On the Exit Laws for Semidynamical Systems and Bochner Subordination

Hassen Mejri * and Ezzedine Mliki †

Abstract—Let \(\Phi : [0, \infty] \times E \to E \) be a semidynamical system and \(\beta = (\beta_t)_{t \geq 0} \) be a Bochner subordinator. It is proved in this paper that, every \(\beta \)-Liapunov function \(l \) for \(\Phi \) is of the form \(l(x) = \int_0^\infty f(t, x) \, dt \) where \(f : [0, \infty] \times E \to [0, \infty] \) be a solution of the following functional equation

\[
\int_0^\infty f(t, \Phi(r, x)) \beta_r(dr) = f(s + t, x), \quad s, t > 0, x \in E.
\]

We deduce an explicit formula for \(\alpha \)-Liapunov functions defined by the fractional power subordinator of order \(\alpha \in [0, 1] \).

Keywords: semidynamical system, Bochner subordinator, exit law.

1 Introduction

Let \(\Phi : [0, \infty] \times E \to E \) be a measurable semidynamical system on a measurable space \(E \) and let \(F \) be the space of measurable finite functions defined on \(E \). Let \(\beta = (\beta_t)_{t \geq 0} \) be a Bochner subordinator, i.e., a convolution semigroup of probability measures on \([0, +\infty[\). We may define

\[
Q_t u(x) := \int_0^\infty u(\Phi(s, x)) \beta_s(ds), \quad u \in F, \quad t \geq 0, x \in E.
\]

A \(\beta \)-exit law associated to \(\Phi \) is a family \(f = (f_t)_{t \geq 0} \) of positive measurable function satisfying the functional equation (using the notation \(f_t := f(t, \cdot) \))

\[
Q_s f_t = f_{s+t}, \quad s, t > 0.
\]

The integral representation in terms of exit law is originally given by Dynkin [4] and its studied by several authors [6, 7, 8, 9, 10] and [12, 13, 14, 15]. In this paper, we investigate first the representation by \(\beta \)-exit laws. In this case, if the function \(\int_0^{\infty} f_t \, dt \) is finite then it belongs to the cone of \(Q \)-Liapunov functions defined by

\[
L^\beta := \{ u \in F : u \geq 0, Q_t u \leq u, \lim_{t \to 0} Q_t u = u \}
\]

Conversely, there are elementary examples for which elements from \(L^\beta \) do not admit an integral representation by a \(\beta \)-exit law (cf. [14], Example 2.7.1). In fact, as it is observed in many papers related to this problem (cf. [6, 7, 8, 9, 10, 12, 13, 14, 15]), some finiteness assumptions are needed, in order to represent elements of \(L^\beta \) in terms of \(\beta \)-exit laws. Along this paper, elements from \(L^\beta \) which is bounded on each trajectory of \(\Phi \) will be called \(\beta \)-Liapunov functions.

For our context, it is proved in [14] that, for each \(\eta^\alpha \)-Liapunov function \(l \) such that \(\lim_{t \to \infty} Q_t^\alpha u = 0 \), there exists a unique \(\eta^\alpha \)-exit law \(f^\alpha = (f^\alpha_t)_{t \geq 0} \) such that

\[
l(x) = \int_0^\infty f^\alpha_t(x) \, dt, \quad x \in E \quad (1)
\]

The aim of the present paper is to show that a similar, and in fact more general that (1). In what follows we shall denote by \(K \) the set of all Bochner subordinator \(\beta \) such that \(t \to \beta_t \) is continuously differentiable from \([0, \infty[\) to the Banach algebra of complex borel measures on \(S \) such that \(\| \beta_t^\alpha \|_S < \infty \) for each \(t > 0 \). We prove the following integral representation result:

Let \(\beta \) be in \(K \). For each \(\beta \)-Liapunov function \(l \) there exists a unique (up to equivalence) \(\beta \)-exit law \(f = (f_t)_{t \geq 0} \) for \(\Phi \) such that

\[
l(x) = \int_0^\infty f_t(x) \, dt, \quad x \in E.
\]

Moreover, \(f = (f_t)_{t \geq 0} \) is explicitly given by

\[
f_t(x) = -\int_0^\infty \Phi(s, x) \frac{\partial}{\partial t} \beta_t(ds), \quad t > 0, x \in E.
\]

As application, we consider the fractional power subordinator \(\eta^\alpha := (\eta^\alpha_t) \) of order \(\alpha \in [0, 1] \). It is defined by its Laplace transform \(\mathcal{L}(\eta^\alpha_t)(r) = \exp(-tr^\alpha) \). In this case, under some regular assumption we prove that each \(\eta^\alpha \)-Liapunov function \(l \) admits the integral representation.

\[
l(x) = \frac{1}{\Gamma(\alpha)} \int_0^{\infty} \varphi_t(x) t^{\alpha-1} \, dt, \quad x \in E
\]

where

\[
\varphi_t(x) := \frac{\alpha}{\Gamma(1-\alpha)} \int_0^{\infty} \left(l(\Phi(t, x)) - l(\Phi(s + t, x)) \right) ds
\]

Moreover, formulas like (2) and (3) will be also deduced for the \(\Gamma \)-subordinator and for the Poisson subordinator.

(Advance online publication: 1 February 2010)
Let \(\Phi \) be a SDS on \(\mathbb{E} \), we define a semigroup

\[
B(t) := \Phi(t,x) = \int_0^t \Phi(s,x - \xi(s)) ds,
\]

where \(\xi(s) \) is a stochastic process. We consider \(\Phi \) associated to the SDS \(\Phi \). Let \(\sigma \) be a semimartingale, and let \(\tau \) be the first hitting time of \(\mathbb{E} \). We denote by \(\Phi(\tau, t) := \Phi(\tau, \cdot) \) is the solution of the stochastic differential equation

\[
d\xi(s) = \xi(s) \, dt + \sigma(s) \, dW(s),
\]

where \(\sigma(s) \) is a \(\mathcal{F}_s \)-adapted process and \(W(s) \) is a standard Brownian motion. We denote by \(\sigma(s) \) the drift and \(\sigma(s) \) the volatility.

We refer to the references [8, 9, 10, 12] for more details.

2 Preliminary

A semidynamical system (SDS) on \(\mathbb{E} \) is a measurable mapping \(\Phi : \mathbb{E} \rightarrow \mathbb{E} \) which satisfies

\[
\Phi(0, x) = x, \quad \Phi(s + t, x) = \Phi(s, \Phi(t, x)), \quad s, t \geq 0, \quad x \in \mathbb{E}.
\]

We consider \(R \) endowed with its Borel field, we denote by \(\lambda \) the Lebesgue measure on \([0, \infty] \). Let \(\mathcal{F}_t \) be the set of all finite sets defined on \(R \) and \(\mathcal{F}_t + \) be the subset of positive elements of \(\mathcal{F}_t \). Note that any linear operator defined on the space \(\mathcal{B} \) may be extended to any positive measurable function in the usual way. The space \([0, \infty] \times \mathbb{E} \) is always endowed with product \(\sigma \)-algebra \(\mathcal{E} \otimes \mathcal{A} \).

We denote by \(\nu \) a measure on \([0, \infty] \times \mathbb{E} \) which satisfies \(\nu([0, \infty] \times \mathbb{E}) = 1 \) and supported on \(\mathbb{E} \). We denote by \(\nu(\cdot, \mathbb{E}) \) the total variation measure at point \(\mathbb{E} \).

\[
\int_0^\infty \nu([0, \infty) \times \mathbb{E}) ds = 1
\]

We shall give some sufficient condition for the Bernstein function. The associated Bernstein function is defined by \(k := \int_0^\infty \beta_s \, ds \). Following (cf. [2], Proposition 14.1) \(k \) is a Bochner measure. The associated Bernstein function \(k \) is defined by the Laplace transform \(\mathcal{L}(\beta)(r) = \exp(-tr(r)) \) for all \(r, t > 0 \). It is known that \(k \) admits the representation (cf. [2], Theorem 9.8)

\[
k(r) = br + \int_0^\infty (1 - \exp(-rs)) \nu(ds), \quad r > 0
\]

where \(b \geq 0 \) and \(\nu \) is a measure on \([0, \infty] \). \(\mathcal{L} \) is a convolution semigroup.

The most important example of Bochner subordinator in the class \(\kappa \) is the one-sided or fractional power stable subordinator of index \(\beta \in (0, 1] \).

Examples 2.2 Let \(\beta \) be a Bochner subordinator and let \(k \) be the associated Bernstein function given by (4). We shall give some sufficient condition for the Bernstein function in order to get a subordinator in \(\kappa \). We exhibit such examples of subordinator be in \(\kappa \) which contains a number of important functions, including fractional powers, the logarithm, the inverse hyperbolic cosine. We refer to [3] and [16].

1. If \(\sup_{t \in S} |F^\beta(t, u)| = O(t^{-1}) \), \(t \downarrow 0 \) where

\[
F^\beta(t, u) := \int_0^\infty \int_0^\infty u(r) \frac{\partial}{\partial r} (\beta_t(r-s) - \beta_t(r)) \nu(ds) dr
\]

and \(S \) is the unit sphere of the complex space of exponential polynomials with respect to sup-norm on \(R_+ \). Then \(\beta \in \kappa \). For example:

\[
i. \quad \alpha \in [0, 1], \quad c \geq 0 \quad \text{and} \quad k(r) = (c + r)^\alpha - c^\alpha.
\]

Then \(\beta \in \kappa \).

\[
ii. \quad 0 < \alpha < \gamma < 1 \quad \text{and} \quad k(r) = r^\alpha - (\exp(-r^\gamma) - 1).
\]

Then \(\beta \in \kappa \).

2. Let \(r \mapsto \beta_t([r-r, r]) \) is monotone decreasing function on \([s, \infty) \) for all \(s \geq 0 \) for each sufficiently small \(t > 0 \). If

\[
\int_0^\infty \beta_t([0, s]) \nu(ds) = O(t^{-1}) \quad \text{as} \quad t \downarrow 0,
\]

then \(\beta \in \kappa \). For examples:

(Advance online publication: 1 February 2010)
i) Let \(b > 0 \) and \(k(r) = \log(b + r) - \log b \), then \(\beta \in \mathcal{K} \).

ii) Let \(b, s \geq 0 \) and \(k(r) = \acosh(b + r) - \acosh b \), then \(\beta \in \mathcal{K} \).

3. \(\varepsilon \ast \beta \) is not in \(\mathcal{K} \).

4. If \(\beta^1 \) and \(\beta^2 \) are in \(\mathcal{K} \) then so is \(\beta^1 \ast \beta^2 \).

Let \(\Phi \) be a SSD and \(\beta \) be a Bochner subordinator. Define \(Q = (Q_t)_{t \geq 0} \) by

\[
Q_t u(x) := \int_0^\infty u(\Phi(t, x)) \beta_t(dr)
\]

for all \(u \in \mathcal{B}, t \geq 0 \) and \(x \in E \). Then \(Q \) is a semigroup of linear operator on \(\mathcal{B} \). This is clear by using the translation equation of \(\Phi \) and semigroup property of \(\beta \). The potential kernel associated to \(Q \) is defined by \(V^\beta := \int_0^\infty Q_t dt \). By integration of (5), we get

\[
V^\beta u(x) := \int_0^\infty Q_t u(x) dt = \int_0^\infty u(\Phi(t, x)) \kappa(dt)
\]

for all \(u \in \mathcal{B} \) and \(x \in E \).

Definition 2.3 A positive measurable function \(l \in \mathcal{F} \) is called \(Q \)-Liapunov function for \(\Phi \) if for any \(x \in E \)

(i) The function \(t \to Q_t l(x) \) is decreasing,

(ii) \(\lim_{t \to 0} Q_t l(x) = l(x) \).

We denote by \(L^\beta \) the cone of such functions.

Let \(\text{Im}(V^\beta) := \{ V^\beta u : u \in \mathcal{F}, V^\beta u \in \mathcal{F} \} \). It is clear to see that \(\text{Im}(V^\beta) \subset L^\beta \). If we instead \(Q \) by the deterministic semigroup \(H \) associated to \(\Phi \) then each function \(l \in \mathcal{F} \) satisfying (i) and (ii) is called classical Liapunov function for \(\Phi \).

Let \(\Phi \) be SDS and \(\beta \) be in \(\mathcal{K} \). A \(\beta \)-exit law associated to \(\Phi \) is a measurable function \(f : [0, \infty[\times E \to [0, \infty] \) which satisfies:

\[
\int_0^\infty f(t, \Phi(s, x)) \beta_t(dr) = f(s + t, x)
\]

for all \(s, t > 0 \) and \(x \in E \). The functional equation (7) is called \(\beta \)-exit equation. By (5) and the notation \(f_s(x) := f(t, x) \), (7) is equivalent to

\[
Q_s f_t(x) = f_{s+t}(x), \quad s, t > 0, x \in E
\]

For example, for \(u \in \mathcal{F}_+ \), the function \((t, x) \to Q_t u(x) \) is a \(\beta \)-exit law for \(\Phi \) whenever it is finite. This follows immediately from the semigroup property of \(Q \). Two \(\beta \)-exit laws \(f \) and \(\psi \) are said to be equivalent if \(f_t = \psi_t \), \(\lambda \)-a.e.

Lemma 2.4 Let \(\beta \in \mathcal{K} \). Then

\[
\beta_{s+t} = \beta_s \ast \beta_t, \quad s, t > 0
\]

and

\[
\beta_t = -\beta_t' \ast \kappa, \quad t > 0
\]

where \(\beta_t' := \frac{d}{dt} \beta_t \) and \(\kappa = \int_0^\infty \beta_t dt \).

Proof. Let \(\beta \in \mathcal{K} \). Since \(\mathcal{L}(\beta_t)(r) = \exp(-tf(r)) \), then by differentiation with respect to \(t \) under the integral sign, we obtain

\[
\mathcal{L}(\beta_t) = \frac{d}{dt} \mathcal{L}(\beta_t)(r) = -f(r) \exp(-tf(r)); \quad t, r > 0
\]

Let \(s, t, r > 0 \), we get

\[
\mathcal{L}(\beta_s \ast \beta_t)(r) = \mathcal{L}(\beta_s)(r) \mathcal{L}(\beta_t)(r)
\]

\[
= -f(r) \exp(-sf(r)) \exp(-tf(r))
\]

\[
= -f(r) e^{-(s+t)f(r)}
\]

\[
= \mathcal{L}(\beta_{s+t})(r)
\]

Moreover, since \(\mathcal{L}(\kappa)(r) = \frac{1}{f(r)} \) (cf. [2], Proposition 14.1) we have

\[
\mathcal{L}(-\beta_s \ast \kappa)(r) = -\mathcal{L}(\beta_s)(r) \mathcal{L}(\kappa)(r)
\]

\[
= f(r) \exp(-sf(r)) \frac{1}{f(r)}
\]

\[
= \mathcal{L}(\beta_t)(r)
\]

We deduce (9) and (10) by the injectivity of Laplace transform.

3 Representation in terms of \(\beta \)-exit laws

Proposition 3.1 Let \(\Phi \) be a SDS and let \(f = (f_t)_{t > 0} \) be a \(\beta \)-exit law such that \(l(x) := \int_0^\infty f_t(x) dt < \infty \). Then \(l \) is \(Q \)-Liapunov function, moreover

\[
f_t(x) = -\frac{\partial}{\partial t} Q_t l(x), \quad t > 0, x \in E
\]

Proof. By Fubini’s Theorem and (8) we get for all \(x \in E \)

\[
Q_t l(x) = \int_0^t Q_s f_s(x) ds = \int_0^t f_s(x) ds.
\]

Therefore, \(Q_t l \) is finite since \(\int_0^\infty f_t dt < \infty \) and

\[
Q_t l(x) = \int_0^t f_s(x) ds, \quad t > 0, x \in E
\]

Now from (12), we easily deduce that \(l \) is \(Q \)-Liapunov function. Moreover, by (12) again we have for \(r, t > 0 \)

\[
\frac{1}{r} (Q_{r+t} l - Q_t l) = -\frac{1}{r} \int_t^{r+t} f_s ds
\]

Hence we obtain (11).
Let \mathcal{R}^L be the cone of functions $u := \int_0^\infty f_x dt$ such that f is an exit law for Φ and u is finite. From Proposition 3.1, it follows that

$$\text{Im}(V^\beta) \subset \mathcal{R}^L \subset L^\beta.$$

But, the converse is not true in general, i.e. elements of L^β are not necessary on the form $u = \int_0^\infty f_x ds$ for some Q-exit laws f. As it is observed in many papers related to this problem (cf. [6, 7, 8, 9, 10, 12, 13, 14, 15]), we need some finiteness assumptions, in order to represent the Q-Liapunov functions in terms of the β-exit laws of Φ. In what follows, elements u of L^β for which there exists a $v \in \mathcal{F}_+$ such that $u(\Phi(t, x)) \leq v(x)$ for each $t \geq 0$ and each $x \in E$ will be called β-Liapunov functions. This means that u is bounded on each trajectory of Φ.

Theorem 3.2 Let Φ be a SDS, β in \mathcal{K} and let l be an associated β-Liapunov function, then the function f defined by

$$f_t(x) = -\int_0^\infty l(\Phi(s, x)) \beta_t(ds), \quad t \geq 0, \quad x \in E$$

is an exit law for Φ.

Proof. Let β be in \mathcal{K} and let l be a β-Liapunov function. Since $l \circ \Phi_t \leq v$ for each $t \geq 0$ and $\beta_t([0, \infty]) = 1$, it follows that

$$Q_l(x) = \int_0^\infty l(\Phi(r, x)) \beta_t(dr) \leq v(x).$$

Hence Q_l is a finite function. Now, since $l \circ \Phi_t \leq v$ again and the total variation of β_t is finite, the following function is well defined

$$f_t(x) := -\int_0^\infty l(\Phi(r, x)) \beta_t'(dr), \quad t > 0, \quad x \in E,$$ and the differentiation with respect to t under the integral sign is justified in Q_l. We may define

$$f_t(x) = -\frac{\partial}{\partial t} Q_l(x), \quad t > 0, \quad x \in E \quad (14)$$

Now, since $t \to Q_l(x)$ is decreasing, (14) allows us to conclude that $f_t \geq 0$ for all $t > 0$. Moreover, by Fubini Theorem’s, (5) and (9), we have

$$Q_tf_s(x) = \int_0^\infty f_t(\Phi(m, x)) \beta_t(dm)$$

$$= -\int_0^\infty \int_0^\infty l(\Phi(r, \Phi(m, x))) \beta_t'(dr) \beta_t(dm)$$

$$= -\int_0^\infty \int_0^\infty l(\Phi(r + m, x)) \beta_t'(dr) \beta_t(dm)$$

$$= -\int_0^\infty l(\Phi(r, x)) (\beta_t' \beta_t)(dr)$$

$$= -\int_0^\infty l(\Phi(r, x)) \beta_t'(dr)$$

It follows that f is a Q-exit law.

Remarks 3.3 In [14] under the condition $\lim_{s \to \infty} Q_l = 0$, we proved the representation given above by (17) of η^β-Liapunov function defined by the fractional power subordinator of order $\alpha \in [0, 1]$ in terms of η^β-exit law.

Now we may obtain under the same condition the representation for all subordinator in \mathcal{K}. Indeed, from (14) it is easy to see that

$$Q_l(x) - Q_s(x) = \int_s^\infty f_r(dr), \quad s, t > 0, \quad x \in E \quad (15)$$

then, by letting $s \to \infty$ in (15), we deduce that $r \mapsto f_r(x)$ is integrable at ∞ and

$$Q_l(x) = \int_0^\infty f_r(dr), \quad t > 0, \quad x \in E \quad (16)$$

we conclude by letting $t \to 0$ in (16).

In fact in Theorem 3.4 we prove that condition $\lim_{s \to \infty} Q_l = 0$, is not necessary to get the representation of β-Liapunov functions in terms of β-exit law where β is a Bochner subordinator in the class \mathcal{K}.

Theorem 3.4 Let Φ be a SDS and let β in \mathcal{K}. For each β-Liapunov function l, there exists a unique (up to equivalence) β-exit law $f = (f_t)_{t > 0}$ for Φ such that

$$l(x) = \int_0^\infty f_t(x) dt, \quad x \in E \quad (17)$$

Moreover, f is explicitly given by

$$f_t(x) = -\int_0^\infty l(\Phi(s, x)) \partial_t \beta_t(ds), \quad t > 0, \quad x \in E \quad (18)$$

Proof. Let β be in \mathcal{K} and let l be a β-Liapunov function. By Theorem 3.2 we may define

$$f_t(x) = -\partial_t Q_l(x), \quad t > 0, \quad x \in E.$$

By Fubini’s Theorem, (5), (10) and (9) we have for fixed $s, t > 0$

$$Q_{s+t} = \int_0^\infty H_r(Q_s l) \beta_t(dr)$$

$$= -\int_0^\infty H_r(Q_s l) (\beta_t^\prime \kappa)(dr)$$

$$= -\int_0^\infty \int_0^\infty H_{r+t} Q_s l (\beta_t^\prime dr) \kappa(d\ell)$$

$$= -\int_0^\infty \int_0^\infty H_r Q_s l (\beta_t^\prime dr) \beta_t(d\ell) dq$$

$$= -\int_0^\infty \int_0^\infty H_r Q_s l (\beta_t^\prime \beta_t)(dr) dq$$

$$= -\int_0^\infty \int_0^\infty H_r Q_s l (\beta_t^\prime \beta_t^\prime)(dr) dq$$

(Advance online publication: 1 February 2010)
for all \(x \in E \). Let \(\mathcal{S}^\beta \) be the cone of finite functions on the form (22). From (5) and (22) again, we deduce that
\[
\text{Im}(V^\beta) \subset \mathcal{S}^\beta \subset \mathcal{R}^\beta.
\]

3. We consider the function \(g_t \) be the density of \(\eta_t^2 \). It is easy to see that \(g_t \) is a \(Q \)-exit law. Furthermore it is known that \(\lim_{t \to 0} g_t(x) = 0 \) for each \(x \in R \). Hence
\[
u := \int_0^\infty g_t \, dt \in R^2 \setminus S^2.
\]
(14) Example 2.7.2. Under some regular assumption we prove that \(\mathcal{S}^\beta = \mathcal{R}^\beta \). Similar results of this problem are obtained in other contexts in [1].

4. Let \(\Phi \) be a SDS and let \(\beta \) be in \(K \). A \(\beta \)-Liapunov function \(l \) is said satisfies (C) if \(s \to [l(\Phi(t, x)) - l(\Phi(s + t, x))] \) is \(\nu \) integrable for all \(x \in E \) and \(r > 0 \) where \(\nu \) is the parameter of the associated Bernstein function given in (4).

5. Let \(\Phi \) be a SDS and let \(\beta \) be in \(K \) with bounded associated Bernstein function. Then condition (C) is fulfilled for each \(\beta \)-Liapunov function.

Theorem 3.7 Let \(\Phi \) be a SDS and let \(\beta \) be in \(K \). Then each \(\beta \)-Liapunov function \(l \) such that (C) holds, admits the integral representation
\[
l(x) = \int_0^\infty \varphi_t (x) \kappa (dt), \quad x \in E
\]
where
\[
\varphi_t(x) := \int_0^\infty \left[l(\Phi(t, x)) - l(\Phi(s + t, x)) \right] \nu (ds).
\]

Proof. Let \(\beta \) be in \(K \) and let \(l \) be a \(\beta \)-Liapunov function satisfying (C). Then by Theorem 3.4, there exist a unique \(\beta \)-exit law \(f_t \) such that \(l(x) = \int_0^\infty f_t(x) \, dt \). By (18), we get
\[
f_{t+s}(x) = - \int_0^\infty Q_t l(\Phi(r, x)) \beta'_r (dr) = - \frac{\partial}{\partial s} Q_t l(x)
\]
(24)
On the other hand, since \(\beta_t(\cdot, 0, \cdot) = 1 \) and the differentiation with respect to \(t \) under integral sign is justified in \(\beta_t \), then \(\int_0^\infty \beta'_t (dt) = 0 \). Therefore, we have
\[
\frac{\partial}{\partial t} Q_t u(x) = \int_0^\infty (u(\Phi(s, x)) - u(x)) \beta'_s (ds), \quad t > 0, \quad x \in E.
\]
Now since \(\text{C} \) holds, then for each \(t > 0 \) and \(x \in E \), the following function is well defined
\[
\varphi_t(x) := \int_0^\infty \left[l(\Phi(t, x)) - l(\Phi(s + t, x)) \right] \nu (ds).
\]
By letting \(s \to 0, \) (24) and ([17], p. 265), we get
\[
f_t(x) = \int_0^\infty \left(Q_t l(x) - Q_t l(\Phi(r, x)) \right) \nu (dr), \quad t > 0, \quad x \in E.
\]
It follows from (5) that \(f_t = \int_0^\infty \varphi_s \beta_t (ds) \) and we conclude by the well definition of \(\kappa \) to get (23).
4 Applications

1. One-sided stable subordinator: Let η^α be the one-sided stable subordinator of order $\alpha \in [0,1]$, i.e. the unique convolution semigroup $\eta^\alpha = (\eta^\alpha_t)_{t>0}$ on $[0,\infty]$ such that for each $t > 0$, the Laplace Transform $\mathcal{L}(\eta^\alpha_t)(r) = \exp(-tr^\alpha)$ for $r > 0$. Moreover, following ([17], p. 263), the measure η^α_t has a density, denoted by g^α_t, with respect to λ. If we consider $\alpha = \frac{1}{2}$, then the subordinator $\eta^\frac{1}{2}$ is called the Inverse Gaussian subordinator (cf. [3], p. 869). In this case (cf. [18], p. 268)

$$g^\frac{1}{2}_t(s) := 1_{[0,\infty)}(s) \frac{1}{\sqrt{4\pi}} t s^{-\frac{3}{2}} \exp(-\frac{t^2}{4s}), \quad t > 0.$$

Following (cf. [3], p. 869), for each $\alpha \in [0,1]$, $\eta^\alpha \in \mathcal{K}$. Let Φ be a SDS and let l be a η^α-Liapunov function. Following Theorem 3.4, in the special case if $\alpha = \frac{1}{2}$, l is on the form

$$l(x) = \frac{1}{\Gamma(\alpha)} \int_0^\infty \varphi_l(x) t^{\alpha-1} dt, \quad x \in E,$$

where

$$\varphi_l(x) := \frac{\alpha}{\Gamma(1-\alpha)} \int_0^\infty \frac{l(\Phi(t,x)) - l(\Phi(s+t,x))}{s^{\alpha+1}} ds.$$

2. Gamma subordinator: The Γ-subordinator $\gamma := (\gamma_t)_{t>0}$ is given by $\gamma_t := h_t \cdot \lambda$ where

$$h_t(s) := 1_{[0,\infty)}(s) \frac{1}{\Gamma(t)} s^{t-1} \exp(-s), \quad t > 0.$$

In this case $\kappa := \int_0^\infty \gamma_t dt = d \cdot \lambda$ where

$$d(t) := \exp(-t) \int_0^\infty \frac{1}{\Gamma(s)} t^{s-1} ds.$$

Moreover $\gamma \in \mathcal{K}$ (cf. [3], p. 874). Let Φ be a SDS, by application of Theorem 3.4, each Γ-Liapunov function admits the integral representation

$$l(x) = \int_0^\infty \int_0^\infty l(\Phi(s+t,x)) s^{t-1} \frac{1}{\Gamma(t)} \left(\frac{l'(t)}{\Gamma(t)} - \log s \right) e^{-s} ds dt,$$

for all $t > 0$ and $x \in E$. Moreover, if (C) holds then by Theorem 3.7 each Γ-Liapunov function l admits the integral representation

$$l(x) = \int_0^\infty \varphi_l(x) k(t) dt, \quad x \in E,$$

where

$$\varphi_l(x) = \int_0^\infty \left(l(\Phi(s+t,x)) - l(\Phi(t,x)) \right) s^{-1} \exp(-s) ds.$$

3. Compound Poisson subordinator: Let q be an arbitrary probability measure on $[0,\infty]$. With $q_j := \{q\}^j$ such that $q_0 \equiv \varepsilon_0$ and fixed $c > 0$, the following semigroup (cf. [3], p. 870)

$$\tau_t := e^{-ct} \sum_{j=0}^{\infty} \frac{(ct)^j}{j!} q_j, \quad t > 0,$$

is called Compound Poisson subordinator. Moreover, the Bernstein function associated to $\tau := (\tau_t)_{t>0}$ which is bounded is given by $f(r) = c\mathcal{L}(\varepsilon_0 - q)(r)$, $r > 0$. Note that $\tau \in \mathcal{K}$. For $q = \varepsilon_1$, we obtain the Poisson subordinator with jump c. In particular, if we consider the Poisson subordinator with jump 1 by Theorem 3.7 and Remark 3.6.4 each τ-Liapunov function l is on the form

$$l(x) = \sum_{n=0}^{n=\infty} f_n(x),$$

where

$$f_n(x) = l(\Phi(t,x)) - l(\Phi(t+1,x)), \quad t > 0.$$

Acknowledgement. We want to thank professor Mohamed Hmisi for many helpful discussions on these and related topics.

References

