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Abstract—In recent times, the methods of interval
analysis have been successfully employed to establish
existence results for the solution of initial value
problems. In this paper, we extend the methods to
establish existence of solution for a special boundary
value problem. A particular case of this problem
describes equations arising in transport process.
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1 Introduction

In this paper we consider the rather special type of
boundary value problem:

x′(t) = f(t, x, y), x(a) = xa

−y′(t) = g(t, x, y), y(b) = yb

, t ∈ I

 (1)

where f, g ∈ C1,2(I × IR2, IR) and I = [a, b]. This is a
generalized form of an equation arising in the transport
process of different types of particles moving in opposite
direction within a rod of finite length when subjected to
certain fluxes. Because of the importance of this problem
and its application in many other physical phenomena,
other authors in [4], [9], have earlier studied it using other
methods which include resistive condition of monotonic-
ity. Here we develop an interval analytic method which
entails the construction of an interval operator. With this
interval operator, existence results are established using
interval fixed point theory. The method of interval anal-
ysis developed in this paper renders the assumption of
monotonicity of the two functions f and g appearing in
the equation given in H2 of [4] unnecessary.
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The basic objects of interval analysis used in this paper
are the closed, non-empty and bounded real intervals with
notations, arithmetic and analytic operations as given in
[1], [2], [3], [5], [6], [7], and [8]. Readers who are not
familiar with the subject may refer to these references.

Let the following assumptions hold true:

H0: Let there exist functions
u, v, σ, τ ∈ C1(I, IR)
such that
u(t) ≤ v(t), σ(t) ≤ τ(t), t ∈ I
and
u(a) ≤ xa ≤ v(a); σ(b) ≤ yb ≤ τ(b)

H1: u′(t) ≤ f(t, ξ, y) + f1(t, ξ, y)(u− ξ)
v′(t) ≥ f(t, ξ, y)− f1(t, ξ, y)(ξ − v)

H2: −σ′(t) ≤ g(t, x, η) + g2(t, x, η)(σ − η)
−τ ′(t) ≥ g(t, x, η)− g2(t, x, η)(η − τ)
for all functions x, y, ξ, η ∈ C1(I, IR) such that u ≤
ξ ≤ v, u ≤ x ≤ v, σ ≤ η ≤ τ , σ ≤ y ≤ τ where
the subscripts 1, 2 denote partial differentiation with
respect to x and y respectively.

2 Interval Majorant of Solution

In this section we establish a new Lemma which extends
the notion of lower and upper solutions for the boundary
value problem (1) and also some of the results of Lemma
1 of Lakshmikantham and Pachpatte [4], without the
monotone nondecreasing condition imposed on the
functions f in its third argument and g in its second
argument.

Lemma 2.1
Suppose that the assumptions H0 − H2 above are true.
Then the solution (x(t), y(t)) of the boundary value
problem (1) satisfies

(u(t), σ(t)) ≤ (x(t), y(t)) ≤ (v(t), τ(t)), t ∈ I
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where the inequality is taken componentwise.

Proof:
To prove this lemma we shall show that

u(t) ≤ x(t) ≤ v(t) and σ(t) ≤ y(t) ≤ τ(t), t ∈ I.

Let the interval functions F1 and G2 be natural interval
extensions of f1 and g2 respectively. Then for intervals
X, Y in IR with x ∈ X and y ∈ Y

f1(t, x, y) ∈ F1(t, X, Y )

and
g2(t, x, y) ∈ G2(t, X, Y )

Define m on I by

m(t) = x(t)− u(t)

then

m(a) ≥ 0 and
m′(t) = x′(t)− u′(t)

≥ f(t, x, y)− f(t, ξ, y)− f1(t, ξ, y)(u− ξ)
= −{f(t, ξ, y)− f(t, x, y)} − f1(t, ξ, y)(u− ξ)
= −f1(x, γ, y)(ξ − x)− f1(t, ξ, y)(u− ξ)
≥ −|F1(t, X, .Y )|m(t) = Lm(t)

From this we have

m(t) ≥ m(a)eL(t−a) ≥ 0

which implies
x(t) ≥ u(t), t ∈ I (2)

If we also define n by

n(t) = v(t)− x(t)

we have

n′(t) = v′(t)− x′(t)
≥ f(t, ξ, y)− f1(t, ξ, y)(ξ − v)− f(t, x, y)
= −f1(t, ξ, y)(ξ − v)− {f(t, x, y)− f(t, ξ, y)}
= −f1(t, ξ, y)(ξ − v)− f1(t, θ, y)(x− ξ)
≥ |F1(t, X, Y )|(v − x) = −Ln(t).

which gives
n(t) ≥ n(a)e−L(t−a) ≥ 0

and this implies
v(t) ≥ x(t) (3)

Combination of (2) and (3) yields the first result.

Next we prove that

σ(t) ≤ y(t) ≤ τ(t)

Define p by

p(t) = y(t)− σ(t), p(b) ≥ 0

p′(t) = y′(t)− σ′(t)
≤ −g(t, x, y) + g(t, x, η) + g2(t, x, η)(σ − η)
≤ |G2(t, X, Y )|(η − y) + |G2(t, X, Y )|(σ − η)
= |G2(t, X, Y )|(σ − y) = −Mp(t).

this gives
p(b) ≤ p(t)e−M(b−t)

which implies that 0 ≤ p(t). and thus,

σ(t) ≤ y(t) (4)

Similarly, with

q(t) = τ(t)− y(t), q(b) ≥ 0

q′(t) = τ ′(t)− y′(t)
≤ g2(t, x, η)(η − τ)− g(t, x, η) + g(t, x, y)
≤ |G2(t,X, Y )|(η − τ) + |G2(t,X, Y )|(y − η)
= |G2(t, X, Y )|(τ − y) = −Mq(t)

This yields
q(t) ≥ q(b)eM(b−t) ≥ 0

which implies that

τ(t) ≥ y(t) (5)

From (4) and (5) we obtain the desired result.

3 Existence of Solution

Here we prove the existence of interval sequences {Xn}
and {Yn} majorising the solutions x, y of equation (1)
and show that these sequences converge to limits X(t),
Y (t) which also contain these solutions. However, before
then we give some results which will be needed to
establish the theorem.
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Lemma 3.1 [8]

If X and Y are intervals, then

X ⊆ Y

if, and only if,

|m(Y )−m(X)| ≤ 1
2
{w(Y )− w(X)} (6)

Theorem 3.1 [6]

If P is an inclusion monotonic interval operator majorant
of a real operator p and if

P (Y0) ⊆ Y0 (7)

Then, the sequence {Yn} of intervals defined by

Yn+1 = P (Yn), n = 0, 1, 2, . . . (8)

has the following properties

(i) Yk+1 ⊆ Yk, ; k = 0, 1, 2, . . .

(ii) For every a ≤ t ≤ b, the limit

Y (t) =
∞⋂

k=0

Yk(t) (9)

exists as an interval function and

Y (t) ⊆ Yk(t), k = 0, 1, 2, . . . .

(iii) any solution of the operator equation

y(t) = p(y)(t) (10)

such that
y(t) ∈ Y0(t) ∀ t ∈ [a, b]

satisfies

y(t) ∈ Yk(t) ∀ k and y(t) ∈ Y (t) ∀ t ∈ [a, b]

(iv) if there exists a real number c such that 0 ≤ c ≤ 1
for which X ⊆ Y0 implies

sup
t

w(P (X(t))) ≤ c sup
t

w(X(t))

then the operator equation (10) has the unique so-
lution y(t) given by (9)

Theorem 3.2
Suppose that the hypothesis H0 − H2 above hold true.
Then there exist sequences {Xn(t)} and {Yn(t)} of in-
terval functions with initial interval functions X0(t) =
[u(t), v(t)] and Y0(t) = [σ(t), τ(t)] such that the limits

X(t) = lim
n→∞

Xn(t)

and
Y (t) = lim

n→∞
Yn(t)

exist as interval functions on I. Moreover, the limits
X, Y of these interval sequences majorise the solution
x(t) and y(t) of the boundary value problem (1).

Proof:
The solution of the boundary value problem is equivalent
to

x(t) = xa +
∫ t

a

f(s, x(s), y(s))ds, t ∈ I

and

y(t) = yb +
∫ b

t

g(s, x(s), y(s))ds, t ∈ I

Considering interval extensions of the functions f(t, x, y)
and g(t, x, y), respectfully, of the form;

F (t, X(t), Y (t)) = f(t, m(X),m(Y )) + F1(t, X, Y )
(X − w(X)) + F2(t, X, Y )(Y − w(Y ))

and
G(t, X(t), Y (t)) = g(t,m(X),m(Y )) + G1(t, X, Y )

(X − w(X)) + G2(t, X, Y )(Y − w(Y ))

where F1(t, X, Y ), F2(t,X, Y ), G1(t, X, Y ) and G2(t, X, Y )
are natural interval extensions of the functions
fx(t, x, y), fy(t, x, y), gx(t, x, y) and gy(t, x, y) re-
spectively, we have

x(t) ∈ xa +
∫ t

a

f(s,m(X(s)),m(Y (s)))ds

+
∫ t

a

F1(s,X(s), Y (s))(X(s)−m(X(s)))

+
∫ t

a

F2(s,X(s), Y (s))(Y (s)−m(Y (s)))ds (11)

and

y(t) ∈ yb +
∫ b

t

g(s,m(X(s)),m(Y (s)))ds
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+
∫ b

t

G1(s,X(s), Y (s))(X(s)−m(X(s)))ds

+
∫ b

t

G2(s,X(s), Y (s))(Y (s)−m(Y (s)))ds (12)

Let

P (X(t), Y (t)) = xa +
∫ t

a

f(s,m(X(s)),m(Y (s)))ds

+
1
2

∫ t

a

|F1(s,X(s), Y (s)))|w(X(s))[−1, 1]ds

+
1
2

∫ t

a

|F2(s,X(s), Y (s))|w(Y (s))[−1, 1]ds (13)

and

Φ(X(t), Y (t)) = yb +
∫ b

t

g(s,m(X(s)),m(Y (s)))ds

+
1
2

∫ b

t

|G1(s,X(s), Y (s)))|w(X(s))[−1, 1]ds

+
1
2

∫ b

t

|G2(s,X(s), Y (s))|w(Y (s))[−1, 1]ds (14)

where w(·) and m(·) are the width and midpoint of their
arguments. Then,

x(t) ∈ P (X(t), Y (t)) and y(t) ∈ Φ(X(t), Y (t)), t ∈ I

Define the interval sequences {Xn} and {Yn} by

Xn+1(t) = P (Xn(t), Yn(t)), t ∈ I (15)

and
Yn+1(t) = Φ(Xn(t), Yn(t)), t ∈ I (16)

respectively, with

X0(t) = [u(t), v(t)]

and
Y0(t) = [σ(t), τ(t)].

These will converge to unique limits if

P (X0(t), Y0(t)) ⊆ X0(t)

and
Φ(X0(t), Y0(t)) ⊆ Y0(t)

By (6) of Lemma (3.1) these hold true if

|m(X0(t))−m(P (X0(t), Y0(t)))|

≤ 1
2
{w(X0(t))− w(P (X0(t), Y0(t)))}

and
|m(Y0(t))−m(Φ(X0(t), Y0(t)))|

≤ 1
2
{w(Y0(t))− w(Φ(X0(t), Y0(t)))}

where m(X0(t)) and m(Y0(t)) are the mid-points
of the intervals X0(t) and Y0(t) respectively. From
the mid-points m(P ), m(Φ) of the interval operators
P (X0(t), Y0(t)) and Φ(X0(t), Y0(t)) respectively, we have

m(P ) = xa +
∫ t

a

f(x,m(X0,m(Y0))ds

≥ u(t)− u(t) + u(a)

+
∫ t

a

f(s,m(X0(s)),m(Y0(s)))ds.

= u(t)−
∫ t

a

{u′(s)− f(s,m(X0),m(Y0))}ds

≥ u(t)−
∫ t

a

|F1(s,X0, Y0)|(u− ξ)ds

−
∫ t

a

{f(s, ξ, y)− f(x, m(X0),m(Y0))}ds

≥ u(t)−
∫ t

a

|F1(s,X0, Y0)|(u−m(X0))ds

−
∫ t

a

f2(s,m(X0), γ)(y −m(Y0))ds

≥ u(t) +
1
2

∫ t

a

|F1(s,X0, Y0)|w(X0)ds

+
1
2

∫ t

a

|F2(s,X0, Y0)|w(Y0)ds

that is
m(P ) ≥ u(t) +

1
2
w(P ) (17)

where w(P ) is the width of P.
Also

m(P ) = xa +
∫ t

a

f(s,m(X0),m(Y0))ds

≤ v(t)− v(t) + v(a)

+
∫ t

a

f(s,m(X0),m(Y0))ds

= v(t)−
∫ t

a

v′(s)ds

+
∫ t

a

f(s,m(X0),m(Y0))ds

≤ v(t) +
∫ t

a

|F1(t, X0, Y0)|(ξ − v)ds
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+
∫ t

a

{f(s,m(X0,m(Y0))− f(s, ξ, y)}ds

≤ v(t) +
∫ t

a

|F1(s,X0, Y0)|(m(X0)− v)ds

+
∫ t

a

|F2(t, X0, Y0)|(m(Y0)− τ)ds

≤ v(t)− 1
2

∫ t

a

|F1(s,X0, Y0)|w(X0)ds

−1
2

∫ t

a

|F2(s,X0, Y0)|w(Y0)ds

that is
m(P ) ≤ v(t)− 1

2
w(P ) (18)

(13) and (17) give

|m(X0(t))−m(P )| ≤ 1
2
{w(X0(t))− w(P )}

as required.
Hence

P (X0(t), Y0(t)) ⊆ X0(t).

Similarly

m(Φ) = yb +
∫ b

t

g(s,m(X0),m(Y0))ds

≥ σ(t)− σ(t) + σ(b) +
∫ b

t

g(s,m(X0),m(Y0))ds

= σ(t) +
∫ b

t

{σ′(s) + g(s,m(X0(s)),m(Y0)))}ds

≥ σ(t)−
∫ b

t

|G2(s,X0, Y0)|(σ − η)ds

−
∫ b

t

{g(s, x, η)− g(s,m(X0),m(Y0))}ds

≥ σ(t)−
∫ b

t

|G2(s,X0, Y0)|(σ −m(Y0))ds

−
∫ b

t

G1(s,X0, Y0)|(u−m(X0))ds

≥ σ(t) +
1
2

∫ b

t

|G2(s,X0, Y0)|w(Y0)ds

+
1
2

∫ b

t

G1(s,X0, Y0)|w(X0)ds

i.e.
m(Φ) ≥ σ(t) +

1
2
w(Φ) (19)

Also

m(Φ) = yb +
∫ b

t

g(s,m(X0(s)),m(Y0(s)))ds

≤ τ(t)− τ(t) + τ(b) +
∫ b

t

g(s,m(X0),m(Y0))ds

= τ(t) +
∫ b

t

{τ ′(s) + g(s,m(X0(s)),m(Y0(s)))}ds

≤ τ(t) +
∫ b

t

{|G2(t, X0, Y0)|(η − τ)}ds

+
∫ b

t

{g(s,m(X0),m(Y0))− g(s, x, η)}ds

≤ τ(t) +
∫ b

t

|G2(s,X0, Y0)|(m(Y0)− τ)ds

+
∫ b

t

g(s, ρ, m(Y0))(m(X0)− x)ds

≤ τ(t) +
∫ b

t

|G2(s,X0, Y0)|(m(Y0)− τ)ds

+
∫ b

t

|G1(s,X0, Y0)|(m(Y0)− x)}ds

≤ τ(t)− 1
2

∫ b

t

|G1(t, X0, Y0)|w(X0(s))ds

−1
2

∫ b

t

|G2(t, X0, Y0)|w(Y0(s))ds

i.e.
m(Φ) ≤ τ(t)− 1

2
w(Φ). (20)

(19) and (20) imply that

|m(Y0)−m(Φ)| ≤ 1
2
{w(Y0)− w(Φ)}

which, by Lemma (3.1) also implies that

Φ(X0(t), Y0(t)) ⊆ Y0(t).

Hence the sequences (15), (16) converge by theorem (3.1)
to unique limits X(t), Y (t) respectively, with x(t) ∈ X(t)
and y(t) ∈ Y (t).

Theorem 3.3
Let the assumptions of Theorem 3.2 hold. Assume
further that the natural interval extensions of the partial
derivatives of f and g are chosen such that they satisfy
max

{∫ t

a
{|F1(s,X(s), Y (s))|+ |F2(s,X(s), Y (s))|}ds,∫ b

t
{|G1(s,X(s), Y (s))|+ |G2(s,X(s), Y (s))|}ds

}
< 1.

Then the limits of the interval sequences generated in
Theorem 3.2 are degenerate and thus coincide with the
real valued solution of the b.v.p. (1).
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Proof
Let the components of the interval vector function Z =
(X, Y ) be the limits of the interval sequences (15) & (16)
then,

w(Z) = max{w(X), w(Y )} ≤ max{∫ t

a
{|F1(s,X(s), Y (s))|+ |F2(s,X(s), Y (s))|}w(X(s))ds,∫ b

t
{|G1(s,X(s), Y (s))|+ |G2(s,X(s), Y (s))|}w(Y (s))ds

}
Set k = max

{∫ t

a
{|F1|+ |F2|}ds,

∫ b

t
{|G1|+ |G2|}ds

}
,

then sup
t

w(Z) ≤ k sup
t

w(Z),

this by the hypothesis implies that w(Z) = 0 , therefore
Z is degenerate and hence coincides with the solution
(x, y) of the b.v.p. (1).
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