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Abstract—Circuits to achieve geometric trans-
formations including two-point swapping, flip, co-
ordinate swapping, orthogonal rotations and their
variants on N-sized quantum images are proposed
based on the basic quantum gates; NOT, CNOT
and Toffoli gates. The complexity of the circuits
is O(log2 N) for two-point swapping and O(log N) for
flip, co-ordinate swapping and orthogonal rotations.
The results indicate that local operations like two-
point swapping are slower than global operations like
flip, co-ordinate swapping, and orthogonal rotations
in quantum image processing. This is in contrast to
performing such operations in classical image process-
ing where the local operations are faster. All the
proposed transformations are confirmed by simula-
tion on a classical computer. With their low com-
plexity, these geometric transformations can be used
as the major components to build circuits for other
applications on quantum images.
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1 Introduction

In recent years quantum computation and quantum infor-
mation have generated so much interest especially with
the prospect of employing its insights to empower our
knowledge on information processing. In 1994 Peter
Shor[16] discovered a quantum algorithm to factor integer
numbers in polynomial time. This was closely followed by
Grover’s quadratic speed-up database search algorithm[7]

∗Corresponding author. Department of Computational Intel-
ligence and Systems Science, Interdisciplinary Graduate School
of Science and Engineering, Tokyo Institute of Technology, G3-
49, 4259 Nagatsuta, Midoriku, Yokohama 226-8502, Japan. Tel.:
+81-45-924-5686/5682, Fax: +81-45-924-5676, E-mail: phu-
clq@hrt.dis.titech.ac.jp

†Department of Computational Intelligence and Systems Sci-
ence, Interdisciplinary Graduate School of Science and Engineering,
Tokyo Institute of Technology, G3-49, 4259 Nagatsuta, Midoriku,
Yokohama 226-8502, Japan. E-mail: iliyasu@hrt.dis.titech.ac.jp

‡Department of Computational Intelligence and Systems Sci-
ence, Interdisciplinary Graduate School of Science and Engineering,
Tokyo Institute of Technology, G3-49, 4259 Nagatsuta, Midoriku,
Yokohama 226-8502, Japan. E-mail: tou@hrt.dis.titech.ac.jp

§Department of Computational Intelligence and Systems Sci-
ence, Interdisciplinary Graduate School of Science and Engineering,
Tokyo Institute of Technology, G3-49, 4259 Nagatsuta, Midoriku,
Yokohama 226-8502, Japan. E-mail: hirota@hrt.dis.titech.ac.jp

on the quantum computation model. These results and
the unavoidbly inefficient simulation of quantum physics
on classical computers[5] provide the solid evidence of the
strength of quantum computers over classical ones.

In quantum circuit models of computation, designing
such circuits is necessary to realize and analyze any quan-
tum algorithm. It is well known that any unitary oper-
ation or quantum algorithm can be decomposed into a
circuit consisting a succession of basic unitary gates that
act on one or two qubits only. Many elementary gates in-
cluding single qubit gates, controlled-NOT or CNOT and
Toffoli gates for quantum computation was introduced in
[1]. Physical implementations of the qubit and these gates
are available from many approaches [14], [15,Chapter 7].

One of the most active fields in quantum computation
and information is quantum image processing. Quantum
signal processing transformations such as Fourier[15],
wavelet[6], and discrete cosine[8],[17] are proven to be
more efficent than their classical versions. Using these ef-
fecient operations for image processing applications pre-
viously inefficient approaches involving classical opera-
tions are realizable.[2]. Parallelism in quantum computa-
tion can speed up many image processing tasks which
have characteristics of parallelism[12]. Some concepts
of quantum images have been proposed like Qubit Lat-
tice[18],[19], Real Ket[9] and Flexible Representation of
Quantum Images(FRQI)[12] in order to make the connec-
tion between quantum algorithms and image processing
applications. Some impossible processing operations on
quantum computers[10] indicate the fundamental differ-
ence between quantum and classical operations. To de-
sign fast algorithms for quantum image processing, we
need to extend our knowledge on fundamental and ef-
ficient operations since only few of them are known as
mentioned ealier.

Fast geometric transformations such as the two-point
swapping, flip, co-ordinate swapping, orthogonal rota-
tions and their variants for quantum images, specifically
those based on the FRQI representation, are proposed
using the basic quantum gates, NOT, CNOT and Tof-
foli gates. For an N -sized image, the detailed analysis of
quantum circuits show that the complexity is O(log2 N)
for two-point swapping and O(log N) for the other op-
erations. The two-point swapping operation is powerful
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since it can be built by arbitrary geometric transforma-
tions, but it is slower than the others. This fact is in
constrast to their performance in classical versions but
it agrees with the parallelism characteristic of quantum
computation. In terms of their effect on images, the lo-
cal transformations are slower than global ones among
quantum image processing operations. The orthogonal
rotations are the first examples of applying a succession
of quantum transformations to create new applications
on quantum image processing. The experiments by sim-
ulation of the quantum operations on classical computers
confirm the feasibility of all of the proposed transforma-
tions. The fast geometric transformations can be used as
efficient blocks to design other quantum image processing
algorithms.

The rest of the paper is organized as follows. We start
with a brief overview of the the flexible representation
of quantum images (FRQI) and the general framework
for geometric transformations on FRQI. In subsequent
sections the various definitions, lemmas, theorems and
proofs for the two-point swap gate, flip gate, co-ordinate
swapping, orthogonal rotation gates, and their variants
are presented. Experimental results to prove the realiza-
tion of the geometric transformations and their feasibility
are discussed in section 6. Discussion of future work and
concluding remarks are found in section 7.

2 Representation of quantum images and
general framework of geometric trans-
formations

We start by introducing the notations used in this paper
which has been used in a wide range of quantum compu-
tation literature[15]. The state of a quantum system is
described as a vector in a Hilbert space which is called
a ket in Dirac or quantum mechanical notation. The ket
and its adjoint, bra, notations are defined as follows;

|u〉 =


u0

u1

...
un−1

 , ui ∈ C, i = 0, 1, . . . , n − 1,

〈u| = |u〉† =
[
u†

0 u†
1 . . . u†

n−1

]
.

The notation for the tensor or Kronecker product, ⊗,
is used to express the composition of quantum systems.
The tensor product of two matrices A and B is defined
as follows;

A =


a11 a12 . . . a1m

a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm

 ,

B =


b11 b12 . . . b1q

b21 b22 . . . b2q

...
...

. . .
...

bp1 bp2 . . . bpq

 ,

A ⊗ B =


a11B a12B . . . a1mB
a21B a22B . . . a2mB

...
...

. . .
...

an1B an2B . . . anmB

 ,

where

aijB =


aijb11 aijb12 . . . aijb1q

aijb21 aijb22 . . . aijb2q

...
...

. . .
...

aijbp1 aijbp2 . . . aijbpq

 , ∀i, j.

The short notation for tensor product |u〉 ⊗ |v〉 of two
vectors or two kets, |u〉and |v〉, is |uv〉 or |u〉|v〉 and we
use A⊗n = A⊗A⊗ · · · ⊗A to denote the tensor product
of matrix A for n times.

The representation of quantum images, which enables the
application of unitary transformations, was proposed in
[12]. This proposal integrates information about colors
and their correspoding positions in an image into a quan-
tum state having its formular as in (1)

|I(θ)〉 =
1
2n

22n−1∑
k=0

|ck〉 ⊗ |k〉, (1)

|ck〉 = cos θk|0〉 + sin θk|1〉, (2)

θk ∈
[
0,

π

2

]
, k = 0, 1, . . . , 22n − 1, (3)

where ⊗ is the tensor product notation, |0〉, |1〉 are
2-D computational basis quantum states, |k〉, k =
0, 1, . . . , 22n − 1 are 22n-D computational basis quantum
state and θ = (θ0, θ1, . . . , θ22n−1) is the vector of angles
encoding colors. There are two parts in the FRQI repre-
sentation of an image; |ck〉 and |k〉 which encode informa-
tion about the colors and their corresponding positions
in the image, respectively.

For the 2-D images, the position information |k〉 includes
two parts, the vertical and horizontal co-ordinates. In 2n-
qubit systems for preparing quantum images, or 2n-qubit
images, the vector |k〉

|k〉 = |y〉|x〉 = |yn−1yn−2 . . . y0〉|xn−1xn−2 . . . x0〉,

xi, yi ∈ {0, 1} ,

for every i = 0, 1, . . . , n, which encodes the first n-qubit
yn−1, yn−2, . . . , y0 the vertical location and the second n-
qubit xn−1, xn−2, . . . , x0 encodes the horizontal location
information as shown in Fig. 1.
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Figure 1: Vertical and horizontal coordinates encoded in
qubits

Geometric transformations are the operations which are
peformed based on the geometric information of images,
i.e., information about position of every point in the
image. Therefore, these transformations, GI , on FRQI
quantum images can be defined as in (4),

GI (|I (θ)〉) =
1
2n

22n−1∑
k=0

|ck〉 ⊗ G (|k〉) , (4)

where G (|k〉) for k = 0, 1, . . . , 22n − 1 are the unitary
transformations performing geometric exchanges based
on the vertical and horizontal locations. The performance
of the geometric transformations on quantum images, GI ,
is based on the function, G, on the computational basis
vectors. The general structure of circuits for geometric
transformations on FRQI images is shown in Fig.2.

|I(θ)〉 G(|I(θ)〉)

Color
yn−1

G

yn−2

Y Axis .
.
.

y0

xn−1

xn−2

X Axis .
.
.

x0

Figure 2: General circuit design for geometric transfor-
mations on quantum images

3 Two-point swapping operations

In classical image processing two-point swapping is one
of the fundamental operations. However, this kind of op-

eration has not been introduced in quantum image pro-
cessing because of the lack of a suitable representation for
the quantum image. Based on the FRQI representation
we can construct the quantum circuit for the two-point
swapping operations. But let us start with the definition
of the two-point swapping operation.

Definition 1. The two-point swapping operation on
FRQI quantum images between two positions i, j is the
operation SI which when applied on |I (θ)〉 in (1) produces
the output of the following form

SI (|I (θ)〉) =
1
2n

22n−1∑
k=0

|ck〉 ⊗ S (|k〉) , (5)

where S (|k〉) = |k〉,k 6= i, j and S (|i〉) = |j〉, S (|j〉) = |i〉,
i.e.,

S = |i〉〈j| + |j〉〈i| +
∑

k 6=i,j

|k〉〈k|. (6)

Figure 3: An example of two-point swapping operation

Figure 3 shows an example of two-point swapping oper-
ation in which the operation swaps the points |110〉|110〉
and |011〉|010〉. From the definition 1 we can reduce the
operation SI on the FRQI images |I (θ)〉 to the oper-
ation S (|k〉), for k = 0, 1, . . . , 22n − 1. For general-
ization, we will discuss the performance of S over the
superposition of |k〉, for k = 0, 1, . . . , 22n − 1, that is
|K〉 =

∑k=22n−1
k=0 ak|k〉.

In the quantum circuit model, a complex transform
is broken down into simpler gates, i.e., single qubit,
controlled two and three qubit gates, such as NOT,
Hadamard, CNOT, and Toffoli gates which are shown
in Fig. 4.

Note 1. The notation Cm−2 (σx) has been used for the
generalized control NOT gates, where m− 2 indicates the
number of control wires of the gates. Corollary 7.3 and
Corollary 7.4 in [1] show that these gates can be con-
structed by Toffoli gates on a m-qubit circuit (m ≥ 5)
and the number of Toffoli gates is 8(m− 5) when m ≥ 7.

The examples for Note 1 with m = 5 and m = 7 are
shown in Fig. 5 and Fig. 6 respectively. These results
are used in the proof of Lemma 2.

IAENG International Journal of Applied Mathematics, 40:3, IJAM_40_3_02

(Advance online publication: 19 August 2010)

 
______________________________________________________________________________________ 



NOT Gate

α |0〉 + β |1〉 X β |0〉 + α |1〉

Hadamard Gate

α |0〉 + β |1〉 H α (|0〉+|1〉)√
2

+ β (|0〉−|1〉)√
2

Controlled NOT or CNOT Gate
|A〉 • |A〉
|B〉 �������� |A ⊕ B〉

Toffoli Gate
|A〉 • |A〉
|B〉 • |B〉
|C〉 �������� |AB ⊕ C〉

Figure 4: NOT, Hadamard, CNOT, and Toffoli gates.

�������� • �������� •
• • •
• = • •
• • •�������� �������� ��������

Figure 5: The C3 (σx) can be constructed by 4 Toffoli
gates on a 5-qubit circuit.

Lemma 1. The two-point swapping operation S for po-
sitions i, j as in (4) can be constructed by NOT, CNOT
and Toffoli gates.

Figure 7 shows an example of two-point swapping circuit,
that can be built from Toffoli gates.

Proof. We prove the lemma by induction.

• For n = 0: it is trivial since only one point in the
FRQI image exists.

• For n = 1: the FRQI images include four points,
encoded as |00〉, |01〉, |10〉, |11〉. There are six
possible two-point swapping operations, S, between
these four positions. The superposition of |k〉,
for k = 0, 1, . . . , 22n − 1, in this case is |K〉 =∑k=3

k=0 ak|k〉.These operations can be constructed by
NOT and CNOT gates as in Fig. 9.

• For n = 2: the FRQI images contain 16 points,
|0000〉, |0001〉, . . . , |1111〉. These points can be di-

�������� • �������� •
• • •
• • •
• = • •
• • •
• • •�������� �������� ��������

Figure 6: The C5 (σx) can be constructed by 4 C3 (σx)
gates on a 7-qubit circuit.

Swapping between |111011〉 and |101111〉

�������� • �������� • �������� • �������� • �������� • �������� •
y2 • • • • • • • • •
y1 �������� • �������� �������� �������� • • �������� ��������
y0 • • • = • • • • • •
x2 • �������� • • • �������� �������� • •
x1 • • • • • • • • •
x0 • • • • • • • • •

A B C A B C

Figure 7: Example of two-point swapping operation be-
tween |111011〉 and |101111〉. Each C5 (σX) in groups A,
B, C can be simulated by 4 C3 (σX) as in Fig. 7 and
again each C3 (σX) can be simulated by 4 Toffoli gates
as in Fig. 6. Therefore, the swapping operation can be
simulated by 16 Toffoli gates.

vided into four blocks in the form |0y00x0〉, |0y01x0〉,
|1y00x0〉 and |1y01x0〉, each block includes four
points. If the points at positions encoded by |i〉 =
|yi

1y
i
0x

i
1x

i
0〉, |j〉 = |yj

1y
j
0x

j
1x

j
0〉 are in the same block,

which means yi
1 = yj

1 and xi
1 = xj

1,we can use the
circuits explained in the case n = 1 for the y0 and x0

qubits with the controlled conditions from the y1and
x1 qubits, which indicate the location of the block,
to achieve the operation. In doing that, we use one
two-point swapping on a 2-qubit system with two
controlled conditions. If the points are not in the
same block, we first swap the point in position |j〉 =
|yj

1y
j
0x

j
1x

j
0〉 with a point p = |yi

1y
j
0x

i
1x

j
0〉 in the same

block with the point in position |i〉 = |yi
1y

i
0x

i
1x

i
0〉 by

using the circuits explained in the case of n = 1 for
the qubit y1 and qubit x1under the controlled condi-
tion from the y0and x0 qubits . Secondly we perform
two-point swapping operation for the points i, j since
they are in same block. Finally, we use two-point
swapping on the qubit y1 and qubit x1to exchange
the points j, p. In short, we use three two-point
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swapping on a 2-qubit system with two controlled
conditions to complete a two-point swapping on a 4-
qubit system when i, j are in different blocks. There-
fore, two-point swapping, S, in the case n = 2 can
be constructed by NOT, CNOT and Toffoli gates.

• For n > 2: assume that we have the two-point
swapping circuits constructed by NOT, CNOT and
Toffoli gates for n − 1 FRQI images. We denote
the computational basis of the 2n-qubit system by
|yn−1yn−2 . . . y0xn−1xn−2 . . . x0〉. The n FRQI im-
ages can be divide into 4 subimages in form

|0yn−2 . . . y00xn−2 . . . x0〉,

|0yn−2 . . . y01xn−2 . . . x0〉,

1yn−2 . . . y00xn−2 . . . x0〉,

and
|1yn−2 . . . y01xn−2 . . . x0〉.

If the points at positions i, j encoded by
|i〉 = |yi

n−1y
i
n−2 . . . yi

0x
i
n−1x

i
n−2 . . . xi

0〉 and |j〉 =
|yj

n−1y
j
n−2 . . . yj

0x
j
n−1x

j
n−2 . . . xj

0〉 are in the same
block, which means yi

n−1 = yj
n−1 and xi

n−1 = xj
n−1,

we can use the circuits in the case n−1 size with two
controlled conditions from the yn−1and xn−1 qubits
to achieve the operation. If the points are not in the
same block, we first swap the point j in the position
encoded by |j〉 = |yj

n−1y
j
n−2 . . . yj

0x
j
n−1x

j
n−2 . . . xj

0〉
with the point p at the position encoded by |p〉 =
|yi

n−1y
j
n−2 . . . yj

0x
i
n−1x

j
n−2 . . . xj

0〉 by using the cir-
cuits in the case of n = 1 size for the qubit yn−1

and qubit xn−1 with 2(n − 1) controlled condtions
from yk, xk qubits (k = 0, 1, . . . , n−2). Secondly we
perform two-point swapping operation for the points
i, j as explained in the case when they are in same
block. Finally, we use two-point swapping on the
qubit yn−1 and qubit xn−1to exchange the points j,
p. In short, the two-point swappings, S, in the case
n > 2 can be constructed by NOT, CNOT and Tof-
foli gates.

Remark 1. With the swapping method explained in
Lemma 2, the circuit that contains the largest number
of basis gates for swapping two points encoded by |i〉 and
|j〉 on n-size FRQI images is the circuit for the swapping
between |0〉 and |22n − 1〉.

Proof. By inspection.

Theorem 1. The complexity of two-point swapping op-
eration on n-size FRQI images (n ≥ 2) is O(n2).

swapping |00〉 and |01〉

y0 X • X

x0 ��������

swapping |00〉 and |10〉
y0 ��������
x0 X • X

swapping |00〉 and |11〉

y0 X ×

x0 X ×

swapping |01〉 and |10〉
y0 ×

x0 ×

swapping |01〉 and |11〉
y0 ��������
x0 •

swapping |10〉 and |11〉
y0 •

x0 ��������
Figure 8: Swapping on 2-qubit systems.

Proof. Using the Remark 1, the complexity of two-point
swapping operation on n-size FRQI images in the worst
case is to swap |0〉 and |22n − 1〉. There are three groups,
A, B, C in the circuit for such swapping, the exam-
ple of n = 2 is explained in Fig. 10. The block A
transforms from |11 . . . 1〉|11 . . . 1〉 to |0 . . . 01〉|0 . . . 01〉,
group B swaps |0 . . . 01〉|0 . . . 01〉 and |0 . . . 00〉|0 . . . 00〉
and finally the group C transforms from |0 . . . 01〉|0 . . . 01〉
to |11 . . . 1〉|11 . . . 1〉. The group A can be divided
into n − 1 steps to transform from |11 . . . 1〉|11 . . . 1〉 to
|01 . . . 1〉|01 . . . 1〉 in first step, then from |01 . . . 1〉|01 . . . 1〉
to |001 . . . 1〉|001 . . . 1〉 in the second step, and so on. Each
step in group A contains 2 C2n−2 (σX) , 3 C2n−1 (σX)
and NOT gates. The group C transformation is similar
to group A. That of group B contains 2 C2n−2 (σX) ,
3 C2n−1 (σX) gates and NOT gates. Using Note 1, the
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number of Toffoli gates to simulate 2(2n−1) C2n−2 (σX)
and 3(2n − 1) C2n−1 (σX) gates is O

(
n2

)
. Each Toffoli

gate can be simulated by 9 single qubit and 6 CNOT
gates as in Fig. 5 and the number of NOT gates in the
circuit is 4(n−1). Hence, the total number of basis gates
in the circuit is O

(
n2

)
.

�������� × X • • • X �������� ×

• • • �������� × • • •

�������� × X • • • X �������� ×
• • • �������� × • • •

A B C

_ _ _ _�
�
�
�
�
�
�

�
�
�
�
�
�
�_ _ _ _

_ _ _ _ _ _ _ _ _�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _ _

_ _ _ _�
�
�
�
�
�
�

�
�
�
�
�
�
�_ _ _ _

Figure 9: The two-point swapping operation can be di-
vided into three groups A, B, C.

4 Flip and co-ordinate swap circuits

Flip and coordinate swap are fundamental operations in
classical image processing. The flipping operation on
FRQI quantum images is defined as follows;

Figure 10: Image flipping along X axis.

Figure 11: Image flipping along Y axis.

Definition 2. The flipping operations on FRQI quantum
images along the X and Y axes are the operation FX

I

and FY
I which when applied on |I (θ)〉 in (1) produces the

outputs of the following form;

FX
I (|I (θ)〉) =

1
2n

22n−1∑
k=0

|ck〉 ⊗ FX (|k〉) , (7)

FY
I (|I (θ)〉) =

1
2n

22n−1∑
k=0

|ck〉 ⊗ FY (|k〉) , (8)

where |k〉 = |y〉|x〉and

FX (|y〉|x〉) = |ȳ〉|x〉, (9)
FY (|y〉|x〉) = |y〉|x̄〉, (10)

|x〉 = |xn−1xn−2 . . . x0〉,
|y〉 = |xn−1xn−2 . . . x0〉,
|x̄〉 = |x̄n−1x̄n−2 . . . x̄0〉,
|ȳ〉 = |ȳn−1ȳn−2 . . . ȳ0〉,
x̄i = 1 − xi, ȳi = 1 − yi,

i = 0, 1, . . . , n − 1.

Theorem 2. The complexity of the flipping operations
FX and FY as in (7) and (8) is O(n) on 2n-qubit FRQI
quantum images. quantum images.

Proof. The quantum circuits for FX and FY are
constructed by using n NOT gates on n qubits
yn−1, yn−2, . . . , y0 and xn−1, xn−2, . . . , x0 respectively. In
mathematical form, the circuits are expressed by the ten-
sor product of n identity I and n Pauli X matrcies. Con-
sequently, the operations are defined as follows;

FX = X⊗n ⊗ I⊗n, (11)

and

FY = I⊗n ⊗ X⊗n. (12)

On FRQI quantum images the co-ordinate swapping op-
erations are defined as follows;

Definition 3. The co-ordinate swapping operation is the
operation CI which when applied on |I (θ)〉 in (1) pro-
duces the outputs of the following form;

CI (|I (θ)〉) =
1
2n

22n−1∑
k=0

|ck〉 ⊗ C (|k〉) , (13)

where |k〉 = |yx〉 and

C (|yx〉) = |xy〉. (14)

Theorem 3. The complexity of the co-ordinate swapping
operation CI as in (13) on 2n-qubit FRQI quantum im-
ages is O(n).
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FY

Color
yn−1
yn−2

.
Y Axis .

.
y0

xn−1 X

xn−2 X

.
X Axis .

.

x0 X

FX

Color
yn−1 X

yn−2 X

.
Y Axis .

.

y0 X

xn−1
xn−2

.
X Axis .

.
x0

Figure 12: The circuit design of FX and FY .

Proof. A swap gate, which is composed by 3 CNOT gates
as shown in the Fig. 13, is used to build the circuit
for C. The application of n swnapping gates, Gi, on
the yi and xi qubits for every i = 0, 1, . . . , n − 1 is the
coordinate swapping circuit. Therefore, the operation C
can be constructed by 3n CNOT gates. That means the
complexity of the circuits is O(n).

Swap Gate

× • �������� •
=

× �������� • ��������
Figure 13: Swap gate can be built by three CNOT gates.
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Figure 14: Co-ordinate swapping circuit.

5 Orthogonal rotation circuits and other
geometric transformations

Image orthogonal rotations are the image rotations with
the angles 900, 1800and 2700. The results from math-
ematics point out that the orthogonal rotations can be
achieved by using flipping and coordinate swapping op-
erations.

Definition 4. The orthogonal rotation operations on
FRQI quantum images are the operations R90

I , R180
I , R270

I

which when applied on |I (θ)〉 in (1) produces the outputs
of the following form;

Ra
I (|I (θ)〉) =

1
2n

22n−1∑
k=0

(cos θk|0〉 + sin θk|1〉) ⊗ Ra (|k〉) ,

(15)
where a ∈ {90, 180, 270}, |k〉 = |yx〉 and

R90 (|yx〉) = |xȳ〉, (16)
R180 (|yx〉) = |ȳx̄〉, (17)
R270 (|yx〉) = |x̄y〉. (18)

Theorem 4. The complexity of the orthogonal rotations,
R90, R180, and R270, on 2n-qubit FRQI quantum images
is O(n).

Proof. The rotations can be built from flipping and co-
ordinate swapping operations as

R90 = CFX , (19)
R180 = FY FX , (20)

R270 = CFY . (21)

Other geometric transformations can be constructed from
the above mentioned operations using the method that
was used to achieve orthogonal rotations from flips and
co-ordinate swappings. For example, we can consider
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Figure 15: Rotation Circuits.

transformations that have effect on sub-areas of an im-
age, lets say flip along X axis for right-half of the image.
This kind of operations requires extra information to in-
dicate the sub-area in which the original transformations
are actually performed. From the quantum circuit model,
the extra information about the sub-area is expressed in
the restricting conditions used to target the sub area’s
by using controlled quantum gates, for example CNOT
or Toffoli gate. In the example of flipping the right-half
of the image along the X axis, the sub-area is the right-
half and the original transformation is flip along X axis.
The right-half area of an n-size image contains positions
in the form |y〉|1xn−2 . . . x0〉. We use a control condi-
tion from the qubit xn and a flip along X axis, which
includes n NOT gates as presented in section 4, in the
quantum circuit design of the transformation. Therefore,
the transformation can be built from n CNOT gates. Us-
ing this strategy we can create many other variants from
the original proposals of flip, co-ordinate swapping and
orthogonal rotations.

6 Experiments of geometric transforma-
tions on quantum images

The storage and retrieval of quantum images in FRQI
representation was presented in [12]. The experiments
involved simulating the quantum images on a classical
computer. These simulations use linear algebra in which
the complex vectors are the quantum image states and
the unitary matrices are the image processing operations.
The final step in these simulations is measurement which
converts the quantum information into the classical infor-
mation in form of probability distributions. Extracting
and analyzing the distributions gives the information for
retrieving the transformed images.

Using matrix operations, however, is not practical since
the size of unitary matrices increases exponentially with
the number of qubits. In addition, the main information
for simulation is about the images only and not about the
operations. In order to increase the size of images in the
program memory we focus on the main information of the
FRQI representation; color and positions. Therefore, for
every point in the simulation of FRQI quantum images
there are two arrays, named COLOR for colors |ck〉 and
POS for positions |k〉. The performance of the geometric
transformations is on the POS array only and the new
quantum image after the transformations is obtained by
combining the POS array with its corresponding COLOR
array. Table 1 shows the number of elements in each
array for n-qubit (2n-size) FRQI images. The simulation
program used Matlab 2008a on a computer with Intel
Core 2 Quad, 2.36 GHz CPU, 4GB Ram.

The proposed geometric transformations including flip,
co-ordinate swap, orthogonal rotation, and the restricted
operation to flip the right-half of the original image along
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Table 1: Sizes of COLOR, POS arrays.
COLOR POS

Rows 2n 2n

Columns 1 n
Data Type double 0,1

X axis are confirmed by simulation as shown in the Fig.
16.

a. Original image b. Flip along X axis

c. Flip along Y axis d. Co-ordinate Swap

e. 90o rotation f. 180o rotation

g. 270o rotation h. Flip of the right-half

Figure 16: Confirmation of proposed gemetric transfor-
mations.

For each geometric transformation on an FRQI image,
the program scans and edits the content of every row in
the POS array. When dealing with large images, such as
20-qubit images, scanning linearly through the POS array
is not efficient. Consequently, the program uses parallel
approach to speed up the whole simulation. The sim-
ulation time of NOT, CNOT, SWAP, and Toffoli gates
is indicated in Table 2 and Fig. 17. The interdepen-
dence of the running time with the size of images shows
the limitation of the simulation of quantum image pro-
cessing. For geometric transformations, the running time
increases with both the number of simple gate and the
size of the images as shown in Table 3. This information
is useful for designing new quantum image processing op-
erations based on the basic gates.

Table 2: Running time (seconds) for basic gates; NOT,
CNOT, SWAP, and Toffoli gates.

No. of qubits NOT CNOT SWAP Toffoli
14 0.22 0.26 0.42 0.23
16 0.33 0.37 0.85 0.27
18 0.72 0.96 2.54 0.48
20 2.20 3.34 9.50 1.40
22 8.05 12.94 38.02 5.45

Figure 17: Simulation running time of basic gates

The next experiment is a simple image processing task.
In this experiment the 512 × 512 input image includes
four smaller 256×256 images as shown on the left side of
Fig. 18. The goal is to rotate three out of the four smaller

Figure 18: The input image (left side) and the output
image (right side) using in the second experiment.

images to make all the images upright and change their
relative position in the input image. The output image
is shown on the right side of Fig. 18.

The quantum circuit to perform such a task is shown in
Fig. 19. In this circuit, there are 8 wires for X and Y
axes to encode the dimensions of each of the four smaller
images. The two extra wires one for each axis are used to
encode the smaller 256×256 images relative to the larger
512 × 512 image. The circuit comprises of two blocks of
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Table 3: Running time (seconds) of geometric transfor-
mations

No. of qubits Flip Swap Rotation Others
14 1.10 1.95 2.46 6.32
16 1.51 5.56 6.80 15.40
18 5.11 21.47 25.56 56.60
20 20.57 93.61 116.30 243.51
22 90.11 428.52 517.09 1116.9

geometric transformations R90 and restricted version of
R270. The R90 block rotates the whole image 90o clock-
wise. Finally, the upper-left 256× 256 smaller image ob-
tained from the previous step is rotated 270o clockwise.
This is achieved by imposing additional restrictions to
target and restrict the operation to that area only as seen
in Fig. 19. To realize the desired output image, a middle
stage is obtained after rotating the entire 512 × 512 im-
age using the R90 operation. The output image of this
stage is shown in Fig. 20. The block has two control wires
on R270 from the extra wires which provide the informa-
tion to restrict the performance of R270 on the upper-left
conner.

Color
Y Axis (8 wires) /

R90

R270

X Axis (8 wires) /

Extra Y ����	
�
Extra X ����	
�

Figure 19: Quantum circuit for the application compris-
ing two blocks of geometric transformations R90 and re-
stricted version of R270.

Figure 20: The image obtained from the input image after
the first step.

As proven in 5, the total number of basic gates in the
quantum circuit is linear with the number of qubits used
to express the input image i.e. 18 qubits. To achieve the
same operation, an operation has to examine each pixel
in the input image and move it to a new position in the

output image, that means the complexity is equal to the
size of the input image, in this case 29 × 29. This re-
sult shows the efficiency of geometric transformations on
FRQI quantum images over similar operations on classi-
cal computers.

7 Conclusions

Geometric transformations on quantum images including
two-point swapping, flip, co-ordinate swapping, and or-
thogonal rotations with low complexity are proposed us-
ing basic gates like NOT, CNOT, and Toffoli gates. This
low complexity agrees with results for similar transfor-
mations which are also fast on classical images. The pro-
posed operations can be divided into local and global op-
erations according to their effect on the quantum images.
From this point of view, the local operations are found
to be slower than the global operations resulting from
the parallelism of quantum computation. This is in con-
trast to classical image processing transformations. Al-
though arbitrary geometric transformations can be con-
structed by two-point swapping operations, the complex-
ity of this method is high since we are using local opera-
tions, especially for those geometric transformations that
have global effect. Meanwhile, the global operations like
flip, co-ordinate swapping, and orthogonal rotations are
faster, that means we should think about these opera-
tions before using local operations in the design process
of quantum circuits. The simulation experiments confirm
all the proposed transformations. Based on the results
presented in 3-5, we can restrict the basic operations on
our simulation system to NOT, CNOT, and Toffoli gates.
The memory space and processing speed, posed some un-
avoidable problems in the simulation of quantum images
and their processing operations on classical computers.
In order to improve the performance of the simulation
system, our strategy was to reduce memory space by fo-
cusing on the effect of transformations on quantum im-
ages instead of the transformations themselves. During
the analysis of the simulation system in 6, we found out
that the parallelism of transformations on quantum im-
ages can be translated directly to the parallel computing
methods.

As for future work, the results in this paper will be ex-
tended towards the following directions. As discussed in
3, the two-point swapping operators can be used to con-
struct arbitrary geometric transformations. Since their
complexity is O(log2 N), we should use them as less as
possible and use more operations like flip, co-ordinate
swapping and rotations whose complexity is O(log N).
Secondly, the problem of designing the quantum circuits
with low complexity for arbitrary geometric transforma-
tions is still open and needs to be investigated using the
group theory point of view. Thirdly, using geometric
transformations in other applications of quantum image
processing appears very promising, for example applica-
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tions in quantum image watermarking, quantum image
cryptography can be done by hiding secret information in
the design of quantum circuits. Combining with the color
related operations [18], the geometric operations can be
used as major components to build full quantum image
processing applications.
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