)(t− T (1)

1 )

+σ(Bt −BT (1)
1
})

+(c− λσ)
∫ t

T
(1)
1

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] du

+λ
∫ t

T
(1)
1

[exp{(a− σ2

2
)(t− u)

+σ(Bt −Bu)}] dY (u)
= U (1)(t).

It follows by induction that U (1)(t) ≤ U (2)(t) for any t.
Therefore, Φ1

δ(u) ≥ Φ2
δ(u) for any u.

Proposition 5.3 For m < n, in the case of Erlang(m,β),
Erlang(n, β) risk processes

Φmδ (u) ≥ Φnδ (u). (5.6)

Proof.
Analogously to the previous proof, it can be shown that

Φmδ (u) ≥ Φnδ (u).

Inductively, this means

Φ1
δ(u) ≥ Φ2

δ(u) ≥ Φ3
δ(u) ≥ ... ≥ Φnδ (u), n ∈ N.

Thus, for any m < n, the result follows.
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