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Abstract—The pancake problem, which has at-
tracted considerable attention, concerns the number
of prefix reversals needed to sort the elements of an
arbitrary permutation. The number of prefix rever-
sals to sort permutations is also the diameter of the of-
ten studied n-dimensional Pancake network. We con-
sider restricted pancake problem, when only k of the
possible n− 1 prefix reversals are allowed.
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1 Introduction

Given the set

Tn = {1, 2, . . . , n},

a permutation π of Tn is bijective function π : Tn → Tn.
The symmetric group Sn is the set of all the permutations
of Tn. We can view a permutation π ∈ Sn as an ordered
arrangement of the elements in Tn where π[i] is the ele-
ment in position i. In this view, the integers 1, 2, . . . , n
are used to indicate both positions and elements. The
prefix reversal Ri, where

1 < i ≤ n,

is the permutation

(i, i− 1, . . . , 1, i + 1, i + 2, . . . , n).

The pancake problem, which has attracted considerable
attention [1], [2], [3], [4], concerns the number of pre-
fix reversals needed to sort the elements of an arbitrary
permutation. The number of prefix reversals to sort per-
mutations is also the diameter of the often studied n-
dimensional Pancake network [5], [6], [7], [8], [9], [10]. Let
d(n) be the maximum number of prefix reversals needed
to sort any permutation on n symbols. The best bounds
known for d(n) are
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n ≤ d(n) ≤ 5n + 5
3

[2], [3]. A related problem, called the burnt pancake prob-
lem, [2], concerns the number of prefix reversals needed
to sort signed permutations, where each symbol has an
attached positive or negative sign and, each time the
symbol is involved in a prefix reversal, the sign changes.
Let dsign(n) be the maximum number of prefix reversals
needed to sort any signed permutation on n symbols. The
best bounds known for dsign(n) are

3
2
n ≤ dsign(n) ≤ 2n− 3

(see [2], [3]).

We consider restricted pancake problems, when only k of
the possible n − 1 prefix reversals are allowed. Suppose
we have a group G and a subset X of G. If every element
of G can be generated as a finite product of the elements
of X, then the elements of X are called generators, and
X is called a generating set of G. We also say that X
generates G. If G is a group and X generates G, then
the Cayley network C(G, X) is a network where the nodes
are the elements of G, and the edges are all ordered pairs
(a, b) where b = ac, for some c ∈ G and a ∈ X. If
the inverse of every generator is again in the generating
set, then the Cayley network will be undirected. Cayley
networks generated by sets of prefix reversals are always
undirected, since every prefix reversal is its own inverse.

Cayley graphs have been extensively studied [10], [11],
[12], [13] as bases for interconnection networks, due
to their many desirable properties, including regular-
ity, vertex-symmetry and recursive or near-recursive sub-
structure. Recently, a number of Cayley networks of de-
gree O(1) have been proposed [13], [14], [15], [16], [17].

Let D(G, X) be the diameter of the undirected Cayley
network on G generated by X. In [13] proved that if
|X| = O(1), then

D(Sn, X) = Ω(n log2 n).

Also in [13] proved that
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D(Sn, {Rbn
2 c, Rdn

2 e, Rn}) = Θ(n log2 n)

where n ≥ 5, n is odd, and (n− 1)mod8 6= 0.

2 The Main Result

Theorem.

D(S2n, {Rn−1, Rn, Rn+1, R2n}) ≤ 36ndlog2 2ne

where n > 1.

Proof. In order to prove the O(n log2 n) bound for the
diameter of C(S2n, {Rn−1, Rn, Rn+1, R2n}), we describe
operations that can be simulated by an O(1) length se-
quence of C(S2n, {Rn−1, Rn, Rn+1, R2n}) generators. We
can use these operations as a macro to prove our bound.
Let ROL[i, j, k] be defined as a left cyclic shift of elements
π[i] through π[j] by k positions. Let ROR[i, j, k] be de-
fined similarly, but for a right shuffle, and let XCHG[i]
denote ROL[i, i + 1, 1]. If ROL[i, j, k] can be simulated
by a given sequence, then ROR[i, j, k] can be simulated
by applying that sequence in reverse order.

Let

XCHG[n] : Rn, Rn+1, Rn, Rn−1;
ROL[1, 2n, 1] : Rn+1, R2n, Rn−1, Rn, R2n, Rn;
ROR[1, 2n, 1] : Rn−1, R2n, Rn+1, Rn, R2n, Rn;
ROL[1, n, 1] : Rn, Rn−1;
ROR[1, n, 1] : Rn−1, Rn;
ROL[n + 1, 2n, 1] : R2n,ROR[1, n, 1], R2n;
ROR[n + 1, 2n, 1] : R2n,ROL[1, n, 1], R2n.

For all τ ∈ S2n, let

Leftτ ∪ Rightτ = {τ [m1], τ [m1 + 1], . . . , τ [m3]},

Leftτ ∩ Rightτ = ∅,

a < b, a ∈ Leftτ , b ∈ Rightτ ,

|Leftτ | = m2 −m1 + 1,

|Rightτ | = m3 −m2

where

1 ≤ m1 < m2 < m3 ≤ 2n.

Consider the procedure SORT(τ,m1,m2,m3).

procedure SORT(τ,m1,m2,m3)
//Step1
i := 0;
n1 := m1;
n2 := m3;
if m2 > n

then

begin

j := m2 − n;
n1 := m1 − j;
n2 := m3 − j;
for i := 1 to j do

τ := ROL[1, 2n, 1](τ);
end

else

if m2 < n

then

begin

j := n−m2;
n1 := m1 + j;
n2 := m3 + j;
for i := 1 to j do

τ := ROR[1, 2n, 1](τ);
end;

//Step2
l := 0;
r := 0;
while {τ [n + 1], τ [n + 2], . . . , τ [n2]} ∩ Leftτ 6= ∅ do

begin

while τ [n + 1] /∈ Leftτ do

begin

r := r + 1;
τ := ROL[n + 1, 2n, 1](τ);

end;
while τ [n] /∈ Rightτ do

begin

l := l + 1;
τ := ROR[1, n, 1](τ);

end;
τ := XCHG[n](τ);

end;
if r > 0 then

for i := 1 to r do

τ := ROR[n + 1, 2n, 1](τ);
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if l > 0 then

for i := 1 to l do

τ := ROL[1, n, 1](τ);
τ ′ := τ ;
//Step3
if m2 > n

then

for i := 1 to j do

τ := ROR[1, 2n, 1](τ)
else

if m2 < n

then

for i := 1 to j do

τ := ROL[1, 2n, 1](τ);

It is easy to check that if

0 < n1 ≤ n2 ≤ 2n,

then

τ ′[i] = τ [i],

τ ′[j] < τ [k]′,

τ ′[j] ∈ Leftτ ,

τ ′[k] ∈ Rightτ ,

where

i ∈ {1, 2, . . . ,m1 − 1,m3 + 1,m3 + 2, . . . , 2n},

j ∈ {m1,m1 + 1, . . . ,m2},

k ∈ {m2 + 1,m2 + 2, . . . ,m3}.

Clearly, using a binary tree and procedure
SORT(τ,m1,m2,m3), we can sort any permutation.
This strategy takes at most

2(2n)2dlog2 2ne

operations ROL[1, 2n, 1] and ROR[1, 2n, 1];

4ndlog2 2ne

operations ROL[1, n, 1], ROR[1, n, 1], ROL[n + 1, 2n, 1],
and ROR[n + 1, 2n, 1];

2ndlog2 2ne

operations XCHG[n]. But if we use global shuffle in-
stead Step 1 and Step 3, then only 2ndlog2 2ne operations
ROL[1, 2n, 1] and ROR[1, 2n, 1] needed. Note that oper-
ations ROL[1, 2n, 1] and ROR[1, 2n, 1] take 6 prefix re-
versals. Operations XCHG[n], ROL[1, n, 1], ROR[1, n, 1],
ROL[n + 1, 2n, 1], and ROR[n + 1, 2n, 1] takes at most
4 prefix reversals. Therefore, sorting procedure takes at
most

36ndlog2 2ne

prefix reversals.

3 A status of the symmetric group

For each generating set X of a finite semigroup S the
integer ∆(X) is defined as the least n for which every
element of S is expressible as a product of at most n
elements of X. The status Stat(S) of S is defined as the
least value of |X|∆(X) among generating sets of X. In
[18] proved that

Stat(Sn) ≤ b3
2
(n− 1)c(n− 1)

where n ≥ 3. Note that

XCHG[n],ROL[1, 2n, 1],ROR[1, 2n, 1],ROL[1, n, 1],

ROR[1, n, 1],ROL[n + 1, 2n, 1],ROR[n + 1, 2n, 1] ∈ S2n.

Corollary.

Stat(S2n) ≤ 56ndlog2 2ne

where n > 1.
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