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Abstract�We study the general solution of the two-
dimensional Electrical Impedance Equation in terms of Taylor
series in formal powers, for the case when the electrical con-
ductivity is a separable-variables function. We use the elements
of Quaternionic Analysis in order to rewrite the Electrical
Impedance Equation into a Vekua equation, for which it is
possible to express the general solution using the elements of
Bers Pseudoanalytic Function Theory. We �nally discuss the
contribution of thess results for approaching solutions of the
Electrical Impedance Tomography problem.

Index Terms�Electrical impedance, pseudoanalytic functions,
quaternions, tomography.

I. INTRODUCTION
The Electrical Impedance Equation

div (� gradu) = 0; (1)

also known as the Inhomogeneous Laplace equation [6], or
Poisson equation [15], is the base for well understanding
the inverse problem posed by A. P. Calderon in 1980 [3],
often referred as Electrical Impedance Tomography. Here �
denotes the conductivity function and u represents the electric
potential.
The two-dimensional case of Calderon problem is specially

interesting for medical image reconstruction, and it kept the
attention of many researchers from its very appearing. Beside
the purely numerical approaches, a good alternative for solving
the Electrical Impedance Tomography problem is to use a
wide class of analytic solutions for (1), posing different
conductivity functions, and comparing such solutions valued in
the boundary points, with the collected data until the difference
can be considered minimum. Nevertheless, the mathematical
complexity for solving analytically (1) represented such a
challenge, that many experts considered impossible to obtain
its general solution in analytic form [5], even for the simplest
cases of � (not including the constant case, of course).
But in 2006, K. Astala and L. Päivärinta [1] proved the

existence and uniqueness of the solution in the plain for the
inverse problem of (1), trough the path of relating the two-
dimensional Electrical Impedance Equation with the Vekua
equation [20]. One year latter, V. V. Kravchenko and H.
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Oviedo [13], who had previously noticed the relation of
the two-dimensional stationary Schrödinger equation with a
special class of Vekua equation [11], used the elements of Bers
Pseudoanalytic Functions Theory [2] in order to represent the
general solution of (1) in terms of Taylor series in formal
powers, and gave what can be considered its �rst explicit
general solution, for a special class of �.
Applying the elements of Quaternionic Analysis, we will an-

alyze an alternative way for transforming the two-dimensional
case of (1) into a Vekua equation [14][18], and we will
express its general solution in terms of formal powers for the
case when � is a separable-variables function. We will �nally
discuss the contribution of these results within the theory of
Electrical Impedance Tomography.

II. PRELIMINARIES

A. Elements of Quaternionic Analysis

We will denote the algebra of real quaternions (see e.g. [8]
and [12]) by H(R). The elements q belonging to H(R) have
the form q = q0+q1e1+q2e2+q3e3; where qk; k = 0; 1; 2; 3
are real-valued functions depending upon the spacial variables
x1; x2 and x3; whereas ek are the standard quaternionic units,
satisfying the relations

e1e2 = e3 = �e2e1;
e2e3 = e1 = �e3e2;
e3e1 = e2 = �e1e3;
e2k = �1; k = 1; 2; 3:

We will also use the notation

q = q0 +
�!q ;

where �!q =
P3

n=1 qkek is usually known as the vectorial part
of quaternion q, and q0 is called the scalar part. Notice the
subset of purely vectorial quaternions q = �!q can be identi�ed
with the set of three-dimensional vectors belonging to R3: This
is, to every

�!
E = (E1; E2; E3) 2 R3 corresponds one purely

vectorial quaternion
�!
E = E1e1 + E2e2 + E3e3. It is easy to

see this relation is one-to-one.
Due to this isomorphism, we can represent the multiplica-

tion of two quaternions q and p as

q � p = q0p0 + q0
�!p + p0�!q � h�!q ;�!p i+ [�!q ��!p ] ; (2)
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where h�!q ;�!p i denotes the standard inner product

h�!q ;�!p i =
3X

k=1

qkpk

and [�!q ��!p ] is the vectorial product, written in the quater-
nionic sense. This is

[�!q ��!p ] =
= (q2p3 � q3p2) e1+
+(q3p1 � q1p3) e2+
+(q1p2 � q2p1) e3:

Because of this, we can notice that, in general,

q � p 6= p � q

so we will use the notation

Mpq = q � p

to indicate the multiplication by the right-hand side of the
quaternion q by the quaternion p.
The Moisil-Theodoresco differential operator D is de�ned

as
D = e1@1 + e2@2 + e3@3;

where @k = @
@xk
, and it acts on the set of at least once-

derivable quaternionic-valued functions. Again, using the clas-
sic vectorial notation we can write

Dq = grad q0 � div�!q + rot�!q ; (3)

where
grad q0 = e1@1q0 + e2@2q0 + e3@3q0;

and

rot�!q =
= (@2p3 � @3p2) e1+
+(@3p1 � @1p3) e2+
+(@1p2 � @2p1) e3:

B. Elements of Pseudoanalytic Function Theory
Following [2], let F and G be a pair of complex-valued

functions satisfying the inequality

Im
�
FG

�
> 0; (4)

where F denotes the complex conjugation of F :

F = ReF � i ImF;

and i is the standard complex unit i2 = �1. Therefore any
complex-valued function W can be expressed as the linear
combination of F and G:

W = �F +  G;

where � and  are purely real-valued functions. A pair
of complex-valued functions satisfying (4) is called a Bers
generating pair. The derivative in the sense of Bers, or (F;G)-
derivative of a function W is de�ned as

d(F;G)W

dz
= (@z�)F + (@z )G (5)

where @z = @1 � i@2, and it exists iff

(@z�)F + (@z )G = 0 (6)

where @z = @1 + i@2 (usually the operators @z and @z are
introduced with the factor 12 ; nevertheless it will result more
convenient for us to work without it).
Let us introduce the following functions

A(F;G) = �F@zG�G@zF
FG� FG

; (7)

B(F;G) =
F@zG�G@zF
FG� FG

;

a(F;G) = �F@zG�G@zF
FG� FG

;

b(F;G) =
F@zG�G@zF
FG� FG

:

These functions are known as the characteristic coef�cients of
the generating pair (F;G). According to these notations, the
equation (5) can be expressed as

d(F;G)W

dz
= @zW �A(F;G)W �B(F;G)W; (8)

and the equation (6) will turn into

@zW � a(F;G)W � b(F;G)W = 0: (9)

This last equation is known as the Vekua equation [20], and
the complex-valued functions W that ful�ll (9) are named
(F;G)-pseudoanalytic.
The following statements were originally posed in [2] by L.

Bers.
Remark 1: The complex-valued functions of the generating

pair (F;G) are (F;G)-pseudoanalytic, and according to (8)
their (F;G)-derivatives satisfy

d(F;G)F

dz
=
d(F;G)G

dz
= 0:

De�nition 2: Let (F;G) and (F1; G1) be two generating
pairs, and let their characteristic coef�cients satisfy

a(F;G) = a(F1;G1) and B(F;G) = �b(F1;G1): (10)

Hence the generating pair (F1; G1) will be called successor
pair of (F;G), as well (F;G) will be the predecessor pair of
(F1; G1) :

Theorem 3: Let W be a (F;G)-pseudoanalytic function,
and let (F1; G1) be a successor pair of (F;G). Then the
(F;G)-derivative of W

d(F;G)W

dz
= @zW �A(F;G)W �B(F;G)W;

will be (F1; G1)-pseudoanalytic.
De�nition 4: Let (F;G) be a generating pair. Its adjoint

pair (F �; G�) will be de�ned by the formulas

F � = � 2F

FG� FG
; G� =

2G

FG� FG
:
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The (F;G)-integral of a complex-valued function W is
posed as Z

�

Wd(F;G)z =

= F (z1)Re

Z
�

G�Wdz +G (z1)Re

Z
�

F �Wdz;

where � is a recti�able curve going from z0 till z1:
In particular, whenW = �F+ G is (F;G)-pseudoanalytic,

then Z z

z0

d(F;G)W

dz
d(F;G)z = (11)

=W (z)� � (z0)F (z)�  (z0)G (z) ;

and since
d(F;G)F

dz
=
d(F;G)G

dz
= 0;

the integral expression (11) represents the antiderivative in the
sense of Bers of

d(F;G)W

dz
:

Also, a continuous complex-valued function w is said to be
(F;G)-integrable iff

Re

I
G�wdz + iRe

I
F �wdz = 0:

Theorem 5: The (F;G)-derivative of a (F;G)-
pseudoanalytic function W is (F;G)-integrable.
Theorem 6: Let (F;G) be a predecessor pair of (F1; G1).

A complex-valued function E will be (F1; G1)-pseudoanalytic
iff it is (F;G)-integrable.
De�nition 7: Let f(Fm; Gm)g ; m = 0;�1;�2;�3; ::: be

a sequence of generating pairs. If every (Fm+1; Gm+1) is
a successor of (Fm; Gm) we say that f(Fm; Gm)g is a
generating sequence. If (F0; G0) = (F;G) we say that (F;G)
is embedded in f(Fm; Gm)g :
Let W be a (F;G)-pseudoanalytic function, and let

f(Fm; Gm)g ; m = 0;�1;�2;�3; ::: be a generating sequence
in which (F;G) is embedded. We can express the higher
derivatives in the sense of Bers of W as

W [0] =W ;

W [m+1] =
d(Fm;Gm)W

[m]

dz
; m = 0; 1; 2; 3::

where d(Fm;Gm)W
[m]

dz is de�ned by (8).
De�nition 8: The formal power Z(0)m (a; z0; z) with center

at z0, coef�cient a and exponent 0 is de�ned as

Z(0)m (a; z0; z) = �Fm (z) + �Gm (z)

where the coef�cients � and � are real constants such that

�Fm (z0) + �Gm (z0) = a:

The formal powers with exponents n = 1; 2; 3; ::: are de�ned
by the formulas

Z(n)m (a; z0; z) = n

Z z

z0

Z
(n�1)
m+1 (a; z0; &) d(Fm;Gm)&:

It is possible to verify that formal powers posses the
following properties:
1) Z(n)m (a; z0; z) is (Fm; Gm)-pseudoanalytic.
2) If a1 and a2 are real constants, then

Z(n)m (a1 + ia2; z0; z) = (12)
= a1Z

(n)
m (1; z0; z) + a2Z

(n)
m (i; z0; z) :

3) The formal powers satisfy the differential relations

d(Fm;Gm)Z
(n)
m (a; z0; z)

dz
= Z

(n�1)
m+1 (a; z0; z) :

4) The formal powers satisfy the asymptotic formulas

lim
z!z0

Z(n)m (a; z0; z) = a (z � z0)n :

Remark 9: As it has been proved in [2], any complex-
valued function W; solution of (9), accepts the expansion

W =
1X
n=0

Z(n) (an; z0; z) ; (13)

where the missing subindexm indicates that all formal powers
belong to the same generating pair. This is: expression (13) is
an analytic representation of the general solution of (9).
The Taylor coef�cients an are obtained according to the

formulas
an =

W [n] (z0)

n!
:

III. QUATERNIONIC REFORMULATION OF THE ELECTRICAL
IMPEDANCE EQUATION, AND ITS RELATION WITH THE

VEKUA EQUATION
Consider the electrical impedance equation (1)

div (� gradu) = 0:

Indeed, the electric �eld vector
�!
E for the static case is de�ned

as �!
E = � gradu; (14)

so we can write
div

�
�
�!
E
�
= 0: (15)

But noticing

div
�
�
�!
E
�
=
D
grad�;

�!
E
E
+ � div

�!
E ;

equation (15) yields

div
�!
E = �

�
grad�

�
;
�!
E

�
: (16)

Beside, from (14) we immediately obtain

rot
�!
E = 0: (17)

Following [14], [18], let us consider now
�!
E as a purely

vectorial quaternionic-valued function
�!
E = E1e1 + E2e2 + E3e3:

Substituting the equalities (16) and (17) in (3) we have

D
�!
E =

�
grad�

�
;
�!
E

�
;
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or using again (3)

D
�!
E =

�
D�

�
;
�!
E

�
: (18)

Now, according to expression (2), we have that
�!q � �!p +�!p � �!q = �2 h�!q ;�!p i ;

and since D�
� is a purely vectorial quaternion, we can write�
D�

�
;
�!
E

�
= �1

2

�
D�

�

�!
E +

�!
E
D�

�

�
:

Hence, it follows from (18)

D
�!
E = �1

2

�
D�

�

�!
E +

�!
E
D�

�

�
: (19)

But according to the Liapunov rule of derivation, when we
apply the Moisil-Theodoresco operator to

p
� we obtain

D
p
� =

1

2

1p
�
D�;

thus we have
1

2

D�

�
=
D
p
�p
�
:

Taking into account this last expression, (19) turns into

D
�!
E = �

�
D
p
�p
�

�!
E +

�!
E
D
p
�p
�

�
: (20)

Let us consider now the Moisil-Theodoresco operator D
applied to

p
�
�!
E . By the Leibiniz rule of derivation we obtain

D
�p

�
�!
E
�
=
�
D
p
�
��!
E +

p
�D
�!
E ;

hence
D
�!
E =

1p
�
D
�p

�
�!
E
�
� D

p
�p
�

�!
E :

Substituting this equality into the left side of (20) we obtain

1p
�
D
�p

�
�!
E
�
� D

p
�p
�

�!
E =

= �
�
D
p
�p
�

�!
E +

�!
E
D
p
�p
�

�
;

and it follows
1p
�
D
�p

�
�!
E
�
= ��!E D

p
�p
�
;

or
D
�p

�
�!
E
�
+
p
�
�!
E
D
p
�p
�
= 0: (21)

Introducing the notations
�!E =

p
�
�!
E ; (22)

and
�!� = D

p
�p
�
; (23)

equality (21) turns into the equation�
D +M

�!�
��!E = 0; (24)

which is a quaternionic reformulation of (1).

A. The two-dimensional case
Let us consider the special case when

�!E = E1e1 + E2e2 (25)

and � depends upon only two spatial variables � = � (x1; x2) :
Thus, the expression (23) takes the form

�!� = �1e1 + �2e2;

where
�1 =

@1
p
�p
�
; �2 =

@2
p
�p
�
: (26)

Substituting (25) and (26) into (24) we have

D (E1e1 + E2e2) + (E1e1 + E2e2) (�1e1 + �2e2) = 0;

which is equivalent to the system

@1E1 + @2E2 = �E1�1 � E2�2;
@1E2 � @2E1 = E3�1 � E1�2;

@3E1 = @3E2 = 0:

Multiplying the second equation by �i and adding to the �rst,
it yields

@z (E1 � iE2) + (�1 � i�2) (E1 + iE2) = 0; (27)

but according to (26) it is possible to see that

�1 � i�2 =
@z
p
�p
�
:

Taking this into account and introducing the notation

E = E1 � iE2; (28)

the equation (27) becomes

@zE +
@z
p
�p
�
E = 0: (29)

which is a special kind of Vekua equation [20].
We shall mention that in [4], the authors obtained a bicom-

plex Vekua equation similar to (29), starting from a quater-
nionic equation with the same structure that (24), but related
to the Dirac equation with different classes of potentials.
In order to analyze the general solution of (29), it will be

convenient to associate it with another Vekua equation of the
form

@zW � @z
p
�p
�
W = 0; (30)

as we shall expose in the following paragraphs [13].
Let

F =
p
� and G =

ip
�
: (31)

It is easy to verify these functions satisfy (4), so they constitute
a generating pair, and according to (7), their characteristic
coef�cients are

A(F;G) = a(F;G) = 0;

B(F;G) =
@z
p
�p
�
; b(F;G) =

@z
p
�p
�
:
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Let us notice that, in concordance with De�nition 2, the
characteristic coef�cients corresponding to a successor pair
(F1; G1) of the pair

�p
�; ip

�

�
must verify the relations

a(F1;G1) = 0; b(F1;G1) = �
@z
p
�p
�
:

Beside, a (F1; G1)-pseudoanalytic function E must ful�ll
equation (29).
Remark 10: By Theorem 3, the

�p
�; ip

�

�
-derivative of

any solution of (30) will be a solution of (29).
We have now established the relation between the Vekua

equation (29) and the Vekua equation (30).
Moreover, since the general solution of (30) can be repre-

sented by means of (13), once we have a generating sequence
where the pair

�p
�; ip

�

�
is embedded, we will be able

to express the general solution of (29) as the
�p

�; ip
�

�
-

derivative of the general solution of (30).
It is important to mention that, in general, it is not clear

how to build a generating sequence in which an arbitrary
generating pair is embedded. Although, using new results in
Applied Pseudoanalytic Functions Theory [9], we are able
to write an explicit generating sequence for the case when
the desired embedded generating pair belongs to a special
class of functions that, without loss of generality, ful�lls the
requirements of the Electrical Impedance Tomography.

B. Explicit generating sequence for the case when � is a
separable-variables function
Since the early appearing of Bers Pseudoanalytic Function

Theory [2], the development of methods for introducing ex-
plicit generating sequences, in which a speci�c generating pair
is embedded, have represented a very interesting challenge. We
shall remark that an explicit generating sequence is required if
we desire to express the general solution of a Vekua equation
in terms of Taylor series in formal powers.
When considering the Electrical Impedance Equation (1),

a very important case is referred to a separable-variables
conductivity � function

� (x1; x2) = U2(x1)V
2 (x2) ;

because it represents a very useful approach for the problem
of Electrical Impedance Tomography (see e.g. [6]).
For this case, an explicit generating sequence was intro-

duced by V. V. Kravchenko as follows.
Theorem 11: [10] Let (F;G) be a generating pair of the

form

F =
p
� = U(x1)V (x2) ;

G =
ip
�
=

i

U(x1)V (x2)
:

Then, it is embedded in the generating sequence f(Fm; Gm)g ;
m = 0;�1;�2;�3; ::: de�ned as

Fm = 2mU(x1)V (x2) ;

Gm = i
2m

U(x1)V (x2)
;

when m is an even number, and

Fm = 2m
V (x2)

U(x1)
;

Gm = i2m
U(x1)

V (x2)
;

when m is odd.
Remark 12: Given an explicit generating sequence where

the generating pair

F =
p
� = U(x1)V (x2) ;

G =
ip
�
=

i

U(x1)V (x2)
;

is embedded, we are in the possibility of building the Taylor
series in formal powers in order to approach the general
solution of the Vekua equation (30). According to Theorem 3,
the

�p
�; ip

�

�
-derivative of such solution will be the general

solution of the Vekua equation (29). Hence, the real and the
imaginary components of the solution of (29) will constitute
the general solution for the two-dimensional case of the
quaternionic equation (24). Finally, using (22), it immediately
follows we are able to write the general solution for the two-
dimensional Electrical Impedance Equation (1).
Remark 13: [17] Introducing the notations

p = Ae�
R
�1dx1+

R
�2dx2 ;

@z1 = @2 + i@1;

V = E ;

where A is a real constant, �1 and �2 are de�ned in (26), and
according to (28), E has the form

E = E1 + iE2;

the equation (29) will turn into the equation

@z1V +
@z1p

p
V = 0: (32)

It is evident that p is a separable-variables function, and since
(32) has identical structure to (30), its general solution can
be approached with the same methods exposed before. This
represents an alternative path for approaching the general
solution of (1).

IV. CONCLUSIONS
Since the study of equation (1) is the base for the Electrical

Impedance Tomography problem, the possibility of expressing
the general solution of (1) by means of Taylor series in formal
powers, opens a new path for improving the convergence
speed of many numerical methods designed for medical image
reconstruction.
We should notice that the mathematical methods studied

before impose minimal restrictions to the conductivity function
�. Indeed, it is only necessary for � to be a separable-
variables function in the Cartesian plane, and to be at least
once derivable. This is a very general case which includes
most part of mathematical approaches for physical situations in
Electrical Impedance Tomography (see e.g. [5], [6] and [15]).
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We should also notice that the numerical methods that might
be used when applying the techniques shown before, belong
almost exclusively to the evaluation of the integral operators
that are needed for approaching the formal powers. This task
can be accomplished by quite standard numerical procedures,
hence we can lead our further discussions to approach the
constants for Taylor series at the moment of solving the
problem of Electrical Impedance Tomography.
Notice also that the equivalence of the two-dimensional

Electrical Impedance Equation with a Vekua equation is pre-
cisely the key that warrants the uniqueness of the solution of
Calderon problem [1], hence from a proper point of view, the
techniques exposed before may work as a powerful comple-
ment for the well developed electronic systems, designed for
detecting with high accuracy the potentials around the domains
of interest of tomography [7][16].
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