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Abstract—We discuss the retailer’s optimal replen-
ishment policy for seasonal products with a ramp-
type demand pattern. In this study, we focus on
“Special Display Goods”, which are heaped up in end
displays or special areas at retail store. They are sold
at a fast velocity when their quantity displayed is
large, but are sold at a low velocity if the quantity
becomes small. We develop the model with a finite
time horizon (period of a season) to determine the
optimal replenishment policy, which maximizes the
retailer’s total profit. Numerical examples are also
presented to illustrate the theoretical underpinnings
of the proposed model.

Keywords: optimal replenishment policy, seasonal

product, ramp-type demand rate, special display goods

1 Introduction

Inventory models with a finite planning horizon and time-
varying demand patterns have extensively been stud-
ied in the inventory literature[1-7]. Resh et al.[1] and
Donaldson[2] established an algorithm to determine both
the optimal number of replenishment cycles and the opti-
mal replenishment time for a linearly increasing demand
pattern. Barbosa and Friedman[3] and Henery[4] respec-
tively extended the demand pattern to a power demand
form and a log-concave function. Hariga and Goyal[5] and
Teng[6] extended Donaldson’s work by considering vari-
ous types of shortages. For deteriorating items such as
medicine, volatile liquids and blood banks, Dye[7] devel-
oped the inventory model under the circumstances where
shortages are allowed and backlogging rate linearly de-
pends on the total number of customers in the waiting
line during the shortage period. However, there still re-
main many problems associated with replenishment poli-
cies for retailers that should theoretically be solved to
provide them with effective indices. We focus on a case
where special display goods[8, 9, 10] are dealt in. The spe-
cial display goods are heaped up in the end displays or
special areas at retail store. Retailers deal in such special
display goods with a view to introducing and/or expos-
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ing new products or for the purpose of sales promotions
in many cases. They are sold at a fast velocity when
their quantity displayed is large, but are sold at a low
velocity when their quantity becomes small. Baker and
Urban[11] and Urban[12] dealt with a similar problem,
but they expressed the demand rate simply as a function
of a polynomial form without any practical meaning.

The demand of seasonal merchandise such as clothes,
sporting goods, children’s toys and electrical home ap-
pearances consists of the following three successive peri-
ods: in the first phase the demand rate of the product
increases with time, and then its demand rate becomes
steady. In the final phase the demand rate decreases with
time up to the end of the selling season[13]. This type
of demand is classified into a time dependant ramp-type
demand pattern[13]. The seasonal items have a rela-
tively short selling season (eight to 12 weeks), while they
have a relatively long ordering lead-time (three to nine
months)[14]. For this reason, the retailers have to com-
mit themselves to a single order to purchase the seasonal
items, prior to the start of the season. Recently, Quick
Response (QR) system has widely used by manufactur-
ing industries[15]. Quick Response is a vertical strategy
where the manufacturer strives to provide products and
services to its retail customers in exact quantities on a
continuous basis with minimum lead time[16]. Appling
the QR system to the manufacture and distribution al-
lows the retailer to re-order the seasonal items during the
selling season.

In this study, we develop an inventory model for seasonal
products with a ramp-type demand pattern over a finite
time horizon (period of a season) to determine the opti-
mal replenishment policy, which maximizes the retailer’s
total profit. Numerical examples are also presented to
illustrate the theoretical underpinnings of the proposed
model.

2 Notations and Assumptions

The main notations used in this paper are listed be-
low:
H: planning horizon.
n: the number of replenishment cycles during the plan-
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Figure 1: Transition of inventory level (n = 3)

ning horizon.
QU : maximum inventory level.
Qj, qj: the order-up-to level and the re-order point,

respectively, in the jth replenishment cycle(q0 = 0,
0 ≤ qj < Qj ≤ QU , j = 1, 2, · · · , n).

tj: the time of the jth replenishment (tj−1 < tj , t0 = 0,
tn = H).

p: selling price per item.
c: acquisition cost per item.
h: inventory holding cost per item and unit of time.
K: ordering cost per lot.
θ: salvage value, per item, of unsold inventory at the

end of the planning horizon.
λ: a proportional constant of the demand rate.
µ(t): demand rate, at time t, which is independent of

the quantity displayed.

The assumptions in this study are as follows:

(1) The finite planning horizon H is divided into n (n =
1, 2, 3, · · ·) replenishment cycles.

(2) The retailer deals in the seasonal merchandise. The
demand rate first reaches its maximum value, and
then becomes a constant or slightly decreases with
time. Finally, its rate appreciably decreases with
time. The demand rate, µ(t), which is independent
of the quantity displayed is a time dependent ramp-
type function and is of the form

µ(t) =

 µ1(t), 0 ≤ t < γ1,
µ2(t), γ1 ≤ t < γ2,
µ3(t), γ2 ≤ t ≤ H.

(1)

We assume that µ′
1(t) > 0, µ′

2(t) ≤ 0, µ′
3(t) < 0,

limt→γ1−0 µ1(t) = µ2(γ1) and limt→γ2−0 µ2(t) =
µ3(γ2).

(3) The demand rate is deterministic and significantly
depends on the quantity displayed: the items sell well
if their quantity displayed is large, but do not when
their quantity displayed becomes small. We express
such a behavior of special display goods in terms of
the following differential equation:

d

dt
mj(t) = λ [Qj−1 − mj(t)] + µ(t), (2)

where mj(t) denotes the cumulative quantity of the
objective product sold during [tj−1, t] (t < tj+1) and
Qj−1 signifies the order-up-to level at the beginning
of the jth replenishment cycle. A mathematically
identical equation has been used to express the be-
havior of deteriorating items and their optimal order-
ing policy has been obtained by Abad[17]. Under the
model proposed in this study, the demand depends
on the quantity heaped and thus depends on time.

(4) The rate of replenishment is infinite and the delivery
is instantaneous.

(5) Backlogging and shortage are not allowed.

(6) The retailer orders (Qj−qj) units when her/his inven-
tory level reaches qj . Figure 1 shows the transition
of inventory level in the case of n = 3.

(7) v = (p − c − h/λ) > 0. This assumption, v > 0, is
equivalent to (p − c)(Qj − qj) > h

Qj−qj

λ . The left-
hand-side of the inequality, (p− c)(Qj − qj), denotes
the cumulative gross profit during [tj−1, tj), and the
right-hand-side of the inequality, h

Qj−qj

λ , approxi-
mately expresses the cumulative inventory holding
cost during [tj−1, tj). Therefore, v > 0 signifies that
the gross profit exceeds the inventory holding cost
during one replenishment cycle.

3 Total Profit

Since the demand rate consists of three different types
components in three successive time periods from as-
sumption (2), the relationship among the demand trans-
fer points (γ1, γ2)(γ1 < γ2) and the cycle times (tj−1, tj)
can be classified into the following six cases:

(a) tj < γ1:

By solving the differential equation in Eq. (2) with
the boundary condition mj(tj−1) = 0, the cumulative
quantity, mj(t), of demand for the product at time
t(≥ tj−1) is given by

mj(t) = Qj−1

[
1 − e−λ(t−tj−1)

]
+

∫ t

tj−1

e−λ(t−u)µ1(u)du. (3)

Since we have I(tj) = qj , the inventory level of the
product at time t becomes

I(t) = Qj−1 − mj(t)

= qje
λ(tj−t) +

∫ tj

t

eλ(u−t)µ1(u)du. (4)

(b) tj−1 < γ1 ≤ tj < γ2:
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In this case, in the same manner as (a), I(t) can be
expressed by

I(t) =



qje
λ(tj−t) +

∫ tj

γ1

eλ(u−t)µ2(u)du

+
∫ γ1

t

eλ(u−t)µ1(u)du,

if tj−1 ≤ t < γ1,

qje
λ(tj−t) +

∫ tj

t

eλ(u−t)µ2(u)du,

if γ1 ≤ t ≤ tj .

(5)

(c) tj−1 < γ1 and γ2 ≤ tj :

In this case, I(t) can be expressed by

I(t) =



qje
λ(tj−t) +

∫ tj

γ2

eλ(u−t)µ3(u)du

+
∫ γ2

γ1

eλ(u−t)µ2(u)du

+
∫ γ1

t

eλ(u−t)µ1(u)du,

if tj−1 ≤ t < γ1,

qje
λ(tj−t) +

∫ tj

γ2

eλ(u−t)µ3(u)du

+
∫ γ2

t

eλ(u−t)µ2(u)du,

if γ1 ≤ t < γ2,

qje
λ(tj−t) +

∫ tj

t

eλ(u−t)µ3(u)du,

if γ2 ≤ t ≤ tj .

(6)

(d) γ1 ≤ tj−1 and tj < γ2:

In this case, I(t) is given by

I(t) = qje
λ(tj−t) +

∫ tj

t

eλ(u−t)µ2(u)du. (7)

(e) γ1 ≤ tj−1 < γ2 ≤ tj :

In this case, I(t) can be expressed by

I(t) =



qje
λ(tj−t) +

∫ tj

γ2

eλ(u−t)µ3(u)du

+
∫ γ2

t

eλ(u−t)µ2(u)du,

if tj−1 ≤ t < γ2,

qje
λ(tj−t) +

∫ tj

t

eλ(u−t)µ3(u)du,

if γ2 ≤ t ≤ tj .

(8)

(f) γ2 ≤ tj−1:

In this case, I(t) is given by

I(t) = qje
λ(tj−t) +

∫ tj

t

eλ(u−t)µ3(u)du. (9)

By using notation µ(t) in Eq. (1), mj(t) in Eq. (3) and
I(t) in Eqs. from (4) to (9) can respectively be expressed
by

mj(t) = Qj−1

[
1 − e−λ(t−tj−1)

]
+

∫ t

tj−1

e−λ(t−u)µ(u)du, (10)

I(t) = Qj−1 − mj(t)

= qje
λ(tj−t) +

∫ tj

t

eλ(u−t)µ(u)du. (11)

Therefore, the initial inventory level in jth replenishment
cycle is given by

Qj−1 = I(tj−1)

= qje
λ(tj−tj−1) +

∫ tj

tj−1

eλ(u−t)µ(u)du. (12)

By letting Qj−1 = I(tj−1) in Eq. (10), the cumulative
quantity of demand during [tj−1, tj) becomes

m(tj−1, tj) = qj

[
eλ(tj−tj−1) − 1

]
+

∫ tj

tj−1

eλ(tj−tj−1)µ(u)du. (13)

There obviously exists a time t = tUj (> tj−1) when the
inventory level reaches zero, where tUj is unique positive
solution to ∫ tj

tj−1

eλ(u−tj−1)µ(u)du = Qj−1. (14)

The left-hand-side of Eq. (14) indicates that the cumu-
lative demand of the product in jth replenishment cycle
when the re-order point qj is set to be zero. The maxi-
mum value of tj can therefore be given by tUj .

On the other hand, the cumulative inventory,
A(tj−1, tj), held during [tj−1, tj) (tj ≤ tUj ) is expressed
by

A(tj−1, tj) =
∫ tj

tj−1

I(t)dt

=
1
λ

[
m(tj−1, tj) −

∫ tj

tj−1

µ(u)du

]
.(15)

Hence, the total profit is given by

Pn =
n∑

j=1

[
p · m(tj−1, tj) − c · (Qj−1 − qj−1)
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−h · A(tj−1, tj)
]

+ θqn − nK

= v

n∑
j=1

m(tj−1, tj) + (θ − c)qH

+h/λ

∫ H

0

µ(u)du − nK, (16)

where v = (p − c − h/λ)(> 0).

4 Optimal Policy

This section analyzes the existence of the optimal pol-
icy (Qj−1, qj , tj) = (Q∗

j−1, q
∗
j , t∗j ) for a given n (j =

1, 2, · · · , n), which maximizes Pn in Eq. (16). It is, how-
ever, very difficult to conduct analysis under θ ̸= c. For
this reason, we focus on the case where θ = c.

4.1 Optimal Re-order Point

In this subsection, we examine the existence of (Q∗
j , q

∗
j ),

in case tj−1 and tj are respectively fixed to suitable val-
ues.

Let R(tj−1, tj) be defined by

R(tj−1, tj) ≡

[
QU −

∫ tj

tj−1

eλ(u−tj−1)µ(u)du

]
×e−λ(tj−tj−1) (> 0). (17)

The optimal order-up-to level and the optimal re-order
point can be given by

(Q∗
j , q

∗
j ) = (QU , R(tj−1, tj)) . (18)

The proofs are given in Appendix A.

By letting (Qj−1, qj) = (QU , R(tj−1, tj)) in Eq. (16),
the total profit on (Qj−1, qj) = (QU , R(tj−1, tj)) becomes

Pn = v
n∑

j=1

{
QU − e−λ(tj−tj−1) [QU − m̃(tj−1, tj)]

}
+h/λ

∫ H

0

µ(u)du − nK, (19)

where

m̃(tj−1, tj) =
∫ tj

tj−1

eλ(u−tj−1)µ(u)du. (20)

4.2 Optimal Replenishment Time

This subsection makes an analysis of t∗j that maximizes
Pn, for a given (tj−1, tj+1). The analysis with respect to
existence of t∗j becomes considerably complicated under
L′(tj) > 0 for tj < γ1. For this reason, when tj < γ1, we
focus on the case where L′(tj) ≤ 0.

Let us here φ(tUj ) be given by

φ(tUj ) ≡ 1
λ ln λQU+µ(tU

j )

µ(tU
j

)
+ tUj . (21)

We here summarize the result of analysis in relation to
the optimal replenishment time t∗j .

The proofs are shown in Appendix B.

We show below that an optimal replenishment time t∗j
exists:

(1) tj+1 < φ(tUj ):

In this case, there exists a unique finite t∗j (tj−1 <

t∗j < min(tUj , tj+1)) that maximizes Pn.

(2) tj+1 ≥ φ(tUj ):

In this case, Pn is non-decreasing in tj , and conse-
quently we have t∗j = tUj .

If there exists t∗j < tUj for all j (j = 1, 2, · · · , n − 1), the
total profit is given by

Pn = ṽ

{
1
λ

n−1∑
j=1

[
λQU + µ(t∗j )

] [
1 − e−λ(t∗j+1−t∗j )

]
m(t∗n−1,H)

}
+ h/λ

∫ H

0

µ(u)du − nK. (22)

5 Numerical Examples

This section presents numerical examples to illustrate the
proposed model.

Suppose that the demand rate which is independent of
the quantity displayed is given by

µ(t) =


αeβt, t < γ1,
αeβγ1 , γ1 ≤ t < γ2,

αeβ(γ1+γ2−t), t ≥ γ2,
(23)

where α > 0 and β > 0[13].

Figure 2 reveals the transition of inventory level
along with behavior of (q∗j , t∗j ) in the case of
(H, QU , λ, p, c, h, θ, α, β.γ1, γ2) = (100, 350, 0.01, 600, 30
0, 1, 300, 0.1, 0.15, 30, 70) for K = 2000, 5000, 8000.

It is observed in Fig. 2 that the number of replenishment
cycles decreases with increasing K. This is because when
the ordering cost per lot becomes large, the total ordering
cost should be slashed by means of increasing the time
interval between successive replenishments.

We can also notice in Fig. 2 that q∗j takes a constant value
on the whole in the region of γ1 < t ≤ γ2. In contrast, in
the regions of t < γ1 and t ≥ γ2, the value of q∗j relatively
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becomes larger, which signifies that, in these regions, the
cumulative quantity displayed increases as the demand
rate which is not affected by the inventory level decreases.
Heaping up the products to a large quantity reflects the
situation where the demand velocity is large. When the
demand rate becomes small, the retailer can therefore
maintain her/his profit as large as possible by increasing
the quantity displayed.

6 Conclusions

In this study, we have proposed an inventory model for
seasonal products with the ramp-type demand pattern
over a finite time horizon (period of a season) to de-
termine the optimal replenishment policy, which maxi-
mizes the retailer’s total profit. We particularly focus on
the case where the retailer is facing her/his customers’
demand by dealing in the special display goods. They
are sold at a fast velocity when their quantity displayed
is large, but are sold at a low velocity if the quantity
becomes small. We have clarified the existence of the
optimal order quantity at time tj , along with the opti-
mal replenishment time which maximize the retailer’s to-
tal profit. In the real circumstances, retailers frequently
place a mirror at their display area, or they display prod-
ucts on a false bottom to increase their quantity displayed
in appearance. Taking account of such factors is an in-
teresting extension.

Appendix A

In this appendix, we show the existence of both the op-
timal order-up-to level and the re-order point (Qj , qj) =
(Q∗

j , q
∗
j ) in case n, tj−1 and tj are respectively fixed to

suitable values.

At retail stores, they have a maximum value for the in-
ventory level arrowed for some reasons, which is denoted
by QU . It can easily be shown from Eq. (12) that Qj−1 is
a function of qj (0 ≤ qj < Qj−1 ≤ QU ), and furthermore,
Qj−1 ≤ QU agrees with

qj ≤ e−λ(tj−tj−1)

×

[
QU −

∫ tj

tj−1

eλ(u−tj−1)µ(u)du

]
. (A.1)

Let R(tj−1, tj) express the right-hand-side of Inequal-
ity (A.1). We obviously have R(tj−1, tj) ≥ 0 for tj−1 ≤
tj < min(tUj , tj+1).

By differentiating Pn in Eq. (16) with respect to qj ,
we have

∂

∂qj
Pn = v

[
eλ(tj−tj−1) − 1

]
(> 0). (A.2)

Since (p − c − h/λ) > 0 from assumption (7), we
have ∂

∂qj
Pn > 0, and consequently (Q∗

j−1, q
∗
j ) =

(QU , R(tj−1, tj)).

Appendix B

In this appendix, we show the existence of t∗j that maxi-
mizes Pn for a given (tj−1, tj+1).

By differentiating Pn in Eq. (19) with respect to tj , we
have

∂

∂tj
Pn = v

{
λe−λ(tj−tj−1) [QU − m̃(tj−1, tj)]

−λQUe−λ(tj+1−tj)

+µ(tj)
[
1 − e−λ(tj+1−tj)

]}
(B.1)

Let L(tj) express the terms enclosed in braces { } in
the right-hand-side of Eq. (B.1). Since it can easily be
proven from assumption (7) that the sign of v is positive,
∂

∂tj
Pn ≥ 0 agrees with

L(tj) ≥ 0. (B.2)

Furthermore, we have

L′(tj) = −λ

{
λe−λ(tj−tj−1) [QU − m̃(tj−1, tj)]

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_06

(Advance online publication: 23 November 2010)

 
______________________________________________________________________________________ 



+µ(tj) + e−λ(tj+1−tj) [λQU + µ(tj)]
}

+µ′(tj)
[
1 − e−λ(tj+1−tj)

]
, (B.3)

L(tj−1) = [λQU + µ(tj−1)]

×
[
1 − e−λ(tj+1−tj−1)

]
(> 0), (B.4)

L(tj+1) = −λ

{
e−λ(tj+1−tj−1)m̃(tj−1, tj+1)

+QU

[
1 − e−λ(tj+1−tj−1)

]}
(< 0), (B.5)

L(tUj ) = µ(tUj )
[
1 − e−λ(tj+1−tU

j )
]

−λQUe−λ(tj+1−tU
j ). (B.6)

In the case of tj+1 ≥ tUj , L(tUj ) < 0 coincides with

tj+1 <
1
λ

ln
λQU + µ(tUj )

µ(tUj )
+ tUj . (B.7)

Let us denote, by φ(tUj ), the right-hand-side of Inequal-
ity (B.7).

It can easily be shown from Eq. (B.3) that L′(tj) < 0
in the case of tj ≥ γ1 since we have µ′

2(tj) ≤ 0 and
µ′

3(tj) < 0. In the case of tj < γ1, as mentioned in
Section 4.2, we focus on the case where L′(tj) ≤ 0.

On the basis of the above results, for a given (tj−1, tj+1),
we show below that an optimal replenishment time t∗j
exists:

(1) tj+1 < φ(tUj ):

In this subcase, the sign of ∂
∂tj

Pn changes from pos-
itive to negative only once, and thus there exists a
unique finite t∗j (tj−1 < t∗j < min(tUj , tj+1)) that max-
imizes Pn.

(2) tj+1 ≥ φ(tUj ):

In this subcase, Pn is non-decreasing in tj , and con-
sequently we have t∗j = tUj .
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