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Abstract—This paper presents an analysis for 

magnetohydrodynamic (MHD) flow of an incompressible 
generalized Oldroyd-B fluid with fractional derivative. The 
effect of radiation on the heat transfer is considered and the 
fractional calculus approach is used to establish the 
constitutive relationship model of a viscoelastic fluid. Exact 
solutions are obtained for the velocity field and temperature 
field in integral and series form in terms of G function by 
means of Fourier sine transfer and Laplace transform 
technique for the fractional calculus. Moreover, the figures 
are plotted to show the effects of different parameters on 
velocity field and temperature field. 
 

Index Terms—Oldroyd-B fluid, oscillation, Fourier sine 
transfer, Laplace transform, G function.   
 

I. INTRODUCTION 
The interest for motion problems of non-Newtonian 

fluids has considerably grown because of the wide range of 
their applications. These fluids have been modeled in a 
number of diverse manners with their constitutive 
equations varying greatly in complexity. Among them the 
Oldroyd-B fluid as a special viscolesatic non-Newtonian 
fluid has had some success in describing polymeric liquids, 
it being more amenable to analysis and more importantly 
experimental. 

Recently, the fractional derivatives [1] are found to be 
quite flexible for describing the behaviors of viscoelastic 
fluids. Many researchers have studied different problems 
related to such fluids. In their works, the constitutive 
equations for generalized non-Newtonian fluids are 
modified from the well known fluid models by replacing 
the time derivative of an integer order by the so-called 
Riemann-Liouville fractional calculus operators. Qi and Xu 
[2] investigated the Stokes’ problem for a viscoelastic fluid 
with a generalized Oldroyd-B model. Khan and Hyder et al. 
[3-4] considered some fluid with generalized Oldroyd-B 
model. Hyder [5] discussed the flows of generalized 
Oldroyd-B fluid between two side walls perpendicular to 
the plate. Fetecau et al. [6-9] investigated some accelerated 

flows of a generalized Oldroyd-B fluid. Hayat et al.
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 [10-11] 
studied the flow of a Maxwell fluid between two side walls. 
Moreover, MHD flows have wide converged on the 
development of energy generation and in astrophysical and 
geophysical fluid dynamics. Recently, the theory of MHD 
has received much attention, see [12-16] and reference 
therein. The effect of radiation on the heat and fluid over an 
unsteady stretching surface is analyzed [17-18]. However, 
there are no attempts to consider the viscoelastic fluids 
under the effect of thermal radiation. 

In this paper, we consider the MHD flow of an 
incompressible generalized Oldroyd-B fluid. Exact 
solutions for the velocity field and temperature field are 
obtained by using the Fourier sine transform and Laplace 
transform technique for the fractional calculus. The 
magnetic field and thermal radiation and their influence on 
the flow are considered. A parametric study of some 
physical parameters involved is performed to illustrate the 
influence of these parameters. 
 

II. GOVERNING EQUATIONS 
The constitutive equation of an incompressible and 

unsteady Oldroyd-B fluid is written in the form [2]: 

p= − +T I S , D D(1 )
D Drt t

α β

α βλ μ λ+ = +
SS A .     (1) 

where is the Cauchy stress tensor, T p− I denotes the 
indeterminate spherical stress, S is the extra-stress tensor, 

T= +A L L is the first Rivlin-Ericksen tensor, L is the 
velocity gradient, , , rμ λ λ  are material constants, known 
as the viscosity coefficient, the relaxation and retardation 
times, respectively , and 

TD D ,
D tt

α
α

α = + ⋅∇ − −
S S V S LS SL  

TD D .tt

β
β

β = + ⋅∇ − −
A A V A LA AL

D
      (2) 

In the above relations is the velocity, ∇ is the gradient 

operator, 

V
Dt

α and Dt
β are based on Riemann- Liouville’s 

definition is defined as [1]: 

0

1 d ( )D ( ) d
(1 ) d ( )

tp
t p

ff t
p t t

τ τ
τ

=
Γ − −∫ , 0 1p≤ < ,     (3) 

where ( )Γ ⋅ is the Gamma function.  
Assuming the velocity field and stress of the form 

( , )u y t=V i , .                       (4)  ( , )S y t=S
Where u is the velocity and is the unit vectors in the i x - 
direction. Substituting Eq.(4) into Eq.(1) and taking account 
of the initial condition  
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( ,0) 0S y = , ,                               (5) 0y >
the fluid being at rest up to the time , we get 0t =

(1 D ) (1 D ) ( , )t xy r t yS uα βλ μ λ+ = + ∂ y t ,                (6) 

0yy zz xz yzS S S S= = = = , xy yS S x= . We consider a 

generalized Oldroyd-B fluid. The fluid is permeated by an 
imposed magnetic field 0B which acts in the 
positive y -coordinate. In the low- magnetic Reynolds 
number approximation, the magnetic body force is 
represented 2

0B uσ . Then, in the absence of a pressure 
gradient in the x -direction, the equation of motion yields 
the following scalar equation: 

2
0xy

u S B
t y

ρ ∂ ∂
= −

∂ ∂
uσ ,                           (7) 

where ρ is the constant density of the fluid. Eliminating 

xyS  between Eq.(6) and Eq.(7), we arrive at the following 

fractional differential equation 
2

2
( , ) ( , )(1 D ) (1 D )t r t

u y t u y t
t y

α βλ ν λ∂ ∂
+ = +

∂ ∂
 

(1 D ) ( , )tM u y tαλ− +              (8) 
where /ν μ ρ= is the kinematic viscosity and 

2
0 /M Bσ ρ= .  

The fluid is considered to be a gray, absorbing-emitting  
radiation but non-scattering medium. When the Fourier’s 
law of heat conduction is considered, the energy equation 
may be written in the form: 

22

2

1T

p p p

k u
t C y C y C
θ θ ν

ρ ρ
⎡ ⎤ ∂∂ ∂ ∂

= + −⎢ ⎥∂ ∂ ∂⎣ ⎦
rq

y∂
         (9) 

where is the thermal conductivity,Tk ρ is the density,  

is the specific heat of a fluid at constant pressure and  is 
the radiative heat flux. 

pC

rq

III. STATEMENT OF THE PROBLEM 
Supposed that a generalized Oldroyd-B fluid occupying 

the space above a flat plate. Initially the fluid as well as the 
plate is at rest, and at time 0t += the plate oscillate in its 
plane with the velocity cos( )V tω or sin( )V tω ( is a 
constant). Let 

V

wθ denotes temperature of the plate for , 
and suppose the temperature of the fluid at the 
moment is

0t ≥

0t = θ∞ . Due to the shear, the fluid is moved 
gradually. Accordingly, the initial and boundary conditions 
of velocity field are: 

Initial condition:   
( ,0)( ,0) 0u yu y

t
∂

= =
∂

,  .    (10) 0y >

Boundary conditions:   (0, ) Vsin( t)u t ω=  or 
(0, ) Vcos( t)u t ω= , .        (11) 0t >

( , )u y t , 
( , ) 0u y t
y

∂
→

∂
 as , .    (12) y → ∞ 0t >

where u is velocity in the x -coordinate direction. 

The corresponding initial and boundary conditions of 
energy equation are: 
Initial condition:            ( ,0) 0yθ = ,   for .         (13) 0y >
Boundary conditions:      (0, ) wtθ θ= ,   for .      (14) 0t ≥

          ( , )y tθ θ∞→ , 
( , ) 0y t
y

θ∂
→

∂
,    for .  (15) y → ∞

 

IV. VELOCITY FIELD  
Employing the non-dimensional quantities 

2
* * *V V, ,

V
u y tu y t ,

ν ν
= = =  

2 2
* * *

2
V V, ,r r

MM .
A

α β
νλ λ λ λ

ν ν
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=     (16) 

We obtain the dimensionless motion equation as follows 
(for brevity the dimensionless mark “*” is omitted here) 

2

2
( , ) ( , )(1 D ) (1 D )t r t

u y t u y t
t y

α βλ λ∂ ∂
+ = +

∂ ∂
 

 (1 D ) ( , )tM u y tαλ− +           (17) 

Initial condition:    
( ,0)( ,0) 0u yu y

t
∂

= =
∂

,  . (18) 0y >

Boundary conditions:   (0, ) cos( t)u t ω= or  
(0, ) sin( t)u t ω= , .             (19) 0t >

               , ( , )u y t ( , ) 0u y t
y

∂
→

∂
 as , .    (20) y → ∞ 0t >

In order to solve the above problem, we use Fourier sine 
transform [19] and Laplace transform for fractional 
derivative. Firstly, multiplying both sides of Eq.(17) 
by 2/ sin( )yπ ξ , integrating then with respect to y from 
0 to ∞ and take account corresponding initial and boundary 
conditions (18)-(20), we obtain 

( , ) 2(1 D ) (1 D )[ cos( )s
t r t

u t t
t

α βξ
λ λ ξ ω

π
∂

+ = +
∂

s

 

2 ( , )] (1 D ) ( , )s tu t M u tαξ ξ λ− − + ξ .  (21)  
and 

( , ) 2(1 D ) (1 D )[ sin( )s
t r t

u t t
t

α βξ
λ λ ξ

π
∂

+ = +
∂

ω

s

 

2 ( , )] (1 D ) ( , )s tu t M u tαξ ξ λ− − + ξ .    (22) 
where the Fourier sine transform ( , )su tξ of has to 
satisfy the conditions 

( , )u y t

( ,0)( ,0) 0s
s

uu
t
ξ

ξ
∂

= =
∂

, 0ξ > .                  (23) 

Applying Laplace transform for sequential fractional  
derivative to Eqs.(21)-(22) and using the initial condition 
Eq.(23), we get 

2

2 2 2

(1 )2 1( , )
[( )(1 ) (1 )]

r
s

r

ssu s
s s M s s

β

α β

ξ λξ
π ξ ω λ ξ λ

+
=

+ + + + +
            

(24) 
and 
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2

2 2 2

(1 )2 1( , )
[( )(1 ) (1 )]

r
s

r

su s
s s M s s

β

α β

ξ λωξ
π ξ ω λ ξ λ

+
=

+ + + + +
  

           (25) 
Where ( , )su sξ is the Laplace transform of ( , )su tξ with 
respect to . In order to avoid the lengthy procedure of 
residues and contour integrals, we rewrite Eqs.(24)-(25) 
into the series form 

t

2 2 2 2
0

1

2( 1) 1
, 0 , 0

2 1 2 1( , ) ( 1)

1 ( 1)! !
! ! ! !

k
s

k

m l k n w k
m

k k
m l n wr

s su s
s s

k kM
m l n w

ξ
π ξ ω π ξ ω

nλ
ξ λ

∞

=

+ = + + =

+ +
≥ ≥

= −
+ +

+
×

∑

∑ ∑

−
 

1(1 )
( )

n l

k
r

ss
s

α
α

βλ
λ

+

−× +
+ 1+

.                                 (26) 

and 

2 2 2 2
0

1

2( 1) 1
, 0 , 0

2 1 2 1( , ) ( 1)

1 ( 1)!
! ! ! !

k
s

k

m l k n w k
m n

k k
m l n wr

u s
s s

k kM
m l n w

ω ωξ
π ξ ω π ξ ω

! λ
ξ λ

∞

=

+ = + + =

+ +
≥ ≥

= −
+ +

+
×

∑

∑ ∑

−
 

1(1 )
( )

n l

k
r

ss
s

α
α

βλ
λ

+

−× +
+ 1+

.                               (27) 

Taking the discrete inverse Laplace transform, we obtain 

2( 1) 1
0

1

0
, 0 , 0

1 1
, , 1 , , 1

2 1 2 1 1( , ) cos( ) ( 1)

( 1)! ! cos( ( ))
! ! ! !

{ ( , ) ( , )

k
s k k

k r
m l k n w k tm n

m l n w

n l k r n l k r

u t t

k kM
m l n w

G Gβ α β α α

ξ ω
π ξ π ξ ξ λ

λ ω τ

}

t

dλ τ λ λ τ τ

∞

+ +
=

+ = + + =

≥ ≥

− −
+ + + + +

= − −

+
× −

× − + −

∑

∑ ∑ ∫

   (28) 
and 

2( 1) 1
0

1

0
, 0 , 0

1 1
, , 1 , , 1

2 1 2 1 1( , ) sin( ) ( 1)

( 1)! ! sin( ( ))
! ! ! !

{ ( , ) ( , )

k
s k k

k r
m l k n w k tm n

m l n w

n l k r n l k r

u t t

k kM t
m l n w

G Gβ α β α α

ξ ω
π ξ π ξ ξ λ

λ ω τ

}dλ τ λ λ τ τ

∞

+ +
=

+ = + + =

≥ ≥

− −
+ + + + +

= − −

+
× −

× − + −

∑

∑ ∑ ∫

    (29) 
where [20] 

( ) 1

, ,
0

( )( , ) ( )
( 1) (( ) )

l b a
ll

a b
l

b tG d t d
l l b a

α

α α

+ − −∞

=

=
Γ + Γ + −∑ .   (30) 

( ) ( 1) ( 1)lb b b b l= + + − is the Pochhammer 
polynomial. 

Then, in terms of the inverse Fourier sine transform, we 
find the following expression for the velocity field 

2( 1) 10
0

1

0
, 0 , 0

2 sin( ) 1( , ) cos( ) ( 1)

( 1)! ! cos( ( ))
! ! ! !

k
k k

k r
m l k n w k tm n

m l n w

yu y t t

k kM t
m l n w

ξω
π ξ ξ

λ ω τ

∞∞

+ +
=

+ = + + =

≥ ≥

= − −

+
× −

∑∫

∑ ∑ ∫

λ

1 d d

 

1
, , 1 , , 1{ ( , ) ( , )}n l k r n l k rG Gβ α β α αλ τ λ λ τ τ ξ− −

+ + + + +× − + −   

     (31) 

and  

2( 1) 10
0

2 sin( ) 1( , ) sin( ) ( 1)k
k k

k r

yu y t t ξω
π ξ ξ

∞∞

λ+ +
=

= − −∑∫  

1

0
, 0 , 0

( 1)! ! sin( ( ))
! ! ! !

m l k n w k tm n

m l n w

k kM t
m l n w

λ ω τ
+ = + + =

≥ ≥

+
× −∑ ∑ ∫  

     1 1
, , 1 , , 1{ ( , ) ( , )}n l k r n l k rG Gβ α β α α d dλ τ λ λ τ τ ξ− −

+ + + + +× − + −

      (32) 

 

V. TEMPERATURE FIELD 
Using the Rosseland approximation for radiation, the 

radiative heat flux is simplified as 

                      
* 4

*

4
3rq
k y
σ θ∂

= −
∂

.                             (33) 

where *σ and are the Stefan-Boltzmann constant and the 
mean absorption coefficient, respectively. We assume that 
the temperature differences within the flow such as that the 
term

*k

4θ  may be expressed as a linear function of 
temperature. Hence, expanding 4θ in a Taylor series about 
a free stream temperatureθ∞ and neglecting higher-order 
terms we get 

4 34 3 4θ θ θ θ∞ ∞≅ − .                            (34) 
It should be noted that the above radiative transfer pertains 
to an optically thick model. 

In view of Eqs.(33)and (34), Eq.(9) reduces to 
22

2

3 4
3

T R

p R p

k N u
t C N y C y
θ θ

ρ
⎡ ⎤ ⎡ ⎤+∂ ∂

= +⎢ ⎥ ⎢ ⎥∂ ∂ ⎣ ⎦⎣ ⎦

ν ∂
∂

.         (35) 

where
*

* 34
T

R
k kN

Tσ ∞

= . 

Employing the non-dimensional quantities: 
*

w

θ θθ
θ θ

∞

∞

−
=

−
, *

0 (0)
uu

u
= , * 0 (0)u yy

ν
= , 

2
* 0 (0)u t

t
ν

= ，
2

* 0 (0)
( )p w

u
C

η
θ θ∞

=
−

, * p

T

C
Pr

k
μ

= .  (36) 

Eqs.(35), (13)-(15)can reduce to dimensionless equations 
as follows (for brevity the dimensionless mark “*”are 
omitted here): 

22

2

3 4( , ) 1 ( , ) ( , )
3

R

R

Ny t y t u y t
t Pr N y y

θ θ η
⎡ ⎤ ⎡ ⎤+∂ ∂

= +⎢ ⎥ ⎢ ⎥∂ ∂ ⎣ ⎦⎣ ⎦

∂
∂

(37) 

Letting
2

( , )( , ) u y tg y t
y

⎡ ⎤∂
= ⎢ ⎥∂⎣ ⎦

, 0
3

3 4
R

R

Nk
N

=
+

, Eq.(37) can 

be rewritten as 
2

2
0

( , ) 1 ( , ) ( , )y t y t g y t
t k Pr y

θ θ η∂ ∂
= +

∂ ∂
.        (38) 

The corresponding initial and boundary conditions become: 
( ,0) 0yθ = , for ,                              (39) 0y >
(0, ) 1tθ = ,  for ,                              (40) 0t ≥
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( , ) 0y tθ → , 
( , ) 0y t
y

θ∂
→

∂
,   for .          (41) y → ∞ 3

Applying Fourier sine transform to Eqs.(38)-(39), we 
obtain 

2

0 0

( , ) 1 2( , ) ( , )s
s s

d t t g
dt k Pr k Pr

θ ξ ξ tξ θ ξ η ξ
π

+ = + (42) 

( ,0) 0sθ ξ = .                                        (43) 
Where ( , )s tθ ξ and ( , )sg tξ denote the Fourier sine 
transform of ( , )y tθ and ( , )g y t with respect to y , 
respectively. The solution of the ordinary differential 
equation Eq.(42) subject to the initial condition (43) is 
given by  

2 2
0 0/( ) /( )

0
0

2( , ) ( , )
tt k Pr k Pr

s st e g e d
k Pr

ξ ξ τξθ ξ η ξ τ
π

− ⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∫ τ

       (44) 
Inverting Eq.(44) by means of Fourier sine transform, we 
get 

2
0/( )

0 0
0

2 2( , ) sin( ) [
tt k Pry t y e

k Pr
ξ ξθ ξ

π π
∞ −= ∫ ∫  

2
0/( )( , )] k Pr

sg e dξ τ dη ξ τ τ ξ+ .                    (45) 
 

VI. RESULTS AND DISCUSSION 
In this paper, we have presented some oscillating flow of 

a generalized Oldroyd-B fluid. The effect of radiation on 
the heat transfer is considered. Exact analytic solutions are 
obtained for the velocity and temperature fields by means 
of Fourier sine transform coupled with Laplace transform. 
In there, we analyze the characteristics of velocity field and 
temperature field by using the analytical solutions obtained 
in sections 4-5. 

The motion of the fluid was due to the oscillation of the 
plate parallel x direction with angular frequency ω . The 
velocity profiles are displayed for different time  

 with 
/ 4t kω π=

( 1,2,3, 4,5,6,7,8)k = 1.5ω = in Fig.1. Fig.2 shows 
the velocity in the case of magnetohydrodynamic fluid is  
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Fig.1 Profiles of the velocity field at different times  for 

(0, ) cos( t)u t ω= . 
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Fig.2 Profiles of the velocity field at different times and 
M for u t(0, ) cos( t)ω= . 
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Fig.3 Profiles of the velocity field with different values of 
α for (0, ) cos( t)u t ω= . 
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Fig.4 Profiles of the velocity field with different values of 
β for (0, ) cos( t)u t ω= . 
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Fig.5 Profiles of the temperature field with different values 
of fort (0, ) cos( t)u t ω= . 
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Fig.6 Profiles of the temperature field with different values 
of forPr (0, ) cos( t)u t ω= . 
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Fig.7 Profiles of the temperature field with different values 
of RN for (0, ) cos( t)u t ω= . 

more steady than hydrodynamic. And the magnetic body 
force is favorable to decay of the velocity. Fig.3-4 
demonstrate the velocity changes with the fractional 
parameters α and β . We can see that their effects on both 
motions are opposite. The non-Newtonian effects are 
stronger at large values of α . The smaller the values of α , 
the more steady of the velocity field. 

Fig.5 displays the influence of time on  temperature 
field. As it was to be expected, it clearly results that the 
non-Newtonian effects are stronger at lager values of t . 
The greater the value of t , the higher the temperature. 
Fig.6 is the graph for temperature distribution θ for 
different values of , it is clear that there is a fall in 
temperature with increasing the Prandtl number. Fig.7 
depicts the effect of varying

Pr

RN for temperature field. The 
results show marked decrease in the temperature 
distributions with increase in RN . 

10, 3
5,Pr 2.

RN
M

η= =
= =
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