
 

 

 

 

 

Abstract— Pharmacokinetic models, using recursive finite 

difference equations  (RFDEs), can be derived directly from 

traditional exponential models. This method has been 

successfully applied to propofol infusion data. Furthermore, 

this technique yields identical accuracy, on a subject-specific 

basis, as the exponential model from which each RFDE 

model was derived. Specifically, these infusion models are 

based upon an inhomogeneous RFDE: P(k+3) = A·P(k+2) + 

B·P(k+1) + C·P(k) + R, where A, B, C, and R are non-zero 

constants and P represents plasma propofol levels for each 

kth unit of time. When applied to propofol infusions, RFDE 

modeling has advantages, over traditional exponential 

models, in that fewer coefficients are needed and 

patient-to-patient variation of these coefficients is reduced. 

However, initial conditions for RFDEs have to be specified. 

These characteristics, of RFDE modeling of propofol 

infusions, are similar to those for RFDE modeling of 

propofol boluses.  Based on these findings, as well as those of 

our prior study, RFDE pharmacokinetic modeling can be 

applied to both infusion and bolus data of propofol. Further 

research, on the applications of RFDEs in pharmacokinetics, 

appears warranted. 

 
Index Terms—pharmacokinetic models, propofol, recursive 

finite difference equations.  

I. INTRODUCTION 

 Our previous research has shown that recursive finite 

difference equations (RFDEs) can be derived directly from 

traditional exponential pharmacokinetic models. 

Specifically, this modeling scheme was applied to a single 

bolus of propofol [1].   Thus, the RFDE model, based on a 

propofol bolus, was shown to have identical accuracy as 

the three-compartment exponential model from which it 

was derived.  

Furthermore, each bolus RFDE model was derived 

using the form: 

 

P(k+3) = AP(k+2) + BP(k+1) + CP(k),     k = 1, 2, 3…    (1)   
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Note that A, B, and C are dimensionless constant 

coefficients. In addition, these coefficients were shown to 

have decreased patient-to-patient variability when 

compared to those of the exponential model from which 

they were derived [1]. 

In modeling a propofol infusion, it is necessary to 

modify the above RFDE by adding a constant R: 

 

P(k+3) = AP(k+2) + BP(k+1) + CP(k) + R,     k = 1, 2, 3…     (2) 

 

Note that R has the same “concentration” dimensions as 

each value of P. With R 0, (2) is known as an 

inhomogeneous RFDE whereas (1) is a homogeneous 

RFDE. 

Our initial study examined the pharmacokinetic 

properties of a propofol bolus using RFDEs [1]. This 

present study uses similar recursive mathematics to model 

the pharmacokinetic properties of a propofol infusion.  

Propofol is an ultra-short acting sedative hypnotic. It 

should be recognized that propofol is frequently given, as a 

bolus, for the induction of general anesthesia. Propofol 

infusions can be used as an adjunct for the maintenance of 

general anesthesia and are also useful in providing 

continuous sedation. 

Thus, the purpose of this study was to assess the utility 

of RFDE modeling for infusion-based pharmacokinetics. 

This study also shows how these equations can be derived 

directly from existing exponential infusion models. In this 

as well as our prior study, these are referred to as “parent” 

exponential models. Figure 1 illustrates the recursive 

nature of the pharmacokinetics of an infusion. As a drug is 

infused into the venous circulation, metabolism, 

redistribution, and excretion are occurring simultaneously. 

Subsequently, the remaining drug then returns, from the 

arterial side of the circulatory system, into the venous side. 

This occurs as the continuous infusion is maintained. 

II. AN OVERVIEW OF INHOMOGENEOUS RFDE MODELS 

FOR INFUSION-BASED PHARMACOKINETICS 

 

In modeling infusion-based pharmacokinetics, with 

recursive finite difference equations (RFDEs), it is 

assumed that a steady-state “plateau” of a pharmaceutical 

blood level is eventually reached and sustained. Thus, the 

net rate of metabolism, elimination, and redistribution is 

not exceeded by the infusion. 
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Figure 1:  Conceptual diagram illustrating the recursive 

nature of pharmacokinetics with a constant infusion. 

Arterial propofol blood levels are metabolized, excreted, 

and redistributed. After passing through the heart, the 

venous drug concentrations become the subsequent 

arterial drug concentrations. Ultimately, the remaining 

propofol is again passed, to the venous system, with 

continuously-infused additional medication. Thus, RFDEs 

may be useful for modeling this recursive pharmacologic 

phenomena. 

 

With this in mind, a straightforward 

single-compartment model can be examined. Using an 

RFDE this would be: 

 

P(k+1) = C1P(k) + C2,     k = 1, 2, 3…              (3) 

  

Note that each value of P(k+1) is a function of its prior 

value P(k).  Furthermore, an initial condition has to be 

specified. In the above formula, this would be a known 

value representing P(1).Using the above assumptions, the 

constants C1 and C2 must have the following properties:  

0 < C1 < 1 and C2 > 0. A solution of (3) can be shown as 

[2], [3]: 
 

*,)* 1
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1)( PPPCP k
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 k = 1, 2, 3…         

(4) 

 

Where P1 represents the initial serum level of 

medication and P* = C2/(1 - C1). The reader should note 

that (4) represents the general solution of (3). In addition, 

the values determined from (4) do not need to be 

determined from prior values. Furthermore, the steady 

state plateau level that is ultimately reached is P* [3].
 

These RFDEs are referred to as inhomogeneous as C2 is 

non-zero. The use of homogeneous RFDEs has been 

shown to be applicable in the modeling of propofol bolus 

data [1]. 

Furthermore, solutions to inhomogeneous RFDEs 

consist of the sum of the solution to the homogeneous 

equation super positioned, or added, to that of the 

particular solution. Thus, in the above case, the 

homogeneous solution is:  
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1 )( PCP kh
k       k = 1, 2, 3…           (5) 

Whereas the particular solution is: 
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k CPP      k = 1, 2, 3…            (6) 

The sum of the homogeneous solution, (5), and the 

particular solution, equation (6), yields the general 

solution to the inhomogeneous RFDE, as shown  in (4): 
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Appendix A and Appendix B together demonstrate how a 

three compartment RFDE model is developed using the 

sum of its homogeneous and particular solutions. 

III. NOMENCLATURE  

Note that P(k+3)  refers to the values generated from the 

inhomogeneous RFDE which is the sum of the 

homogeneous and particular solutions: 

 

P(k+3) = AP(k+2) + BP(k+1) + CP(k) + R,    k  = 1, 2, 3...    (8) 

Whereas P(k) is the general solution to (8): 

P(k) = h - k
 + k

k
) .                      (9) 

Also, note that Q(k) refers to the solution obtained from 

the traditional three-compartment exponential model: 

 

Q(k) = h - (ae
-bk

 + ce
-dk

 + fe
-gk

) .                 (10) 

 

It should be noted that P(k+3) and P(k) and Q(k) are 

numerically equivalent. The terminology: k = 1, 2, 3... 

denotes that those values, obtained from an RFDE, must 

be calculated sequentially. This sequential process is 

unnecessary when using the general solution. 

As will be subsequently shown, the RFDE model (8) is 

derived directly from its “parent” exponential model (10). 

IV. DERIVING EACH RFDE MODEL FROM ITS RESPECTIVE 

PARENT EXPONENTIAL MODEL 

A traditional three-compartment exponential model, for 

a continuous infusion, is based on the following equation: 

 

Q(k) = h - (ae
-bk

 + ce
-dk

 + fe
-gk

) .                    (11) 

Equating (11) to the homogeneous solution of the finite 

difference model (9) with  h = 0 yields: 

 

k
 + k

k 
)  =  (ae

-bk
 + ce

-dk
 + fe

-gk
 ) .      (12)                                  

 
 

 

Note that the homogeneous solution requires that h = 0. 

Equation (12) is then valid under the following conditions: 

 

 = a,  c, and = f                 (13)                                                   

Arterial 

Venous 

Metabolism Redistribution Excretion Heart 

Infusion 
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and 

 e
-b

, = e
-d

, = e
-g

 .                (14) 

Substituting the above relations, into the RFDE model 

from Appendix A, yields: 

 

P(k+3) = AP(k+2) + BP(k+1)  + CP(k) + R,   k = 1, 2, 3...    (15) 

where: 

A = ( +  + ) = (e
-b

 + e
-g

 + e
-d

)                 (16) 

B = - ( +  + )   =   - (e
-b

•e
-g

 + e
-b

•e
-d

 + e
-d

•e
-g

) =       

 - (e
-(b+g) 

 + e
-(b+d)

  + e
-(d+g)

)           (17) 

C  =e-b
•e

-d
•e

-g
)  =  e

-(b+d+g)
           (18) 

and R is the particular solution with h  (See: Appendix 

B): 

 

R = h•[1 - (A + B + C)] .                       (19) 

Note that the solution to (15) represents the 

superposition, or summation, of the homogeneous and 

particular solutions (See: Appendix A and Appendix B).  

The constant coefficients: A, B, and C, as well as the 

inhomogeneous constant R, of each RFDE model, are 

derived directly from those of their respective parent 

exponential models.  Therefore, each RFDE model will 

have the same accuracy as the “curve-fitted” parent 

exponential model from which it was derived.  

In this particular application, each RFDE was based on 

three dimensionless constant coefficients A, B, and C and a 

constant R. Whereas each exponential model, as well as 

the general solution of each RFDE, required six 

coefficients and a constant.  Thus, the RFDE model is a 

more “compact” representation. 

However, it is necessary to determine the initial 

conditions: P1, P2, and P3, for each RFDE. These can be 

obtained from either their general solution or their 

respective parent exponential model. With these initial 

values, each RFDE can then determine subsequent 

subject-specific propofol serum levels for the entire 

infusion. 

A numerical example of this process is illustrated in 

Appendix C. 

V. METHODS: DATA ACQUISITION AND ANALYSIS 

 

Propofol serum levels for this study were obtained from 

prior research and supplied to the authors directly from 

Astra-Zeneca pharmaceuticals. Volunteers, in the initial 

IRB-approved study, age 19 through 65, who had received 

informed consent, had been given an intravenous bolus of 

propofol of 2 mg/kg. Patients over 65 had received boluses 

of 1 mg/kg. Arterial serum propofol levels were then 

measured sequentially at 1, 2, 4, 8, 16, 30 and 60 minutes 

[4]. Analysis of this bolus data was the basis of our prior 

study [1]. 

One hour following each bolus, a propofol infusion was 

then started. Patients were assigned to infusion rates of 25, 

50, 100, or 200 g/kg/min.  Each infusion rate was 

assigned two patients whose ages were < 65 and two 

patients whose ages were > 65.  

Samples for analysis were collected, from each patient, 

via a radial arterial catheter. Values analyzed, for this 

study, were those collected at 0, 2, 4, 8, 16, 30, and 60 

minutes following the beginning of the infusion. These 

data are illustrated in Fig. 2. 

It should be noted that the purpose of the original study 

was to assess the pharmacokinetics of propofol with, 

versus without, disodium edetate (EDTA). EDTA is an 

additive which inhibits microbial growth. The data, used in 

this study, were from those patients who had received 

formulations with EDTA. 

This retrospective analysis, of existing data, was 

deemed exempt from requiring IRB approval at both 

authors’ institutions. Data from a total of the 16 original 

subjects met inclusion criteria for this present analysis. 

Curve fitting was performed using MATHCAD 

(Mathsoft, Cambridge, MA). For each parent exponential 

model, this was based upon (See: Appendix A): 

 

Q(k) = h - (ae
-bk

 + ce
-dk

 + fe
-gk

).                 (20) 

Specifically, a minimum error function, based upon the 

Levenberg-Marquardt algorithm, was used [8], [9]. 

Iterations were performed until the mean sum of the 

squared error (MSSE) was on the order of 10
-1

 or less:
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(21) 

Where sj represents each measured propofol serum level 

and n = 7 for each subject’s seven measurements. This 

process was repeated for each subject-specific parent 

exponential model. 

Following the determination of the exponential 

coefficients, and the constant h, the coefficients A, B, C 

and the constant R, for each RFDE model, were then 

calculated using the method described in equations (11) 

through (19). (See: Deriving each RFDE model from its 

respective parent exponential model). The flowchart in 

Fig. 3 summarizes these processes.  

Note that curve fitting could also have been done with 

respect to the coefficients of the general solution of the 

finite difference equation, P(k). This technique would have 

ultimately yielded identical results for the coefficients of 

each subject-specific RFDE. 
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Figure 2. Graphical data of each group’s propofol serum level. 
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Figure 3. This flowchart depicts how each RFDE model 

was derived from its respective parent exponential model. 
 

VI. RESULTS 

Table 1 documents the serum levels of propofol taken 

from the 16 patients during each infusion. After curve 

fitting to the parent exponential function, values for each 

of these coefficients are displayed in Table 2.  Table 2 also 

lists the coefficients for the RFDE model for each patient. 

Furthermore, the mean sum of the squared error (MSSE) is 

also displayed. Note that the MSSE for each of  the parent 

exponential models, and its RFDE model, are identical. 

This occurs as each RFDE model is derived directly from 

its respective subject-specific parent exponential model. 
Figures 4 and 5 illustrate both the parent and RFDE 

coefficients and constants graphically. Note that the RFDE 

coefficients A, B, C, and the constant R have less 

variability than those of their parent exponential models. 

This overall reduction in variability can be explained by 

use of the chain rule [5], [6]: 

 

dA = b
b

A
d




 + d

d

A
d




 + g

g

A
d




         (22) 

 

               dB = b
b

B
d




 + d

d

B
d




 + g

g

B
d




         (23) 

 

dC = b
b

C
d




 + d

d

C
d




 + g

g

C
d




           (24) 

 

dR  = 
b

R




db + 

d

R




dd  + 

g

R




dg  + 

h

R




dh  .     (25) 

 

The maximum change in coefficients A, B, C and R can 

then be expressed (See: Appendix D): 

 

|dA| < {|db| + |dd| + |dg|}                (26) 

 

|dB| < 2{|db| + |dd| + |dg|}                  (27) 

 

|dC| < {|db| + |dd| + |dg|}                (28) 

 

|dR| < m{|db| + |dd| + |dg|+ |dh|}  where  m = max(|h|, 1).  

.                   (29) 

Based on the infusion data, minimum and maximum 

values for the partial derivatives which determine dA, dB, 

dC, and dR can be obtained. These are summarized in 

Table 3. 

The results of this study are similar to those of the 

authors’ prior examination of RFDE modeling of a 

propofol bolus.  

Thus, the change in the coefficient A is less than the sum 

of the changes in coefficients b, d, and g. This also applies 

to the change in coefficient C. Whereas the change in 

coefficient B is less than twice the sum of the changes in b, 

d, and g. 

Note that the change in coefficient R is less than a 

number which is proportional to the sum of the changes in 

b, d, g, and h. 

Examination of Figures 4 and 5 shows that A, B, C, and 

R indeed have overall less variability as explained by 

equations (26) through (29). 

 

 

Figure 4.  A comparison of the coefficients and constants 

of the exponential and RFDE models. Note that C and R, 

of the RFDE models, have overall decreased variability. 
Also, coefficient a has the highest range, and inter-quartile 

range, as compared to d, g, C and R. 
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Figure 5. A comparison of the coefficients and constants of 

the exponential and RFDE models. Coefficients b,  f, and h 

have a higher range when compared to c, A and B. 

Furthermore, the inter-quartile ranges of b and h are higher 

than those of c, f, A and B. 

VII. DISCUSSION 

Recursive mathematics has successfully been applied in 

Fibonacci–related modeling, economics, and in social as 

well as the behavioral sciences. The results of this study, as  

well as the authors’ prior study, demonstrate that recursive 

mathematics can also be applied to pharmacologic models 

of both infusions and boluses of propofol. In addition, 

since each RFDE model is derived directly from its parent 

exponential model, there is no loss of accuracy.  

Overall, RFDE modeling of infusions, as compared to 

traditional exponential modeling, has shown that fewer 

coefficients are needed. Furthermore, the 

patient-to-patient variability of these coefficients is 

reduced as compared to those of the exponential models. 

However, RFDE models require the establishment of 

initial conditions.  

This modeling technique may be useful in 

computer-driven infusions utilizing servo or “feedback” to 

control serum propofol levels. Recently, plasma propofol 

levels have been shown to correlate with exhaled propofol 

concentrations [11].
 
Thus, the ability to do real-time 

control of propofol serum levels, with recursive modeling 

of pharmacokinetics, is possible.  

Furthermore, systems of multiple RFDEs can also be 

solved simultaneously using such techniques as Z 

transforms and operator methods [2], [3], [4]. This may be 

applicable in examining drug-drug interactions. 

 

 

VIII. CONCLUSIONS 

 

The authors have demonstrated the applicability of 

RFDEs in three-compartment propofol infusion models. In 

addition, this modeling scheme is derived directly from 

traditional exponential models with no loss of accuracy. 

Our findings, in this paper, concur with those of our prior 

study of RFDE three-compartment propofol bolus models. 

Thus, RFDE models are more “compact” and their 

coefficients appear to have less patient-to-patient 

variability than exponential models. However, the 

specification, of initial conditions, is required for RFDE 

models. 

Additional research would involve the analysis and 

applications of other medications and drug-drug 

interactions with recursive mathematics. 

 

APPENDIX A: HOMOGENEOUS SOLUTION 

 

It should be noted that a case-specific solution to an 

inhomogeneous finite difference equation consists of the 

sum of its homogeneous solution and its particular solution 

[2], [3], [4]. 

In this application, it is assumed that propofol serum 

levels are, initially, monotonically increasing. Thus, there 

is no oscillatory behavior noted as these initial levels 

consistently increase. Furthermore, after steadily 

increasing, a “plateau” level is ultimately reached and 

subsequently sustained. 

The homogeneous solution of the RFDE is defined with 

the following form: 

 

P(k+3) = AP(k+2) + BP(k+1) + CP(k),       k = 1, 2, 3...    (1A) 

       

Note that R is not included in the above equation. The 

solution for R represents the particular solution which is 

added to the homogeneous solution (See: Appendix B). In 

addition, the homogeneous solution, for equation (1A), has 

an identical form as that of three-compartment bolus-based 

models [1]. 

It should be noted that a solution to a first-order 

homogeneous finite difference equation:  

 

,)(1)1 ( kk zCz                    k = 1, 2, 3...       (2A) 

has a solution which has the form [2], [3]:
 

                ( ) 2 1
z .k

k C C                      (3A)  

The solution we are modeling would require that C2 > 0 

and 0 < C1 < 1 for a monotonically decreasing function 

with all values of 0z )k(  . The addition of a constant, as 

the particular solution, modifies the homogeneous 

solution, into an inhomogeneous one. This modification 
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allows for the representation of an increasing function 

which eventually reaches a plateau (See: Appendix B). 

The solution to (1A) will have a form consisting of a 

superposition of solutions resembling (3A) [2], [3], [4]. 

 

      P(k) = k
 + k

k
 .                        (4A)  

The solution to (1A), using the form of (4A), requires 

the definition of a third-order characteristic equation [2], 

[3], [4]. 

 

(M -)(M -)(M -)  =  0.                     (5A) 

 

Expanding (5A) and collecting terms yields: 

3M  + (- -  - ) 2M  + ( +  + )M -  =  0.  (6A)  

Rearranging: 

3M  =  ( +  + ) 2M  - ( +  + )M +  .      (7A) 

The solution will then take on the requisite form as: 

P(k+3) =  ( +  + )P(k+2)  -  ( +  + )P(k+1) +  P(k),                       

k = 1, 2, 3... 

(8A)  

Therefore, by defining:     

A = ( +  + )                            (9A) 

and                     B = - ( +  + )                     (10A)  

and                              C = .                           (11A)  

Equation (8A) will then take on the form of (1A): 

 

P(k+3) = AP(k+2) + BP(k+1) + CP(k),    k = 1, 2, 3...       (12A) 

 

Note that the inclusion of the inhomogeneous constant 

R allows for the modeling of a monotonically increasing 

function which eventually reaches a steady-state (See: 

Appendix B). 

    

APPENDIX B: PARTICULAR SOLUTION 

 

 The complete, or general solution, for an 

inhomogeneous RFDE, consists of the homogeneous 

solution (See: Appendix A) added to the particular 

solution [2], [3], [4].
  
In this case, the particular solution is 

a constant R: 

 

P(k+3) = A·P(k+2) + B·P(k+1) + C·P(k) + R  .         (1B) 

  

Rearranging yields: 

P(k+3) - A·P(k+2) - B·P(k+1) - C·P(k) = R  .         (2B) 

  As a trial solution, it is reasonable to assume a 

time-invariant constant for each value of P(k+3), P(k+2) , 

P(k+1), and P(k). Substituting the constant h for P(k), which is 

identical over k from equation (9) and Q(k) from equation 

(10), yields: 

 

h - A·h - B·h - C·h = R .                      (3B) 

 

Simplifying equation (3B) yields an expression for R in 

terms of h: 

  

 R = h·[1 - (A + B + C)] .                      (4B) 

 

This technique is known as the method of undetermined 

coefficients [2], [3], [4].
  
 The value of h is chosen from 

examination of both equations (9) and (10) as k approaches 

infinity: 

 

lim
k

 P(k) = lim
k

 Q(k) = h .             (5B) 

 

APPENDIX C: A NUMERICAL EXAMPLE 

 

The following is a numerical example which is based 

upon Table 1 subject 101. Using the exponential model 

from (10): 

               Q(k) = h - (ae
-bk

 + ce
-dk

 + fe
-gk

) .           (1C) 

 

Based on non-linear curve fitting, coefficients for the 

above equation were found to be: a = 0.463, b = 0.493, c = 

0.13, d = 0.012, f = 0.359, g = 0.013, and h = 1.048 . The 

general solution, P(k), is then determined from conditions 

(13) and (14): 

 

P(k) = h - k
 + k

k
).               (2C) 

Where

 = a,  c, and = f  and    e
-b

, = e
-d

, = e
-g

 .                                                                       

(3C) 

 

 The coefficients, for the RFDE, P(k+3), can then be 

determined by first calculating A, B, and C from (9A), 

(10A), and (11A) respectively using (16-19): 

 

A = ( +  + ) = (e
-b

 + e
-g

 + e
-d

)  

            = (e
-0.493

 + e
-0.013

 +e
-0.012

) =  2.586        (4C) 

B = -( +  + ) =  -(e
-( b + g)

 + e
-(b + d)

 + e
-(d + g)

) 

           = -(e
-0.506

 + e
-0.505

 + e
-0.025

) = -2.181        (5C) 

C =e-b
•e

-d
•e

-g
) =  e

-(b + d + g) 

    = e
-(0.493 + 0.012 + 0.013)

 =  0.596  .                (6C) 
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The homogeneous RFDE is then expressed as in (12A): 

     P(k+3) = (2.586)P(k+2) - (2.181)P(k+1) + (0.596)P(k) ,       

   k = 1, 2, 3...          (7C) 

The inhomogeneous RFDE is: 
               P(k+3) = A·P(k+2) + B·P(k+1) + C·P(k) + R,          

k = 1, 2, 3...          (8C) 

The constant R is then determined using the method of 

undetermined coefficients (See: Appendix B): 

 

                        R = h·[1 - (A + B + C)].                 (9C) 

 

Note that R must be calculated with extreme accuracy as 

rounding errors can accumulate with recursive 

calculations: 

 

R = 1.0484143·[1 – (2.5862913 – 2.1823666  

+ 0.5960156)] = 6.24·10
-5 .   (10C) 

Thus, the complete solution is the superposition, or sum, 

of equations (7C) and (10C): 

 

P(k+3) = (2.586)P(k+2) - (2.181)P(k+1) + (0.596)P(k)  

 + 6.24·10
-5

,      k = 1, 2, 3...       (11C) 

 

It should be noted that the initial conditions: P(1), P(2), 

and P(3) are determined from either (1C) or (2C). Thus, 

(1C), (2C) and (7C) yield numerically identical results for 

the entire time period.  

The initial conditions, for this case, are: P1 = 0.096, 

 P2  = 0.283, and P3  = 0.399 g/ml. 

 

 

APPENDIX D 

 

In order to assess the decrease in patient-to-patient 

variability, of the coefficients of the RFDE models, as 

compared to those of the exponential models from which 

they are derived, it is important to first note that 

coefficients b, d, and g are all numerically nonnegative and 

nonzero. 

It should be noted that the changes in coefficients A, B, 

and C are identical, with respect to their derivation, for 

both the bolus and infusion RFDE models [1]. 

Therefore:  

 

1e-0 -  b  and  1e-0 -  d  and .1e-0 -  g

  
(1D) 

 

The variation in coefficient A can then be expressed 

using the chain rule [9]: 

 

dA = b
b

A
d




 + d

d

A
d




 +  g

g

A
d




             (2D) 

It is assumed that db, dd, and dg are all ≥ 0. 

Realizing that: b

b

A -e-



 and d

d

A -e-



  and  

g

g

A -e-



.  Equation  (2D) can then be expressed as: 

dA = [-e
-b

]db + [-e
-d

]dd + [-e
-g

]dg.         (3D) 

Under these circumstances, the triangle inequality will 

be such that the absolute value of the sum will be less than 

the sum of the absolute values [10]. This and (1D) 

therefore yield the following valid expression: 

 

|dA| {|e
-b

db| + |e
-d

dd| + |e
-g

dg|}.         (4D) 

Therefore: |dA| < {|db| + |dd| + |dg|}. Similarly, the 

patient-to-patient variation, in coefficient B is:  

 

  dB = b
b

B
d




 + d

d

B
d




 + g

g

B
d





 
         (5D) 

In this case:  
b

B




 = e

-(b + g)
 + e

-(b + d) 
 and  

d

B




 = e

-(b + d)
 + e

-(d + g) 
 and 

g

B



 = e
-(b + g)

 + e
-(d + g)

.  

Equation (5D) can then be expressed as: 

dB = e
-b

{[e
-d

] + [e
-g

]}db + e
-d

{[e
-b

] + [e
-g

]}dd 

 + e
-g

{[e
-b

] + [e
-d

]}dg.    (6D) 

Again, use of the triangle inequality yields: 

|dB| {|e
-b

{[e
-d

] + [e
-g

]}db| + |e
-d

{[e
-b

] + [e
-g

]}dd| + |e
-g

{[e
-b

] 

+ [e
-d

]}dg|}.     (7D) 

Equation (7D) can then be expressed as: 

|dB|    2{|e
-b

db| + |e
-d

dd| + |e
-g

dg|}.         (8D) 

So that: |dB| < 2{|db| + |dd| + |dg|}.                           

Also, 

dC = b
b

C
d




 + d

d

C
d




 + g

g

C
d




              (9D) 

In this case:  
b

C




 = 

d

C




= 

g

C




= -e-(b + d + g)

 so that: 

dC = -e
-(b + d + g)

[db  + dd + dg].            (10D) 

IAENG International Journal of Applied Mathematics, 40:1, IJAM_40_1_03
______________________________________________________________________________________

(Advance online publication: 1 February 2010)



 

 

 

Similarly, 

|dC|  {|e
-(b + d + g)

|•[|db| +  |dd| + |dg|]}.      (11D) 

Therefore: |dC| < {|db| + |dd| + |dg|}. 

Thus, the magnitude, of the patient-to-patient variation 

in coefficient A, will be less than the sum of: db, dd, and 

dg. This similarly applies to C. 

Whereas the magnitude, observed in the 

patient-to-patient variation of coefficient B, will be less 

than twice the sum of: db, dd, and dg. 

The patient-to-patient variation in the constant R can 

also be assessed. Recall that R is defined in terms of A, B, 

C, and h (See: Appendix B): 

 

R = h·[1 - (A + B + C)].                  (12D) 

 

Substituting the definitions of coefficients A, B, and C 

from equations (16), (17), and (18) yields: 

 

R = h·[1 - ({e
-b

 + e
-g

 + e
-d

}-{e
-(b + g) 

 + e
-(b + d) 

+ e
-(d + g)

} + {e
-(b + d + g)

})].    (13D) 

 

After differentiation and algebraic simplification, the 

following relationships can be stated: 

]e1][e1[e --- dgbh
b

R





            (14D) 

]e1][e1[e --- gbdh
d

R





            (15D)  

]e1][e1[e --- dbgh
g

R





            (16D) 

and, 

]e1][e1][e1[ --- dgb

h

R





 .                  (17D) 

The total change in R can also be expressed using the 

chain rule: 

 

dR = 
b

R




db + 

d

R




dd  + 

g

R




dg  + 

h

R




dh         (18D) 

 

dR = ]e1][e1[e --- dgbh  db 

              + ]e1][e1[e --- gbdh  dd 

              + ]e1][e1[e --- dbgh  dg 

              + ]e1][e1][e1[ --- dgb  dh .      (19D) 

 

The following inequalities should be noted: 

 

1e-0 -  b
 and 1e-0 -  d

 and 1e-0 -  g
 (20D) 

 

and 

1e-10 -b 
 
 and  1e-10 -d 

 
 and  1e-0 -  g

         

(21D) 

Equation (19D) can then be expressed as an inequality: 

 

                   |dR| < h{|db| + |dd| + |dg|} + |dh|.            (22D) 

Therefore, small changes in R are less than a value 

which is proportional to the sum of the small changes in b, 

d, g, and h. If m = max(|h|, 1) then: 

 

|dR| < m{|db| + |dd| + |dg|+ |dh|}.            (23D) 
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Table 1. Measured serum propofol levels, for each of the 16 subjects, at the specified times. Note that serum levels 

are in units of micrograms/ml. 

 

 

 

 

 
 
 Subject 101 105 202 207 

 

infusion 25 

g/kg/min 

infusion 25 

 g/kg/min 

infusion 25 

 g/kg/min 

infusion 25 

g/kg/min 

Time 0 0.1100 0.1120 0.2040 0.1910 

2 0.3220 0.4470 0.5560 0.7020 

4 0.6320 0.5960 0.4090 0.7930 

8 0.5610 0.7440 0.6310 0.8550 

16 0.6060 0.6390 0.7630 1.0100 

30 0.7480 0.7630 0.7750 0.9580 

60 0.8120 0.7850 0.7780 0.9680 

     

 102 108 201 205 

 

infusion 50 

g/kg/min 

infusion 50

g/kg/min 

infusion 50

g/kg/min 

infusion 50 

g/kg/min 

Time 0 0.1190 0.2500 0.1540 0.1160 

2 0.7680 0.8620 0.5190 0.6220 

4 0.8470 0.9470 0.9300 0.8500 

8 1.0000 1.1600 1.1200 0.9430 

16 1.2200 1.1600 1.3900 0.9210 

30 1.2100 1.3000 1.4800 1.3900 

60 1.2000 1.8200 1.7900 2.8200 

     

 103 106 204 208 

 

infusion 100 

g/kg/min 

infusion 100 

g/kg/min 

infusion 100 

g/kg/min 

infusion 100 

g/kg/min 

Time 0 0.2440 0.2010 0.0804 0.1410 

2 0.8420 1.6600 1.1100 1.9000 

4 1.8000 1.8200 1.4000 1.6400 

8 1.8000 2.1000 1.6800 2.2100 

16 2.4700 2.4500 1.9000 2.3600 

30 2.9400 2.7100 1.6400 2.4600 

60 2.9700 2.9100 1.7400 2.7700 

     

 104 107 203 206 

 

infusion 200 

g/kg/min 

infusion 200 

g/kg/min 

infusion 200 

g/kg/min 

infusion 200 

g/kg/min 

Time 0 0.1510 0.1830 0.1370 0.1310 

2 3.5400 2.4600 2.7800 3.0800 

4 3.6100 3.2600 4.9900 3.3100 

8 4.4100 4.0000 5.6800 4.3400 

16 4.5900 4.6200 5.7000 4.6500 

30 3.5700 4.8300 7.4800 4.4100 

60 5.0200 5.6700 6.8300 4.7200 
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Table 2.  Note that a, b, c, d,  f , and g are the coefficients for the parent exponential models and h represents its associated 

constant. Whereas A, B, and C are the coefficients for each RFDE model and R represents its associated constant. MSSE 

refers to the mean sum of the squared error which is identical for each RFDE and its parent exponential model. 

 

 

 

Subject 101 105 202 207 102 108 201 205

Coefficient a 0.463 0.573 0.519 0.387 0.466 0.691 1.398 1.645

b 0.493 0.462 0.17 3.248 5.239 0.869 6.30E-03 0.327

c 0.13 0.202 0.011 0.303 0.14 3.338 1.064 -2.47

d 0.012 1.10E-02 3.03E-03 0.184 0.147 4.49E-03 0.253 0.09

f 0.359 0.264 3.10E-02 0.098 0.498 0.184 0.448 10.662

g 0.013 5.39E-05 1.60E-03 0.183 0.147 4.69E-03 6.02E-03 6.68E-03

h 1.048 1.147 0.818 0.979 1.223 4.464 3.048 9.948

Coefficient A 2.586 2.619 2.839 1.703 1.731 2.41 2.764 2.628

B -2.182 -2.242 -2.679 -0.757 -0.754 -1.826 -2.531 -2.282

C 0.596 0.623 0.84 0.027 3.95E-03 0.416 0.767 0.654

R 6.25E-05 2.58E-07 6.15E-07 2.60E-02 2.30E-02 5.43E-05 2.57E-05 1.60E-03

MSSE 3.32E-03 1.42E-03 5.22E-03 6.10E-04 7.80E-04 2.93E-03 1.80E-03 1.60E-04

103 106 204 208 104 107 203 206

Coefficient a 0.962 1.254 0.387 1.483 2.598 3.609 4.717 1.935

b 0.454 4.859 5.291 6.168 3.62 0.43 0.449 5.592

c 1.86 1.203 0.179 0.908 2.268 2.947 2.351 2.558

d 0.075 0.085 0.338 0.02 5.28E-03 0.016 0.067 0.218

f 0.021 0.385 1.113 5.03E-01 1.32E+00 2.20E-02 2.73E-03 1.70E-02

g 1.30E-02 1.80E-02 0.336 1.30E-01 3.83E-01 1.60E-02 5.50E-02 1.20E-02

h 3.051 3.043 1.76 3.035 6.338 6.779 7.132 4.641

Coefficient A 2.55 1.909 1.433 1.86 1.704 2.619 2.52 1.796

B -2.132 -0.918 -0.517 -0.865 -0.723 -2.25 -2.087 -0.802

C 0.582 7.00E-03 2.57E-03 1.80E-03 0.018 0.63 0.565 2.96E-03

R 1.04E-03 4.31E-03 0.143 7.19E-03 1.00E-02 5.85E-04 8.90E-03 1.10E-02

MSSE 2.60E-02 4.57E-05 5.26E-03 0.015 0.152 7.34E-03 0.177 0.023
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Table 3. Minimum and maximum values of the partial derivatives for equations (22-25). These explain the overall 

reduction, in patient-to-patient variability, seen in the coefficients of the RFDEs. This is in comparison to the coefficients 

of their respective parent exponential models. It should be noted that minimum refers to the smallest value whereas 

maximum refers to the greatest value. 
 

 

 

 

b

A




 

d

A




 

g

A




 

Minimum -0.994 -0.997 -1.0 

Maximum -2.095 x 10
-3

 -0.713 -0.682 

 

 
b

B




 

d

B




 

g

B




 

Minimum -3.894 x 10
-3

 0.513 0.513 

Maximum 1.759 1.836 1.838 

 

 

b

C




 = 

d

C




= 

g

C



  

Minimum -0.840 

Maximum -1.804 x 10
-3 

 

 
b

R




 

d

R




 

g

R




 

h

R




 

Minimum 4.261 x 10
-7

 2.262 x 10
-5

 3.863 x 10
-4

 2.182 x 10
-7

 

Maximum 0.016 1.952 0.895 0.081 
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Table 4.  Comparison of the exponential and RFDE modeling of propofol infusions. 

 

 

 RFDE 

Model 

Exponential 

Model 

Number of coefficients and constants 4 7 

Patient-to-patient variability of coefficients and constants Lesser Greater 

Ability to predict “present” levels from “past” Yes No 

Mean sum of the square error Identical Identical 

Need to specify initial conditions Yes No 
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